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Abstract

Efficient exploration in deep cooperative multi-agent reinforcement learning
(MARL) still remains challenging in complex coordination problems. In this
paper, we introduce a novel Episodic Multi-agent reinforcement learning with
Curiosity-driven exploration, called EMC. We leverage an insight of popular factor-
ized MARL algorithms that the “induced" individual Q-values, i.e., the individual
utility functions used for local execution, are the embeddings of local action-
observation histories, and can capture the interaction between agents due to reward
backpropagation during centralized training. Therefore, we use prediction errors
of individual Q-values as intrinsic rewards for coordinated exploration and uti-
lize episodic memory to exploit explored informative experience to boost policy
training. As the dynamics of an agent’s individual Q-value function captures
the novelty of states and the influence from other agents, our intrinsic reward
can induce coordinated exploration to new or promising states. We illustrate the
advantages of our method by didactic examples, and demonstrate its significant
outperformance over state-of-the-art MARL baselines on challenging tasks in the
StarCraft II micromanagement benchmark.

1 Introduction

Cooperative multi-agent reinforcement learning (MARL) has great promise to solve many real-world
multi-agent problems, such as autonomous cars [1] and robots [2]. These complex applications post
two major challenges for cooperative MARL: scalability, i.e., the joint-action space exponentially
grows as the number of agents increases, and partial observability, which requires agents to make
decentralized decisions based on their local action-observation histories due to communication
constraints. Luckily, a popular MARL paradigm, called centralized training with decentralized
execution (CTDE) [3], is adopted to deal with these challenges. With this paradigm, agents’ policies
are trained with access to global information in a centralized way and executed only based on local
∗Equal contribution.
†Work performed while visiting Tsinghua Univeristy.
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histories in a decentralized way. Based on the paradigm of CTDE, many deep MARL methods have
been proposed, including VDN [4], QMIX [5], QTRAN [6], and QPLEX [7].

A core idea of these approaches is to use value factorization, which uses neural networks to represent
the joint state-action value as a function of individual utility functions, which can be referred
to individial Q-values for terminological simplicity. For example, VDN learns a centralized but
factorizable joint value function Qtot represented as the summation of individual value function Qi.
During execution, the decentralized policies can be easily derived for each agent i by greedily selecting
actions with respect to its local value function Qi. By utilizing this factorization structure, an implicit
multi-agent credit assignment is realized because Qi is represented as a latent embedding and is
learned by neural network backpropagation from the total temporal-difference error on the single
global reward signal, rather than on a local reward signal specific to agent i. This value factorization
technique enables value-based MARL approaches, such as QMIX and QPLEX, to achieve state-of-
the-art performance in challenging tasks such as the StarCraft unit micromanagement [8].

Despite the current success, since only using simple ε-greedy exploration strategy, these deep MARL
approaches are found ineffective to solve complex coordination tasks that require coordinated and
efficient exploration [7]. Exploration has been extensively studied in single-agent reinforcement
learning and many advanced methods have been proposed, including pseudo-counts [9, 10], curiosity
[11, 12], and information gain [13]. However, these methods cannot be adopted into MARL directly,
due to the exponentially growing state space and partial observability, leaving multi-agent exploration
challenging. Recently, only a few works have tried to address this problem. For instance, EDTI [14]
uses influence-based methods to quantify the value of agents’ interactions and coordinate exploration
towards high-value interactions. This approach empirically shows promising results but, because
of the need to explicitly estimate the influence among agents, it is not scalable when the number of
agents increases. Another method, called MAVEN [15], introduces a hierarchical control method
with a shared latent variable encouraging committed, temporally extended exploration. However,
since the latent variable still needs to explore in the space of joint behaviours [15], it is not efficient
in complex tasks with large state spaces.

In this paper, we propose a novel multi-agent curiosity-driven exploration method. Curiosity is a
type of intrinsic motivation for exploration, which usually uses prediction errors on different spaces
(e.g., future observations [12], actions [11], or learnable representation [16]) as a reward signal. Re-
cently, curiosity-driven methods have achieved significant success in single-agent reinforcement learn-
ing [12, 17, 18]. However, curiosity-driven methods face a critical challenge in MARL: in which space
should we define curiosity? The straightforward method is to measure curiosity on the global observa-
tion [12] or joint histories in a centralized way. However, it is inefficient to find structured interaction
between agents, which seems too sparse compared with the exponentially growing state space when
the number of agents increases. In contrast, if curiosity is defined as the novelty of local observation
histories during the decentralized execution, although scalable, it still fails to guide agents to coordi-
nate due to partial observability. Therefore, we find a middle point of centralized curiosity and decen-
tralized curiosity, i.e., utilizing the value factorization of the state-of-the-art multi-agent Q-learning
approaches and defining the prediction errors of individual Q-value functions as intrinsic rewards.
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Figure 1: CTDE Framework

The significance of this intrinsic reward is two-
fold: 1) it provides a novelty measure of joint
observation histories with scalability because in-
dividual Q-values are latent embeddings (i.e., an
effective state abstraction [19]) of observation
histories in factorized multi-agent Q-learning
(e.g., VDN or QPLEX); and 2) as shown in
Figure 1, it captures the influence from other
agents due to the implicit credit assignment from
global reward signal during centralized train-
ing [20], and biases exploration into promising
states where strong interdependence may lie between agents. Therefore, with this novel intrinsic
reward, our curiosity-driven method enables efficient, diverse, and coordinated exploration for deep
multi-agent Q-learning with value factorization.

Besides efficient exploration, another challenge for deep MARL approaches is how to make the
best use of experiences collected by the exploration strategy. Prioritized experience replay based
on TD errors shows effectiveness in single-agent deep reinforcement learning. However, it does
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not carry this promise in factorized multi-agent Q-learning, since the projection error induced by
value factorization is also fused into the TD error and severally degrades the effectiveness of the
TD error as a measure of the usefulness of experiences. To efficiently use promising exploratory
experience trajectories, we augment factorized multi-agent reinforcement learning with episodic
memory [21, 22]. This memory stores and regularly updates the best returns for explored states. We
use the results in the episodic memory to regularize the TD loss, which allows fast latching onto
past successful experience trajectories collected by curiosity-driven exploration and greatly improves
learning efficiency. Therefore, we call our method Episodic Multi-agent reinforcement learning with
Curiosity-driven exploration, called EMC.

