
Supplementary Material
A Proofs

This section provides the full proof of the theorems stated in the main paper.

A.1 Proof of Theorem 3

High-level idea The high-level idea of this proof is by separately showing the correctness of the
forward pass (Alg. 1) and the backward pass (Alg. 2). Specifically, for a “softened” sample x, we aim
to show that (i) in the forward pass, the value of x w.r.t. any PC unit n corresponds to the likelihood
of x (note that since x can be represented as a weighted sum of exponentially many “hard” samples,
the target likelihood is also the weighted sum of the respective likelihoods), and (ii) in the backward
pass, the flow of x w.r.t. any PC unit corresponds to the weighted sum of the flows of the “hard”
samples “contained” in x. Both claims are proved by induction: for the forward pass, we first show
that the base cases (leaf nodes) satisfy the claim, then by assuming all children of a PC unit satisfy
the claim, we prove the inductive case of sum and product units; for the backward pass, induction is
also applied in the preorder (parents before children).

As stated in the theorem, assume that we are given a deterministic PC p, a boolean dataset D
containing N samples {x(i)}Ni=1, and hyperparameter β ∈ (0.5, 1]. Define K as the number of
variables in X, i.e., X = {Xk}Kk=1.

Correctness of the forward pass We show that the value of each node n w.r.t. sample x(i) (by
slightly abusing notation, denoted as valuei[n]) computed by Alg. 1 (with the specific choice of
fn(x) = β ·1[x ∈ supp(n)] + (1− β)·1[x 6∈ supp(n)]) is defined as

valuei[n] =
∑

x∈val(X)

K∏
k=1

(
β ·1[x

(i)
k = xk] + (1−β)·1[x

(i)
k 6= xk]

)
· 1[x∈supp(n)], (6)

where xk denotes the kth feature of x.

• Base case: input units. Suppose node n is a literal w.r.t. variable Xk. That is, x ∈ supp(n) iff
xk = Lit(n), where Lit(n) is either true or false defined by the PC. Denote ¬Lit(n) as the
negation of Lit(n). ∀i ∈ {1, . . . , N} we have

valuei[n] =β ·1[x(i) ∈ supp(n)] + (1− β)·1[x(i) 6∈ supp(n)]

=β ·1[x
(i)
k = Lit(n)] + (1− β)·1[x

(i)
k = ¬Lit(n)]

(a)
=

∑
x∈{x:x∈val(X)∧xk=Lit(n)}

K∏
l=1,l 6=k

(
β ·1[x

(i)
l = xl] + (1−β)·1[x

(i)
l 6= xl]

)
·
(
β ·1[x

(i)
k = Lit(n)] + (1− β)·1[x

(i)
k = ¬Lit(n)]

)
=

∑
x∈{x:x∈val(X)∧xk=Lit(n)}

K∏
l=1,l 6=k

(
β ·1[x

(i)
l = xl] + (1−β)·1[x

(i)
l 6= xl]

)
·
(
β ·1[x

(i)
k = xk]·1[xk = Lit(n)] + (1− β)·1[x

(i)
k 6= xk]·1[xk = Lit(n)]

)
=

∑
x∈{x:x∈val(X)∧xk=Lit(n)}

K∏
l=1,l 6=k

(
β ·1[x

(i)
l = xl] + (1−β)·1[x

(i)
l 6= xl]

)
·
(
β ·1[x

(i)
k = xk] + (1− β)·1[x

(i)
k 6= xk]

)
·1[xk = Lit(n)]

(b)
=

∑
x∈{x:x∈val(X)}

K∏
l=1

(
β ·1[x

(i)
l = xl] + (1−β)·1[x

(i)
l 6= xl]

)
·1[xk = Lit(n)]

14

=
∑

x∈{x:x∈val(X)}

K∏
l=1

(
β ·1[x

(i)
l = xl] + (1−β)·1[x

(i)
l 6= xl]

)
·1[x ∈ supp(n)],

where (a) holds because the added term

∑
x∈{x:x∈val(X)∧xk=Lit(n)}

K∏
l=1,l 6=k

(
β ·1[x

(i)
l = xl] + (1−β)·1[x

(i)
l 6= xl]

)
= 1;

the sum condition xk = Lit(n) after (b) can be lifted thanks to the indicator 1[xk = Lit(n)].