We evaluate EMC in didactic examples, and a broad set of StarCraft II micromanagement benchmark
tasks [8]. The didactic examples along with detailed visualization illustrate that our proposed intrinsic
reward can guide agents’ policies to novel or promising states, thus enabling effectively coordinated
exploration. Empirical results on more complicated StarCraft II tasks show that EMC significantly
outperforms other multi-agent state-of-the-art baselines.

2 Background

2.1 Dec-POMDP

A cooperative multi-agent task can be modelled as a Dec-POMDP [23], which is defined by a tuple
G =< I,S,A, P,R,Ω, O, n, γ >, where I is the sets of n agents, S is the global state space, A
is the finite action set, γ ∈ [0, 1) is the discount factor. We consider a partially observable setting
in a Dec-POMDP, i.e., at each timestep, agent i ∈ I only has access to the observation oi ∈ Ω
drawn from the observation function O(s, i). Besides, each agent has an action-observation history
τi ∈ T ≡ (Ω ×A)

∗ ×Ω and constructs its individual policy to jointly maximize team performance.
With each agent i selecting an action ai ∈ A, the joint action a ≡ [ai]

n
i=1 ∈ A ≡ AN leads to a

shared reward r = R(s,a) and the next state s′ according to the transition distribution P (s′|s,a).
The formal objective function is to find a joint policyπ that maximizes a joint value function V π(s) =
E[
∑∞
t=0 γ

trt|s = s0,π], or a joint action-value function Qπ(s,a) = r(s,a) + γEs′ [V π(s′)].

2.2 Centralized Training With Decentralized Execution (CTDE)

CTDE is a promising paradigm in deep cooperative multi-agent reinforcement learning [3, 23, 24],
where the local agents execute actions only based on local observation histories, while the policies
can be trained in centralized manager which has access to global information. During the training
process, the whole team cooperate to find the optimal joint action-value function Q∗tot(s,a) =
r(s,a) + γEs′ [maxa′ Q

∗
tot(s

′,a′)]. Due to partial observability, we use Qtot(τ ,a;θ) instead of
Qtot(s,a;θ), where τ ∈ T ≡ T N . Then the Q-value neural network will be trained to minimize
the following expected TD-error:

L(θ) = Eτ ,a,r,τ ′∈D
[
r + γV (τ ′;θ−)−Qtot(τ ,a;θ)

]2
, (1)

whereD is the replay buffer and θ− denotes the parameters of the target network, which is periodically
updated by θ. And V (τ ′;θ−) is the one-step expected future return of the TD target. Local agents
can only obtain local action-observation history and need inference based on individual Q-value
functions Qi(τi, ai). Therefore, many works have made efforts in finding the factorization structures
between joint Q-value functions Qtot and individual Q-functions Qi(τi, ai) [4, 5, 7].

3 Related Work

Curiosity-driven Exploration Curiosity-driven exploration has been well studied in single-agent
reinforcement learning. Previous literature [25, 26] has provided a good summary in this topic.
Recently, curiosity-driven methods have made great progress in deep reinforcement learning. For
example, some works use pseudo-state counts to get intrinsic rewards [9, 10, 27] instead of count-
based methods to get better scalability. Stadie et al. [28] use prediction errors in the feature space
of an auto-encoder to measure the novelty of states and encourage exploration. On the other hand,
Mohamed and Rezende [29] propose to use empowerment, measured by the information gain based on
the entropy of actions, as intrinsic rewards for exploring novel states efficiently. Another information-
based method [13] tries to maximize information gain about the agent’s belief of the environment’s
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dynamics as an exploration strategy. ICM [11] learns an inverse model which predicts the agent’s
action given its current and next states and tries to predict the next state in the learned hidden space
by current state and action. RND [12] uses curiosity as intrinsic rewards in a simpler but effective
way, which uses a fixed randomly initialized neural network as a representation network and directly
predicts the embedding of the next state. Different from these methods, we are the first to propose
an advanced curiosity-driven exploration method in MARL setting for diverse and coordinated
exploration.

Multi-agent Exploration Although single-agent exploration is extensively studied and has achieved
considerable success, few exploration methods were designed for cooperative MARL. Bargiacchiet
al. [30] proposes an exploration method that can only be used in repeated single-stage problems.
Jaques et al. [31] defines intrinsic reward by “social influence” to encourage agents to choose actions
that can influence other agents’ actions. Iqbal and Sha [32] uses various simple exploration methods
to learn simultaneously and then put the samples of every method in a shared buffer to achieve the
coordinated exploration. Wang et al. [14] use mutual information (MI) to capture the interdependence
of the rewards and transitions between agents. MAVEN [15] is the state-of-the-art exploration
method in MARL that uses a hierarchical policy to produce a shared latent variable and learns several
state-action value functions for each agent. These works, although important, still face the challenge
of achieving scalable and effective multi-agent exploration.

Episodic Control Our work is also related to episodic control reinforcement learning, which is
usually adopted in single-agent settings for better sample efficiency. Previous works propose to use
episodic memory in near-deterministic environment [33–36]. Model-free episodic control [34] uses
a completely non-parametric table to keep the best Q-values of state-action pair in a tabular-based
memory and uses a k-nearest-neighbors fashion to find the sequence of actions that so far yielded the
highest return from a given start state in the memory. Recently, several extensions have been proposed
to integrate episodic control with parametric DQN. Gershman and Daw [37] uses episodic memory
to retrieve samples and then average future returns to approximate the action values. EMDQN [21]
uses a fixed random matrix as a representation function and uses the projection of states as keys to
store the information of episodic memory into a non-parametric model. Using the episodic-memory
based target as a regularization term to guide the training process, the performance of EMDQN
is significantly improved compared with the original DQN. Despite the fruitful progress made in
single-agent episodic reinforcement learning, few works study episodic control in a multi-agent
setting. To the best of our knowledge, we are the first to utilize the mechanism of episodic control in
deep multi-agent reinforcement learning.

4 Episodic Multi-agent Reinforcement Learning with Curiosity-Driven
Exploration

In this section, we introduce EMC, a novel episodic multi-agent exploration framework. EMC takes
prediction errors of individual Q-value functions as intrinsic rewards for guiding the diverse and
coordinated exploration. After collecting informative experience, we leverage an episodic memory to
memorize the highly rewarding sequences and use it as the reference of a one-step TD target to boost
multi-agent Q-learning. First, we analyze the motivations for predicting individual Q-values, then we
introduce the curiosity module for exploration. Finally, we describe how to utilize episodic memory
to boost training.

4.1 Curiosity-Driven Exploration by Predicting Individual Q-values

As shown in Figure 2, in the paradigm of CDTE, local agents make decisions based on individual
Q-value functions, which take local observation histories as inputs, and are updated by the centralized
module which has access to global information for training. The key insight is that, different
from single-agent cases, individual Q-value functions in MARL are used for both decision-making
and embedding historical observations. Furthermore, due to implicit credit assignment by global
reward signal during centralized training, individual Q-value functions Qi(τi, ·) are influenced by
environment as well as other agents’ behaviors. More concretely, it has been proved by Wang et
al. [20] that, when the joint Q-function Qtot is factorized into linear combination of individual
Q-functions Qi, i.e., Q(t+1)

tot (τ ,a) =
∑N
i=1Q

(t+1)
i (τi, ai), then Q(t+1)

i (τi, ai) has the following
closed-form solution:
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Q
(t+1)
i (τi, ai) = E

(τ ′−i,a
′
−i)∼pD(·|τi)

[
y(t)

(
τi ⊕ τ ′−i, ai ⊕ a′−i

)]
︸ ︷︷ ︸

evaluation of the individual action ai

− n− 1

n
E

τ ′,a′∼pD(·|Λ−1(τi))

[
y(t) (τ ′,a′)

]
︸ ︷︷ ︸

counterfactual baseline

+wi(τi),

(2)

where y(t)(τ ,a) = r + γEτ ′
[
maxa′ Q

(t)
tot (τ ′,a′)

]
denotes the expected one-step TD target, and

pD(·|τi) denotes the conditional empirical probability of τi in the given dataset D. The notation
τi⊕τ ′−i denotes 〈τ ′1, . . . , τ ′i−1, τi, τ

′
i+1, . . . , τ

′
n〉, and τ ′−i denotes the elements of all agents except for

agent i. Λ−1(τi) denotes the set of trajectory histories that may share the same latent-state trajectory
as τi. The residue term w ≡ [wi]

n
i=1 is an arbitrary function satisfying ∀τ ∈ Γ,

∑n
i=1 wi(τi) = 0.

Eq. (2) shows that by linear value factorization, the individual Q-value Qi(τi, ai) is not only decided
by local observation histories but also influenced by other agents’ action-observation histories. Thus
predicting Qi can capture both the novelty of states and the interaction between agents and lead
agents to explore promising states. Motivated by this insight, in this paper, we use a linear value
factorization module separate from the inference module to learn the individual value function Qi,
and use the prediction errors of Qi as intrinsic rewards to guide exploration. In this paper, we define
the prediction errors of individual Q-values as curiosity and propose our curiosity-driven exploration
module as follows.
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Figure 2: An overview of EMC’s framework

Figure 2b demonstrates the Curiosity Module, separated from the inference module (Figure 2a). The
curiosity module consists of four components: (i) The centralized training part with linear value
factorization, which shares the same implementation as VDN [4], but only trained with extrinsic
rewards rext from the environment; (ii) the Target for prediction, i.e., the corresponding individual
Q-values Qexti , represented by a recurrent Q-network; (iii) Predictor Q̃i(τi), which is used for
predicting Qexti and shares the same network architecture as Target Qexti ; and (iv) Distance Function,
which measures the distance between Qexti and Q̃i, e.g., L2 distance. The predictors are trained
by minimizing the Mean Squared Error (MSE) of the distance in an end-to-end manner. For stable
training, we use the soft-update target [38] ofQexti to smooth the outputs of the targets. In general, (ii)
is trained with (i) and outputs individual Q-values , while (iii) is trained with (ii) and (iv), and aims to
predict the soft-update target of individual Q-values. Motivated by the implicit credit assignment of
linear value factorization (Eq. (2)), the curiosity module predicts the individual Q-values [Qexti ]

n
i=1 in

linear factorization, i.e., Qexttot =
∑N
i=1Q

ext
i . Then the curiosity-driven intrinsic reward is generated

by the following equation:

rint =
1

N

N∑
i=1

∥∥∥Q̃i(τi, ·)−Qexti (τi, ·)
∥∥∥

2
, (3)
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This intrinsic reward is used for the centralized training of the inference module, as shown in Figure 2a:

Linference(θ) = Eτ ,a,r,τ ′∈D
[
(y(τ ,a)−Qtot(τ ,a;θ))

2
]
, (4)

where y(τ ,a) = rext + βrint + γmaxa′ Qtot (τ ′,a′;θ−)), denoting one step TD target of the
inference module, and β is the weight term of the intrinsic reward. We use a separate training model
for inference (Figure 2a) to avoid the accumulation of projection errors of Qi during training.

The independence of inference module leads to another advantage, that EMC’s architecture can
be adopted into many value-factorization-based multi-agent algorithms which utilize the CDTE
paradigm, i.e., the general function f in Figure 2a can indicate specific (linear, monotonic and IGM)
value factorization structures in VDN [4], QMIX [5], and QPLEX [7], respectively. In this paper,
we utilize these state-of-the-art algorithms for the inference module. With this curiosity-driven
bias plugged into ordinary MARL algorithms, EMC will achieve efficient, diverse and coordinated
exploration.

4.2 Episodic Memory

Equipped with efficient exploration ability, another challenge is how to make the best use of good
trajectories collected by exploration effectively. Recently, episodic control has been widely studied in
single-agent reinforcement learning [21, 22], which can replay the highly rewarding sequences, thus
boosting training. Inspired by this framework, we generalize single-agent episodic control to propose
a multi-agent episodic memory, which records the best memorized Monte-Carlo return in the episode,
and provide a memory target H as a reference to regularize the ordinary one-step inference TD target
estimation in the inference module (Figure 2a):

Lmemory(θ) = Eτ ,a,r,τ ′∈D
[
(H −Qtot(τ ,a;θ))

2
]
. (5)