• Inductive case: product units. Suppose n is a product unit with children {cj}|in(n)|j=1 . Recall that the
scope of the child cj is denoted as φ(cj). Since the PC is decomposable, the contexts of different
children are non-overlapping. Suppose the value of any child unit cj is defined according to Eq. (6),
i.e.,

valuei[cj] =
∑

x∈val(X)

K∏
k=1

(
β ·1[x

(i)
k = xk] + (1−β)·1[x

(i)
k 6= xk]

)
· 1[x∈supp(cj)].

Denote Kcj as the set of index for the variables in φ(cj). We have

valuei[n]
(a)
=

|in(n)|∏
j=1

valuei[cj]

=

|in(n)|∏
j=1

{ ∑
x∈val(X)

K∏
k=1

(
β ·1[x

(i)
k = xk] + (1−β)·1[x

(i)
k 6= xk]

)
· 1[x∈supp(cj)]

}

=

|in(n)|∏
j=1

{ ∑
x∈val(φ(cj))

∏
k∈Kcj

(
β ·1[x

(i)
k = xk] + (1−β)·1[x

(i)
k 6= xk]

)
· 1[x∈supp(cj)]

}
(b)
=

∑
x∈val(⋃|in(n)|

j=1 φ(cj))

∏
k∈⋃|in(n)|

j=1 Kcj

(
β ·1[x

(i)
k = xk] + (1−β)·1[x

(i)
k 6= xk]

)

·
(|in(n)|∏

l=1

1[x∈supp(cl)]

)
(c)
=

∑
x∈val(⋃|in(n)|

j=1 φ(cj))

∏
k∈⋃|in(n)|

j=1 Kcj

(
β ·1[x

(i)
k = xk] + (1−β)·1[x

(i)
k 6= xk]

)
1[x∈supp(n)]

(d)
=

∑
x∈val(X)

K∏
k=1

(
β ·1[x

(i)
k = xk] + (1−β)·1[x

(i)
k 6= xk]

)
1[x∈supp(n)],

where (a) holds by line 6 of Alg. 1; (b) holds since ∀ci, cj ∈ in(n)(ci 6= cj), we have φ(ci)∩φ(cj) =
∅ and Kci ∩ Kcj = ∅ thanks to decomposability of the PC; (c) is satisfied by the definition of
product units: supp(n) =

⋂
c∈in(n) supp(c); (d) holds since

⋃|in(n)|
j=1 φ(cj) is a subset of X.

• Inductive case: sum units. Suppose n is a sum unit with children {cj}|in(n)|j=1 . Suppose the value
valuei[cj] of any child unit cj is defined according to Eq. (6), we have

valuei[n]
(a)
=

|in(n)|∑
j=1

valuei[cj]

=

|in(n)|∑
j=1

{ ∑
x∈val(X)

K∏
k=1

(
β ·1[x

(i)
k = xk] + (1−β)·1[x

(i)
k 6= xk]

)
· 1[x∈supp(cj)]

}

15

(b)
=

∑
x∈val(X)

K∏
k=1

(
β ·1[x

(i)
k = xk] + (1−β)·1[x

(i)
k 6= xk]

)
·
(|in(n)|∑

j=1

1[x∈supp(cj)]
)

(c)
=

∑
x∈val(X)

K∏
k=1

(
β ·1[x

(i)
k = xk] + (1−β)·1[x

(i)
k 6= xk]

)
· 1[x∈supp(n)],

where (a) follows line 8 of Alg. 1; (b) holds because the sum unit n is deterministic: ∀ci, cj ∈
in(n)(ci 6= cj), supp(ci) ∩ supp(cj) = ∅; (c) follows from the definition of sum units: supp(n) =⋃
c∈in(n) supp(c).

We have shown that for any unit n, the value stored in valuei[n] follows the definition in Eq. (6).
We proceed to show the correctness of the backward pass.