However, different from the single-agent episodic control, the action space of MARL exponentially
grows as the number of agents increases, and partial observability also limits the information of
individual value functions. Thus, we maintain our episodic memory by storing the state-value function
on the global state space and utilizing the global information during the centralized training process
under the CTDE paradigm. Figure 2d shows the architecture of the Episodic Memory. We keep a
memory table M to record the maximum remembered return of the current state, and use a fixed
random matrix drawn from Gaussian distribution as a representation function to project states into
low-dimensional vectors φ(s) : S → Rk, which are used as keys to look up corresponding global
state value function H(φ(st)). When our exploration method collects a new trajectory, we update
our memory table M as follows:

H(φ(st)) =

{
max{H(φ(ŝt)), Rt(st,at)} if ‖φ(ŝt)− φ(st)‖2 < δ

Rt(st,at) otherwise
, (6)

where φ(ŝt) is φ(st)’s nearest neighbor in the memory M , δ is a threshold, and R(st,at) represents
the future return when agents taking joint action at under global state st at the t-th timestep in
a new episode. In our implementation, φ(st) ∈ M is indeed evaluated approximately based on
the embedding distance. Specifically, when the key of the state φ(st) is close enough to one
key in the memory, we assume that φ(st) ∈ M and find the best memorized Monte-Carlo return
correspondingly. Otherwise, we think φ(st) /∈ M and record the state’s return into the memory.
Leveraging the episodic memory, we can directly obtain the maximum remembered return of the
current state, and use the one-step TD memory target H as a reference to regularize learning:

H(φ(st),at) = rt(st,at) + γH(φ(st+1)). (7)

Thus, the new objective function for the inference module is:

Ltotal(θ) = Linference(θ) + λLmemory(θ)

= Eτ ,a,r,τ ′∈D
[
(y(τ ,a)−Qtot(τ ,a;θ))

2
+ λ (H (φ(st),at)−Qtot(τ ,a;θ))

2
]
,

(8)

where λ is the weighting term to balance the effect of episodic memory’s reference. Using the
maximum return from the episodic memory to propagate rewards, we can compensate for the
disadvantage of slow learning induced by the original one-step reward update and improve sample
efficiency.
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5 Experiments

In this section, we will conduct a large set of empirical experiments for answering the following
questions: (1) Is exploration by predicting individual Q-value functions better than exploration by
decentralized curiosity or global curiosity (Section 5.1)? (2) Can our method perform efficient
coordinated exploration in challenging multi-agent tasks (Section 5.2-5.3)? (3) If so, what role does
each key component play for the superior performance (Section 5.4)? (4) Why do we choose to predict
target Qexti for generating intrinsic rewards rather than other choices (Section 5.4)? We will propose
several didactic examples and demonstrate the advantage of our method in coordinated exploration,
and evaluate our method on the StarCraft II micromanagement (SMAC) benchmark [8] compared
with existing state-of-the-art multi-agent reinforcement learning (MARL) algorithms: QPLEX [7],
Weighted-QMIX [39], QTRAN [6], QMIX [5], VDN [4], RODE [40], and MAVEN [15].

5.1 Didactic Example

Figure 3 shows an 11× 12 grid world game that requires coordinated exploration. The blue agent
and the red agent can choose one of the five actions: [up, down, left, right, stay] at each time step.
The wall shown in the picture isolates the two agents, and one agent cannot be observed by the other
until it gets into the shaded area. The two agents will receive a positive global reward r = 10 if and
only if they arrive at the corresponding goal grid (referred to the character G in Figure 3) at the same
time. If only one arrives, the incoordination will be punished by a negative reward −p.

Moving Agent 2

Moving Agent 1

Wall

G G

Figure 3: Coordinated
Toygame

To evaluate the effectiveness of our curiosity-driven exploration, we
implement our method into QPLEX, QMIX, and VDN (denoted as EMC-
QPLEX, EMC-QMIX, and EMC-VDN, respectively) and test them in this
toy game compared with the state-of-the-art MARL algorithms: VDN,
IQL, QMIX, and QPLEX. Moreover, to demonstrate the motivation of
predicting individual Q-functions, we add two more baselines: QPLEX
with the prediction error of global state as intrinsic rewards (denoted
as QPLEX-Global), and QPLEX with the prediction error of local joint
histories as intrinsic rewards (denoted as QPLEX-Local). Both of them
use a fixed network to project the inputs into latent embedding, then
predict the latent embedding to generate intrinsic reward, just like the
Random Network Distillation (RND) [12]. We test different punishment degrees, i.e., different ps
(which are deferred to Appendix C), and the results show QPLEX-Global and QPLEX-Local are
effective enough for exploration when p is relatively small. However, as p increases, the task becomes
more challenging since it requires sufficient and coordinated exploration. In Figure 4, we show the
median test win rate of all methods over 6 random seeds when p = 2, and only our methods can learn
the optimal policy and win the game, while other methods failed.

To understand this result better, we have made several visualisations to demonstrate our advantage
in coordinated exploration. Figure 4 shows the heatmaps of visitation and intrinsic reward by
EMC-QPLEX, QPLEX-Global, and QPLEX-Local. During the early stage of training, all methods
uniformly explore the whole area (Figure 4a). As the exploration progresses, the global curiosity
(QPLEX-Global) encourages agents to visit all configurations without bias, which is inefficient and
fail to leverage the potential locality influence between agents (Figure 4b), resulting in extrinsic
rewards beginning to dominate the behaviors (Figure 4c). On the other hand, the visitation heatmap
of QPLEX-Local shows the decentralized curiosity encourages agents to explore around the goal
grid, but it cannot promise to encourage agents to coordinate and gain the reward due to the partial
observability in decentralized execution. In contrast, the heatmap of intrinsic reward for EMC-QPLEX
shows that predicting individual Q-values will bias exploration into areas where individual Q-values
are more dynamic due to the potential correlation between agents. Therefore, QPLEX-Local and
QPLEX-Global both fail in this task (Figure 4c), while our methods are able to find the optimal policy.
This didactic example shows the global curiosity or local curiosity may fail to handle complex tasks
where coordinated exploration needs to be addressed. While since individual Q-values Qi are the
embeddings of historical observations, and are dynamically updated by the backpropagation of the
global reward signal gained through cooperation during centralized training. Thus Qi can implicitly
reflect the influence from the environment and other agents, and predicting Qi can capture valuable
and spare interactions among agents and bias exploration into new or promising states.
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EMC-QPLEX
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60k 150k

Figure 4: The heat map of gridworld game.
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0.0M 0.2M 0.4M 0.6M 0.8M 1.0M
Timesteps

160

120

80

40

0

40

M
ed

ia
n 

Te
st

 R
et

ur
n

EMC-VDN (Ours)
EMC-QMIX (Ours)
EMC-QPLEX (Ours)
MAVEN
CW-QMIX
OW-QMIX
QPLEX
QMIX
QPLEX-Local
QPLEX-Global

Figure 5: The performance of Predator
Prey.