Correctness of the backward pass Similar to the forward pass, we show that the context
contexti[n] of each sum unit w.r.t. sample x(i) computed by Alg. 2 is defined as

contexti[n] =
∑

x∈val(X)

K∏
k=1

(
β ·1[x

(i)
k = xk] + (1−β)·1[x

(i)
k 6= xk]

)
· 1[x∈γn], (7)

and the flow flowi[n, c] of each edge (n, c) s.t. n is a sum unit is:

flowi[n, c] =
∑

x∈val(X)

K∏
k=1

(
β ·1[x

(i)
k = xk] + (1−β)·1[x

(i)
k 6= xk]

)
· 1[x∈γn ∧ x∈γc]. (8)

• Base case: root unit nr. Without loss of generality, we assume the root node represents a sum unit.6
According to Def. 5, the context of the root node nr equals its support, i.e., γnr = supp(nr). Since
in line 3 of Alg. 2, the value contexti[n] is set to valuei[n], we know that

contexti[n] =
∑

x∈val(X)

K∏
k=1

(
β ·1[x

(i)
k = xk] + (1−β)·1[x

(i)
k 6= xk]

)
· 1[x∈supp(n)]

=
∑

x∈val(X)

K∏
k=1

(
β ·1[x

(i)
k = xk] + (1−β)·1[x

(i)
k 6= xk]

)
· 1[x∈γn].

• Inductive case: sum unit. Suppose n is a sum unit with parent product units {mj}|pa(n)|j=1 . Denote

the parent of product unit mi as gi.7 Suppose the contexts of {gj}|pa(n)|j=1 satisfy Eq. (7). For ease of

presentation, denote H(x,x(i), k) :=
(
β ·1[x

(i)
k = xk] + (1− β)·1[x

(i)
k 6= xk]

)
.

flowi[gj ,mj] =
valuei[mj]

valuei[gj]
· contexti[gj]

=

∑
x∈val(X)

∏K
k=1H(x,x(i), k) · 1[x∈γgj]∑

x∈val(X)

∏K
k=1H(x,x(i), k) · 1[x∈supp(gj)]

·
∑

x∈val(X)

K∏
k=1

H(x,x(i), k) · 1[x∈supp(mj)] (9)

Define γ′gj :=
⋃
c∈pa(gj) γc, Def. 5 suggests that γgj = γ′gj ∩ supp(gj). Thus,

1[x∈γgj] = 1[x∈γ′gj] · 1[x∈supp(gj)]. (10)

6Note that if the root unit is not a sum, we can always add a sum unit as its parent and set the corresponding
edge parameter to 1.

7W.l.o.g. we assume all product unit only have one parent.

16

Consider conditioning supp(gj) and γ′gj on the variables φ(gj) (i.e., the variable scope of gj). For
any partial variable assignment e over φ(gj), if e ∈ supp(gj), then e ∈ γ′gj . Denote Kgj as the set
of index for the variables in φ(gj). We have∑

x∈val(X)

K∏
k=1

H(x,x(i), k) · 1[x∈γ′gj] · 1[x∈supp(gj)]

=

(∑
x∈val(φ(gj))

∏
k∈Kgj

H(x,x(i), k) · 1[x∈supp(gj)]

)

·
(∑
x∈val(X\φ(gj))

∏
k∈{1,...,K}\Kgj

H(x,x(i), k) · 1[x∈γ′gj]
)

(11)

Plug Eqs. (11) and (10) into Eq. (9), we have

flowi[gj ,mj] =

∑
x∈val(φ(gj))

∏
k∈Kgj

H(x,x(i), k) · 1[x∈supp(gj)]∑
x∈val(X)

∏K
k=1H(x,x(i), k) · 1[x∈supp(gj)]

·
(∑
x∈val(X\φ(gj))

∏
k∈{1,...,K}\Kgj

H(x,x(i), k) · 1[x∈γ′gj]
)

·
(∑
x∈val(X)

K∏
k=1

H(x,x(i), k) · 1[x∈supp(mj)]

)