Predator-Prey is a partially-observable multi-agent co-
ordinated game with miscoordination penalties used by
WQMIX [39]. As shown in Figure 5, since extensive
exploration is needed to jump out of the local optima,
WQMIX is the only baseline algorithm to find the optimal
policy, due to its shaped data distribution which can be
seen as a type of exploration. Other state-of-the-art multi-
agent Q-learning algorithms, such as QPLEX and QMIX,
fail to solve this task. For MAVEN, QPLEC-Global and
QPLEX-Local, although equipped with improved explo-
ration ability, they still failed to address coordination
due to uniform exploration nature or partial observability.
However, plugged with EMC, EMC-VDN, EMC-QMIX,
and EMC-QPLEX can guarantee coordinated exploration
effectively and achieve good performance.

5.3 StarCraftII Micromanagement (SMAC) Benchmark
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Figure 6: The number of scenarios in
which the algorithm’s median test win
rate is the highest by as least 1/32.

StarCraft II Micromanagement (SMAC) is a popular
benchmark in MARL [4, 5, 7, 40, 39]. We conduct ex-
periments in 17 benchmark tasks of StarCraft II, which
contains 14 popular tasks proposed by SMAC [8] and three
more super hard cooperative tasks proposed by QPLEX [7].
In the micromanagement scenarios, each unit is controlled
by an independent agent that must act based on its own
local observation, and the enemy units are controlled by
a built-in AI.

For evaluation, we compare EMC with the state-of-the-
art algorithms: RODE [40], QPLEX [7], MAVEN [15],
and the two variants of QMIX [5]: CW-QMIX and OW-
QMIX [39]. All experimental results are illustrated with
the median performance and 25-75% percentiles. Figure 6
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Figure 7: Results of super hard maps in SMAC.

shows the overall performance of the tested algorithms in all these 17 maps. Due to the effective
exploration with episodic memory which can efficiently use promising exploratory experience
trajectories, EMC is the best performer on up to 6 tasks, underperforms on just three tasks, and ties
for the best performer on the rest tasks.

The advantages of our algorithm can be mainly illustrated by the results of the six hard maps which
need sufficient exploration shown in Figure 7. The three maps in the first row are super hard, and
solving them needs efficient, diverse and coordinated exploration. Thus, we can find that the EMC
algorithm significantly outperforms other algorithms in corridor and 3s5z_vs_3s6z, and also achieves
the best performance (equal to RODE) in 6h_vs_8z. To the best of our knowledge, this will be the
state-of-the-art results in corridor and 3s5z_vs_3s6z. For the remaining three maps in the second row
( 1c3s8z_vs_1c3s9z, 5s10z, and 7s7z), where other baselines can also find winning strategies, due to
the boost learning process via episodic memory along with efficient exploration, our algorithm EMC
still performs the best in the three maps, with fastest learning speed and the highest rates achieved.

5.4 Ablation Study

To understand the superior performance of EMC, we carry out ablation studies to test the contribution
of its two main components: curiosity module and episodic memory. Following methods are included
in the evaluation: (i) EMC without curiosity module (denoted by EMC-wo-C); (ii) EMC without
episodic memory component (denoted by EMC-wo-M); (iii) QPLEX, which can be considered as
EMC without the episodic memory component nor the curiosity module, provides a natural ablation
baseline of EMC.

Figure 8(b-c) shows that in easy exploration maps, both EMC and EMC-wo-C achieve the state-of-the-
art performance, which implies that in the easy tasks, sufficient exploration can be achieved simply
by the popular ε-greedy method. However, in super hard exploration maps (Figure 8 (a)), EMC-wo-C
cannot solve this task but EMC has excellent performance. These empirical experiments show that
the curiosity module plays a vital role in improving performance when sufficient and coordinated
exploration is necessary. On the other hand, making the best use of good trajectories collected by
exploration is also essential. As shown Figure 8, EMC with episodic memory enjoys better sample
efficiency than EMC-wo-M in challenging (Figure 8a) and easy exploration tasks (Figure 8(b-c)). In
general, the curiosity module and the episodic memory complement each other, and efficiently using
promising exploratory experience trajectories leads to the superior performance of EMC.

Like single-agent curiosity or RND [12] exploration methods, our approach looks simple yet effective.
In addition, its design choices do not look straightforward before we know how to do it right.
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Figure 8: Ablation study on the two major components.
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Figure 9: Ablation study on design choice.

Therefore we conduct additional ablation studies to demonstrate the effect of our elaborate formulation
of curiosity bias. We introduce several baselines and compare them with EMC : (i) using the
normalized TD-error of Qtotal as curiosity rewards, denoted as EMC-TD; (ii) using the averaged
error between the individual utilities and their targets as intrinsic rewards, denoted as EMC-Ind;
(iii) using the TD error of a centralized critic of the controllers which conditions on all agents’
histories and actions, denoted as EMC-Cen; (iv) using the averaged prediction errors of Qext;deci
which are trained in a decentralized way, denoted as EMC-Dec. We aim to investigate the subtle
implementation difference between EMC and EMC-TD as well as EMC-Ind, and compare the
exploration efficiency of our method with the global curiosity-driven exploration method (EMC-Cen)
and local curiosity-driven exploration method (EMC-Dec) empirically.

We design a variant of the toygame mentioned in section 5.1, which has an additional random noisy
reward region. By visualizations, we demonstrate that the agents of EMC-TD and EMC-Ind tend to
get stuck in the noisy-reward region, thus resulting in sub-optimal policy, while our method show
superior ability for avoiding such noise-spike problem. On the other hand, since EMC-Cen is based
on global curiosity, which encourages agents to explore the whole state space without bias, it may fail
in finding sparse but valuable interaction patterns in the exponentially growing space in complex tasks.
When comparing with EMC and EMC-Dec, we find that the key difference is the counterfactual
baseline (Eq. (2)), which can theoretically reduce the variance of EMC [41]. Therefore, EMC can
focus more on the individual specific contribution and achieve the significant improvements.