=

(∑
x∈val(X\φ(gj))

∏
k∈{1,...,K}\Kgj

H(x,x(i), k) · 1[x∈γ′gj]
)

·
(∑
x∈val(φ(gj))

∏
k∈Kgj

H(x,x(i), k) · 1[x∈supp(mj)]

)
(12)

Since mj is a child of gj , the support of mj is a subset of gj’s support: supp(mj) ⊆ supp(gj).
Therefore, for any partial variable assignment e over φ(gj), if e ∈ supp(mj), then e ∈ supp(gj).
Since {e | e ∈ val(φ(gj)) ∧ e ∈ supp(gj)} ⊆ {e | e ∈ val(φ(gj)) ∧ e ∈ γ′gj}, we conclude that for
any partial variable assignment e over φ(gj), if e ∈ supp(mj), then e ∈ γ′gj . Therefore, the two
product terms in Eq. (12) can be joined with a Cartesian product:

flowi[gj ,mj] =
∑

x∈val(X)

K∏
k=1

H(x,x(i), k) · 1[x ∈ γ′gj ∩ supp(mj)]. (13)

Note that γ′gj ∩ supp(mj) = γ′gj ∪ supp(gj) ∩ supp(mj) = γgj ∩ supp(mj). Since γmj = γgj ∩
supp(mj) (according to Def. 5), we have

γ′gj ∩ supp(mj) = γgj ∩ supp(mj)

= γgj ∩ supp(gj) ∩ supp(mj)

= γgj ∩ γmj .
Plug the above equation into Eq. (13), we have

flowi[gj ,mj] =
∑

x∈val(X)

K∏
k=1

H(x,x(i), k) · 1[x ∈ γgj ∩ γmj],

which is equivalent to Eq. (7).

We proceed to show that the context of unit n follows Eq. (8). According to lines 6 and 7 of Alg. 2,
contexti[n] is computed as

contexti[n] =

|pa(n)|∑
j=1

flowi[gj ,mj]

17

=

|pa(n)|∑
j=1

∑
x∈val(X)

K∏
k=1

H(x,x(i), k) · 1[x ∈ γgj ∩ γmj]

=
∑

x∈val(X)

K∏
k=1

H(x,x(i), k) ·
(|pa(n)|∑

j=1

1[x ∈ γgj ∩ γmj]
)
. (14)

Next, we show that ∀mi,mj ∈ pa(n)(mi 6= mj), γmi ∩ γmj = ∅. We prove this claim using its
contrapositive form. Suppose there exists x ∈ val(X) such that x ∈ γmi and x ∈ γmj . According
to the definition of context, if x ∈ γmi , then there must be a path between mi and the root node nr
where all nodes in the path are “activated”, i.e., for any unit c in the path, x ∈ γc. Similarly, there
much exists a path of “activated” units between mj and nr. We note that the two paths must share a
set of identical nodes since their terminal are both the root node nr. Therefore, there must exist a
sum unit n′ along the intersection of the two path where at least two of its children are activated, i.e.,
∃c1, c2 ∈ in(n′)(c1 6= c2), such that x ∈ γc1 and x ∈ γc2 . This contradicts the assumption that the
PC is deterministic. Therefore, the claim at the beginning of this paragraph holds. Thus,

|pa(n)|∑
j=1

1[x ∈ γgj ∩ γmj]
(a)
=

|pa(n)|∑
j=1

1[x ∈ γmj]

(b)
= 1[x ∈

⋃|pa(n)|
j=1

γmj]

(c)
= 1[x ∈

⋃|pa(n)|
j=1

γmj ∩ supp(n)]

(d)
= 1[x ∈ γn],

where (a) follows from γmj ⊆ γgj ; (b) holds because the statement made in the previous paragraph
(i.e., ∀mi,mj ∈ pa(n)(mi 6= mj), γmi ∩ γmj = ∅); (c) holds since supp(mj) ⊆ supp(n) and
γmj ⊆ supp(mj); (d) directly applies the definition of context (i.e., Def. 5).

Plug in Eq. (14), we have

contexti[n] =
∑

x∈val(X)

K∏
k=1

H(x,x(i), k) ·
(|pa(n)|∑

j=1

1[x ∈ γgj ∩ γmj]
)

=
∑

x∈val(X)

K∏
k=1

H(x,x(i), k) · 1[x ∈ γn].

Computing Fn,c(Dβ) Finally, we can compute Fn,c(Dβ) from the flows (i.e., flowi[n, c]) com-
puted by Alg. 2:

Fn,c(Dβ) =
∑

x∈val(X)

weight(Dβ ,x) · 1[x∈γn ∧ x∈γc]

=
∑

x∈val(X)

N∑
i=1

K∏
k=1

(
β ·1[x

(i)
k = xk] + (1−β)·1[x

(i)
k 6= xk]

)
︸ ︷︷ ︸

weight(Dβ ,x)

·1[x∈γn ∧ x∈γc]

=

N∑
i=1

∑
x∈val(X)

K∏
k=1

(
β ·1[x

(i)
k = xk] + (1−β)·1[x

(i)
k 6= xk]

)
· 1[x∈γn ∧ x∈γc]︸ ︷︷ ︸

flowi[n,c]

=

N∑
i=1

flowi[n, c].

Finally, we note that Alg. 1 and 2 both run in time O(|p|·|D|).

18

Algorithm 4 PC entropy
1: Input: A deterministic PC p
2: Output: entropy[n] := ENT(pn) for every unit n
3: foreach n traversed in postorder do
4: if n isa input unit then entropy[n] = ENT(pn) //entropy of the input distribution
5: elif n isa product unit then entropy[n] =

∑
c∈in(n) entropy[c]

6: else //n is a sum unit then

entropy[n] = −
∑

c∈in(n)

θn,c log θn,c +
∑

c∈in(n)

θn,c · entropy[c]

A.2 Useful Lemmas

This section provides several useful lemmas that are later used in the proof of Thm. 4.

Lemma 1. Given a deterministic PC p whose root node is nr, its entropy ENT(p)
def
= ENT(pnr) can

be decomposed recursively as follows:

ENT(pn) =

{∑
c∈in(n)

(
− θn,c log θn,c + θn,c · ENT(pc)

)
if n is a sum unit,∑

c∈in(n) ENT(pc) if n is a product unit,

where the entropy of an input unit is defined by the entropy of the corresponding univariate distribution.
Following this decomposition, we construct Alg. 4 that computes the entropy of every nodes in a
deterministic PC in O(|p|) time.

Proof. We show the correctness of the entropy decomposition over a sum unit and a product unit
respectively.

• Sum units. If n is a sum unit:

ENT(pn) = −
∑

x∈val(φ(n))

(∑
c∈in(n)

θn,cpc(x)
)

log
(∑
c∈in(n)

θn,cpc(x)
)

= −
∑

x∈val(φ(n))

(∑
c∈in(n)

θn,cpc(x)1[x ∈ supp(c)]
)

log
(∑
c∈in(n)

θn,cpc(x)1[x ∈ supp(c)]
)

(a)
= −

∑
x∈val(φ(n))

∑
c∈in(n)

1[x ∈ supp(c)] · θn,c · pc(x) ·
(

log θn,c + log pc(x)
)

= −
∑

c∈in(n)
θn,c log θn,c

(∑
x∈val(φ(n))

1[x ∈ supp(c)]pc(x)
)

︸ ︷︷ ︸
=1

+
∑

c∈in(n)
θn,c

(
−

∑
x∈val(φ(n))

pc(x) log pc(x)
)

︸ ︷︷ ︸
=ENT(pc)

=
∑

c∈in(n)

(
− θn,c log θn,c + θn,c · ENT(pc)

)
, (15)

where (a) uses the assumption that the sum unit is deterministic, i.e., ∀c1, c2 ∈ in(n) (c1 6=
c2), supp(c1) ∩ supp(c2) = ∅.

• Product units. If n is a product unit:

ENT(pn) = −
∑

x∈val(φ(n))

(∏
c∈in(n)

pc(x)
)

log
(∏
c∈in(n)

pc(x)
)

= −
∑

c∈in(n)

(∑
x∈val(φ(c))

pc(x) log pc(x)
)

19

¬X1

. . .