We test these baselines in SMAC and the results are shown in Figure 9, and our method significantly
outperform other baselines. In general, by conducting these ablations, we demonstrate the robustness
for noise spikes of our design choice ((i) and (ii)), as well as the efficiency and stability of our method
compared with centralized or decentralized curiosity-driven exploration method. More detailed
discussions will be deferred to Appendix E.

6 Conclusions and Future Work

This paper introduces EMC, a novel episodic multi-agent reinforcement learning algorithm with a
curiosity-driven exploration framework that allows for efficient coordinated exploration and boosted
policy training by exploiting explored informative experiences. Based on the effective exploration
ability, our method shows significant outperformance over state-of-the-art MARL baselines on
challenging tasks in the StarCraft II micromanagement benchmark. The limitation of our work lies in
the lack of adaptive exploration methods to ensure robustness. Besides, the episodic memory may get
problems in stochastic settings. For future work, we may conduct further research in these directions.
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A Experiment Settings and Implementation Details

A.1 StarCraft II

The benchmark we considered in our paper is the popular combat scenario of StarCraft II unit
micromanagement tasks [8]. In this game, the enemy units are controlled by the built-in AI, and each
ally unit is controlled by the reinforcement learning agent. We use the default settings, and the results
in our paper use Version SC2.4.6.2.69232. At each time-step, each agent will choose action from the
discrete action space, which includes the following actions: no-op, move [direction], attack [enemy
id], and stop. By taking actions, agents move and attack in continuous maps. During the game, all
agents will receive a global reward equal to the total damage done to enemy units. The team will
get additional bonuses of 10 by killing each enemy unit, and bonuses of 200 by winning the combat.
Here we briefly introduce each map of the SMAC challenges in Table 1.

Map Name Ally Units Enemy Units
2s3z 2 Stalkers & 3 Zealots 2 Stalkers & 3 Zealots
3s5z 3 Stalkers & 5 Zealots 3 Stalkers & 5 Zealots

1c3s5z 1 Colossus, 3 Stalkers & 5 Zealots 1 Colossus, 3 Stalkers & 5 Zealots
5m_vs_6m 5 Marines 6 Marines

10m_vs_11m 10 Marines 11 Marines
27m_vs_30m 27 Marines 30 Marines
3s5z_vs_3s6z 3 Stalkers & 5 Zealots 3 Stalkers & 6 Zealots

MMM2 1 Medivac, 2 Marauders & 7 Marines 1 Medivac, 2 Marauders & 8 Marines
2s_vs_1sc 2 Stalkers 1 Spine Crawler
3s_vs_5z 3 Stalkers 5 Zealots
6h_vs_8z 6 Hydralisks 8 Zealots

bane_vs_bane 20 Zerglings & 4 Banelings 20 Zerglings & 4 Banelings
2c_vs_64zg 2 Colossi 64 Zerglings

corridor 6 Zealots 24 Zerglings
5s10z 5 Stalkers & 10 Zealots 5 Stalkers & 10 Zealots

7sz 7 Stalkers & 7 Zealots 7 Stalkers & 7 Zealots
1c3s8z_vs_1c3s9z 1 Colossus, 3 Stalkers & 8 Zealots 1 Colossus, 3 Stalkers & 9 Zealots

Table 1: SMAC challenges.

A.2 Didactic Examples

Figure 3 shows the referred didactic example in section 5.1, which is a 11× 12 grid world game. The
blue agent and red agent can choose one of the five actions: [up, down, left, right, stay] at each time
step. The two agents is isolated by the wall, and they cannot be observed by the other one until they
get into the 5× 6 light shaded area. They will receive a global positive reward of 10 if and only if
they arrive at the dark shaded grid at the same time. If only one arrives, the incoordination will be
punished by a negative reward of −p.

A.3 Implementation Details

We adopt the PyMARL [8] implementation of state-of-the-art baselines: RODE [40], QPLEX [7],
MAVEN [15], Qtran [6],VDN [4],QMIX [5] and Weighted-QMIX [39]. The hyper-parameters of
these algorithms are the same as that in SMAC [8] and referred in their source codes. Our method is
also based on QPLEX, and the hyper-parameters are the same referred in its source codes. While the
special hyper-parameters are illustrated in Table 2 and other common hyper-parameters are adopted
by the default implementation of PyMARL [8].

We conduct experiments on an NVIDIA Tesla P100 GPU, and each task in SMAC needs to train
about 20 hours to 30 hours, depending on the number of agents and episode length limit of each
map. We evaluate 32 episodes with decentralized greedy action selection without ε− greedy strategy
every 10k timesteps for each algorithm. The test win rate shows the percentage of episodes in which
agents defeat all enemy units within the time limit. Besides, since the intrinsic rewards need to
vanish as the policy converges, we use a decaying weighting term to scale the intrinsic rewards:
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EMC’s architecuture configurations Value
soft update weight 0.05

weighting term λ of episodic loss 0.1 or 0.01
episodic memory capacity 1M

episodic latent dim 4
Table 2: The hyper-parameters of EMC’s architecture.

r̃intt = ηt ∗ rintt , ηt+200k = 0.9 ∗ ηt. In the three super hard maps: corridor, 3s5z_vs_3s6z, 6h_vs_8z,
we set η = 0.05 while set η = 0.0001 in other maps.

B Experiments on StarCraftII

Figure 10 shows the performance of 6 easy maps in SMAC. It can be found that our algorithm
perform the best in 5 of the 6 easy maps. In the map 2s_vs_1sc, although EMC is the second best,
the performance gap between EMC and the QPLEX algorithm is very subtle. The advantage of
EMC over the other algorithms can be found in Figures 10(b), 10(c), and 10(f), where it converges
much faster than the second best algorithm QPLEX. For example, in the bane_vs_bane tasks, the
EMC algorithm reaches a 100% win rate in fewer than 0.2M steps, while the QPLEX algorithm
converges at the time step of 0.3M. Futhermore, the win rate of QPLEX does not reach 100% in this
map and its learning process is not as stable as that of EMC. Therefore, although the state-of-the-art
algorithms such as QPLEX performs sufficiently well in these easy maps, the coordinated exploration
mechanism and episodic-memory control equipped by EMC can further enhance the performance a
learning algorithm.
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(c) 3s5z
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(d) 1c3s5z
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(e) 3s_vs_5z
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(f) bane_vs_bane

Figure 10: Results of the 6 easy maps in the SMAC experiments.