⇥

X2 ¬X2

✓2 1�✓2

Xn ¬Xn

✓2 1�✓2 X1 X2 Xn

. . .

⇥ c1

1�✓1
✓1

n1

Figure 7: An example PC to show that PC entropy is neither convex nor concave.

=
∑

c∈in(n)
ENT(pc). (16)

Lemma 2. The entropy of a deterministic PC p is neither convex nor concave w.r.t. its parameters.

Proof. Consider the example PC in Fig. 7. Assume n = 20 and define parameters θa = {θ1 =
0.1, θ2 = 0.1} and θb = {θ1 = 0.12, θ2 = 0.12}. Denote θc = (θa + θb)/2, we have

2 · ENT(p;θc)− ENT(p;θa)− ENT(p;θb) ≈ −0.0047898 < 0.

Hence the entropy is not concave.

Define parameters θd = {θ1 = 0.4, θ2 = 0.8} and θe = {θ1 = 0.42, θ2 = 0.82}. Denote
θf = (θd + θe)/2, we have

2 · ENT(p;θf)− ENT(p;θd)− ENT(p;θe) ≈ 0.0056294 > 0.

Hence the entropy is not convex.

Lemma 3. For any dataset D = {x(i)}Ni=1 and any deterministic PC p with parameters θ, the
following formula is concave w.r.t. θ:

N∑
i=1

log p(x(i);θ). (17)

Proof. For any input x, log p(x;θ) can be decomposed over sum and product units:

• Sum units. Suppose n is a sum unit, then

log pn(x;θ) = log
(∑
c∈in(n)

θn,c · pc(x)
)

= log
(∑
c∈in(n)

θn,c · pc(x)1[x ∈ supp(c)]
)

=
∑

c∈in(n)
1[x ∈ supp(c)]

(
log θn,c + log pc(x)

)
, (18)

where the last equation holds because unit n is deterministic: ∀ci, cj ∈ in(n)(ci 6= cj), supp(ci) ∩
supp(cj) = ∅.

• Product units. Suppose n is a product unit, then

log pn(x;θ) = log

(∏
c∈in(n)

pc(x)

)
=

∑
c∈in(n)

log pc(x). (19)

According to Eqs. (18) and (19), for any x ∈ val(X), log p(x;θ) can be decomposed into the sum
over a set of log-parameters (e.g., log θn,c). Therefore, Eq. (17) is concave.

20

Lemma 4. Given a deterministic PC p with root node nr, its entropy ENT(p) can be decomposed as
follows:

ENT(pnr) = −
∑

(n,c)∈edges(pnr)
Pnr (n) · θn,c log θn,c,

where edges(p) denotes all edges (n, c) in the PC with sum unit n; Pnr (n) is defined in Eq. (21).

Proof. We prove the lemma by induction.

• Base case. Suppose m is a sum unit such that all its decendents are either input units or product
unit. By definition, we have Pm(m) = 1, and edges(pm) = {(m, c) | c ∈ in(m)}. Thus,

−
∑

(n,c)∈edges(pm)

Pm(n) · θn,c log θn,c = −
∑

c∈in(m)

θm,c log θm,c = ENT(pm).

• Inductive case: product units. Suppose m is a product unit such that for each of its children
c ∈ in(m), we have

ENT(pc) = −
∑

(n′,c′)∈edges(pc)
Pc(n

′) · θn′,c′ log θn′,c′ .

Then by Lem. 1 we know that

ENT(pm) =
∑

c∈in(m)

ENT(pm)

= −
∑

c∈in(m)

∑
(n′,c′)∈edges(pc)

Pc(n
′) · θn′,c′ log θn′,c′

(a)
= −

∑
c∈in(m)

∑
(n′,c′)∈edges(pc)

Pm(n′) · θn′,c′ log θn′,c′

(b)
= −

∑
(n′,c′)∈edges(pm)

Pm(n′) · θn′,c′ log θn′,c′ ,

where (a) holds since for any sum unit n′, Pc(n′) = Pm(n′), and (b) follows from the fact that
edges(pm) =

⋃
c∈in(m) edges(pc).