The results in Figure 11 shows that the EMC algorithm achieves comparble performance with the
state-of-the-art baseline algorithms in the 5 maps 2c_vs_64zg, 27m_vs_30m, MMM2, 5m_vs_6m, and
10m_vs_11m. Moreover, our method may not perform pretty well in few maps, and we hypothesis that
the training process of EMC may get stuck in local optimal due to the episodic control mechanism.
It also should be noted that the MAVEN algorithm, which is specially designed for the multi-agent
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exploration problem, performs the worst in the these maps. And our algorithm, which is also equipped
with an exploration mechanism, outperforms MAVEN drastically.
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(a) 2c_vs_64zg
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(b) 27m_vs_30m
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(c) MMM2
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(d) 5m_vs_6m
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(e) 10m_vs_11m

Figure 11: Results of the remaining 5 maps in the SMAC experiments .

C Experiments on the Coordinated Toygame
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(a) p = 0
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(b) p = 0.5
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(c) p = 1
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(d) p = 1.5
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(e) p = 2

Figure 12: Results of the coordinated toygame with different punishment p .
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To compare EMC’s ability of coordinated exploration with other algorithms, we conduct several
experiments with different punishment degrees, i.e., different p, in the coordinated toygame (see
Section 5.1). Figure 12 shows, when p = 0, all algorithms, except for QPLEX and IQL, can find
winning strategies quickly since the game is easy. However, under the incoordination penalty (p > 0),
algorithms without intrinsic motivation fail to win the game (Figure 12 (b)), since sufficient coordi-
nated exploration needs to be addressed. Moreover, as expected, QPLEX-Local has an advantage
over sample efficiency compared with QPLEX-Global (Figure 12 (b-c)) because of the decentralized
exploration, which can avoid searching the whole state space. As p increases (Figure 12 (d-e)),
thanks to the biased and efficient exploration by predicting individual Q-values, only our methods can
solve the task. By these experiments, we can conclude that neither centralized (global) curiosity nor
decentralized (local) curiosity is practical for exploration in MARL. In contrast, predicting individual
Q-values can capture the sparse and valuable interactions by leading agents to explore the areas where
Q-values are more dynamic, thus achieve coordinated exploration effectively.

D Ablation Study of Coefficient Term

In this section, we study the different coefficient term λ in Eq. (8) to visualize the robustness of
our hyperparameters. The weighting term λ of memory TD loss (see Section 5) was selected in
{0.001, 0.01, 0.1, 0.5}. We study the influence of different λ in several maps, i.e., 2s3z, 3s5z, and
3s5z_vs_3s6z. Figure 13 shows that EMC with λ = 0.01 or 0.1 can achieve the state-of-the-art
performance. From these empirical experiments, we find that in general, λ is not sensitive for most
maps when chosen from 0.01 ∼ 0.1. However, the performance may be degenerated if λ is too
large (e.g., λ = 0.5 in 3s_vs_5z) since the best memorized return of our episodic memory may bring
learning into local optimum.
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(a) 3s5z_vs_3s6z
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(b) 2s3z
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(c) 3s_vs_5z

Figure 13: Ablation study of coefficient term λ.

E Ablation Study of Design Choice

The proposed intrinsic reward is the average of individual MSE (Eq. (3)) between utilities "Targets"
and "Predictors", thus seems to be similar with the average of the Target-utilities individual error
(which is just the normalized VDN TD-error). So we take a closer look and investigate the subtle
difference between these two implementations. We first discuss the similarities between prediction
error (EMC) and TD error, then we analyze their fundamental (high-level) difference and technical
difference, and, finally, we provide empirical results to support our claims.

Similarities

There are some similar properties between prediction error and TD error: 1) they both converge
when the policy converges; 2) they are common metrics that show promising results for exploration
[12, 11, 42, 16] and exploitation [43–45], respectively. These similarities motivate us to study the
effects of EMC’s each module by comparing with the ablation study using TD error.

Fundamental High-level Difference

A fundamental (high-level) difference is that using TD error as an intrinsic reward can hurt perfor-
mance since the objective of this intrinsic reward (maximize the TD error) is totally the opposite
of the original objective of VDN (minimize the TD error). Intuitively, the metric of TD error does
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not match the TD-learning framework in the perspective of objective functions. In contrast, we use
prediction errors of individual Q-values (i.e., the embeddings of local action-observation histories)
as intrinsic rewards for coordinated exploration. To stabilize training, we utilize a slowly updated
target network for individual Q-values as a moving target. Using prediction error as a curiosity for
exploration has been a long-standing topic in the single-agent deep RL literature [12, 11, 42, 16], and
one important related work is [16], which measures the prediction error in the learnable representation
space (i.e., this latent space is also a moving target). The literature [12, 11, 42, 16] implies that the
idea of using prediction error is empirically effective, but the novelty of our EMC method is to situate
this idea in multi-agent reinforcement learning by exploiting its factorization structure.

Technical Difference

More concretely, we will clarify the technical difference between our method (EMC) and the baseline
using TD error as intrinsic rewards, as the reviewer suggested. As stated in Eq. (3) in Section 4, EMC
(our method) uses the prediction error of the individual utilities as below:

rintEMC =
1

N

N∑
i=1

∥∥∥Q̃i(τi, ·)−Qtargeti (τi, ·)
∥∥∥

2
. (9)

While the normalized VDN TD-error (denoted as EMC-TD) can be formulated by:

rintTD =
1

N

∥∥∥Qtot(τ ,a)−
(
rext + γmax

a′
Qtargettot (τ ′,a′)

)∥∥∥
2

=
1

N

∥∥∥∥∥
N∑
i=1

(
Qi(τi, ·)−

(
rext + γmax

a′i

Qtargeti (τ ′i , a
′
i)

))∥∥∥∥∥
2

(10)

where τ ′ denotes the joint history on the next state. If we ignore the difference in the summation
operator, the major difference in Eq. (9) and Eq. (10) is two-fold:

a. TD error uses a one-step temporal difference which is involved with the immediate reward
rext.

b. TD error uses the VDN utility functions Qi(τi, ·), while EMC uses the predictors Q̃i(τi, ·).

Therefore, using TD errors as intrinsic rewards may result in the following several issues:

• Since it uses the one-step TD target with immediate reward rext, it can be sensitive to noise
spikes (e.g. when rewards are stochastic), which can be exacerbated by bootstrapping, where
approximation errors appear as another source of noise [44].

• Instead of predictors Q̃i(τi, ·) which are optimized end to end with the targets, VDN utility
functions Qi are learned by one-step reward backpropagation, resulting in that the errors
shrink slowly and the agents tend to be stuck in early trajectories. As discussed similarly in
[44], the lack of diversity will make the system prone to over-fitting.

Ablation Study

To investigate the difference between EMC and EMC-TD, we carry out an ablation study on SMAC
and a gridworld game. To study the major difference in Eq. (9) and Eq. (10) discussed above (i.e.,
(a) and (b) bullets), we introduce another baseline using rintind (denoted as EMC-Ind), which uses the
averaged error between the individual utilities and their targets as intrinsic rewards.

rintInd =
1

N

N∑
i=1

∥∥Qi(τi, ·)−Qtargeti (τi, ·)
∥∥

2
. (11)

EMC-Ind aligns the individual utilities Qi(τi, ·) and their target Qtargeti (τi, ai) in the same temporal
steps and does not include the predictor network Q̃i(τi, ·). Comparing EMC-Ind with EMC-TD and
EMC, we can provide the ablation studies for the effect of (a) and (b), respectively. In the gridworld
game, we combine the different curiosity methods (i.e., EMC, EMC-TD, and EMC-Ind) with the
VDN learning algorithm and conduct the baseline VDN to demonstrate the effect of these intrinsic
rewards in exploration. The experiments are listed as follows.
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To better demonstrate the issues caused by (a) and (b), we introduce a new variant of the original
gridworld task in the paper (Figure 14), which adds a noisy reward region above the shaded area, and
two agents will receive a random Gaussian (µ = 0, σ = {0, 0.0001, 0.01, 0.25}) noisy reward here.
This noisy reward area is used to represent noise spikes in the reward function. The two agents need
to jump out the local optimal area (the noisy reward region) and arrive at the goal grid at the same
time.

Moving Agent 2

Moving Agent 1

Wall

G G

Noisy Reward
Region

Figure 14: New grid world.

The results in Figure 15(a-d) show that EMC-VDN has achieved the best performance and EMC-Ind
performs better than EMC-TD. The comparison between EMC-Ind and EMC-TD indicates that one
step TD target is sensitive to noise spikes. The reason why EMC-Ind underperforms EMC-VDN is
that EMC uses predictors Q̃i which are optimized end to end with the targetsQtargeti , while EMC-Ind
uses utility functions Qi which are optimized with the one-step TD target. Therefore, the intrinsic
reward of EMC-VDN will decay as the frequency of visiting the state-action pairs increases (i.e.,
capturing the novelty of states). In contrast, for EMC-Ind, the optimization of Qi is influenced by
the one-step TD target which is softly updated by a fixed rate, thus the intrinsic rewards cannot
vanish along with the number of training steps on the corresponding states (i.e., cannot capture the
novelty of states). In other words, the prediction errors of EMC-Ind (i.e., the intrinsic rewards)
depend on the update frequency rather than the novelty of visited states. Thus as the scale of noise
increases, EMC-Ind and EMC-TD both fail in finding the optimal policy, and EMC-VDN significantly
outperforms these two baselines. VDN cannot solve these problems, which indicates that the intrinsic
reward introduced by EMC-VDN, EMC-TD, and EMC-Ind is effective for hard exploration problems.

For more clear clarifications, we provide the proportion of the visitation in the areas of noisy-reward
and goal grid in the gridworld with σ = 0.25, respectively, and the results are shown in Figure 16.
As we expected, the results show that, due to reasons discussed above, the agents of EMC-Ind or
EMC-TD tend to get stuck in this noisy-reward region, and EMC-VDN can jump out of the local
optimal area and reach the goal grid. Compared with EMC-Ind, the ability to capture state novelty
provides EMC-VDN with more efficient curiosity-driven exploration. On the other hand, especially
compared with VDN, EMC-TD will be stuck in the noisy-reward region longer, which shows that
TD-error cannot perform well under higher noise spikes.

Figure 17 show the results of SMAC. We can see that EMC-Ind shows advantages over EMC-TD in
corridor and 3s5z_vs_3s6z map, demonstrating that using one-step difference may harm performance.
However, the winning rate of EMC-Ind shows relatively low compared with EMC (ours), indicating
that it may be stuck in local optima.

As discussed above, we choose to use prediction errors as intrinsic rewards instead of using TD error,
which can capture the dynamics of Qi quickly, avoid the noise spikes problem, and jump out of the
local optima effectively. Empirical results show that EMC can encourage the agents to visit novel
and promising states efficiently.
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(a) σ = 0
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(b) σ = 0.0001
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(c) σ = 0.01
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(d) σ = 0.25

Figure 15: Results of the coordinated toygame with different scale of noisy reward .
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(a) noisy-reward area
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Figure 16: Proportion % of the visitation in the noisy-reward area and around the goal grid area
(σ = 0.25), respectively.

F Ablation Study of Episodic Memory

To illustrate the ability of EMC in the stochastic setting, we conduct an ablation study by introducing
stochasticity into the gridworld didactic task. In the original gridworld, each agent can move in four
directions or stay still at each time step. In the stochastic variant, each agent has a ξ% probability of
making a mistake and choose a random action accordingly. Figure 18(a-e) shows the performance
of EMC and other baselines under different degrees of stochasticity (ξ = {0, 5, 10, 20, 30, 50}).
These empirical results show that with proper stochasticity (e.g., ξ = {0, 5, 10, 20}), EMC can also
significantly outperform baselines and solve this hard exploration puzzle. When the environment has
a lot of uncertainty (e.g., ξ = 30, 50), it is challenging for EMC and other baselines. Learning in the
highly stochastic environment is also an interesting future direction for MARL.
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(a) corridor
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(b) 3s5z_vs_3s6z
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(c) 6h_vs_8z

Figure 17: Ablation study on design choice.
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(a) p = 2, ξ = 0
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(b) p = 2, ξ = 5
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(c) p = 2, ξ = 10
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(d) p = 2, ξ = 20
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(e) p = 2, ξ = 30
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(f) p = 2, ξ = 50

Figure 18: Results of the coordinated toygame with different scale of noisy reward .
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