• Inductive case: sum units. Suppose m is a sum unit such that for each of its children c ∈ in(m), we
have

ENT(pc) = −
∑

(n′,c′)∈edges(pc)
Pc(n

′) · θn′,c′ log θn′,c′ .

Then by Lem. 1 we have

ENT(pm) =
∑

c∈in(m)

(
− θn,c log θn,c + θn,c · ENT(pc)

)
=

∑
c∈in(m)

−θn,c log θn,c −
∑

c∈in(n)

∑
(n′,c′)∈edges(pc)

θm,c · Pc(n′)︸ ︷︷ ︸
Pm(n′)

·θn′,c′ log θn′,c′

=
∑

c∈in(m)

−Pm(m)θn,c log θn,c −
∑

c∈in(n)

∑
(n′,c′)∈edges(pc)

Pm(n′) · θn′,c′ log θn′,c′

(a)
= −

∑
(n′,c′)∈edges(pm)

Pm(n′) · θn′,c′ log θn′,c′ ,

where (a) holds because edges(pm) =
(⋃

c∈in(m) edges(pc)
) ⋃ (

{(m, c) | c ∈ in(m)}
)
.

Lemma 5. The entropy regularization objective in Eq. (2) w.r.t. a deterministic PC p and a dataset
D could have multiple local maximas.

21

X1

. . .

X69 X79

. . .

⇥

X2 ¬X2

✓2 1�✓2

X68 ¬X68

✓2 1�✓2 ¬X1

. . .

X2 ¬X2

✓3 1�✓3

X79 ¬X79

✓3 1�✓3

⇥

1�✓1
✓1

n1

n3
n2

Figure 8: An example PC to show that Eq. (2) could have multiple stationary points.

Proof. Consider the deterministic PC p in Fig. 8 and dataset D with a single sample x =
(true, . . . , true). The objective in Eq. (2) can be re-written as follows

Lent(θ;n1, τ) := log pn1
(x) + τ · ENT(pn1

),

where n1 is the root node of the PC as denoted in Fig. 8. We further decompose Lent(θ;n1, τ):

Lent(θ;n1, τ) = log θ1 + 67 · log θ2 + τ · ENT(pn1
)

= log θ1 + 67 · log θ2 + τ ·
(
− θ1 log θ1 − (1−θ1) log(1−θ1)

)
+ τ · θ1 · ENT(pn2) + τ · (1−θ1) · ENT(pn3).

First, we observe that to maximize Lent(θ;n1, τ), θ3 should always be 0.5 since the only term that
depends on θ3 is (1−θ1) · ENT(pn3

) and 1−θ1>0. Therefore, we have

ENT(pn3) = 78 · log 2 ≈ 54.065.

Next, for any fixed θ1∈(0, 1], the objective Lent(θ;n1, τ) is concave w.r.t. θ2:

Lent(θ;n1, τ) = 67 ·
(

log θ2 − τ ·θ1 ·(θ2 log θ2 + (1−θ2) log(1−θ2))
)

+ const, (20)

where the constant term does not depend on θ2. Therefore, for any θ1, we can uniquely compute
the optimal value of θ2. We are left with determining the optimal value of θ1. Choose τ = 1.5, the
derivative of Lent(θ;n1, τ) w.r.t. θ1 is (denote ent0 := −(θ2 log θ2 + (1−θ2) log(1−θ2)))

g(θ1) :=
∂Lent(θ;n1, τ)

∂θ1
=

1

θ1
+ 1.5 ·

(
log(1−θ1)− log θ1 + ENT(pn2

)− ENT(pn3
)
)

=
1

θ1
+ 1.5 ·

(
log(1−θ1)− log θ1 + 67 · ent0 − ENT(pn3

)
)

where ENT(pn3) can be viewed as a constant and ent0 depends on θ1. Specifically, for any θ1, we
compute θ2 and hence ent0 by maximizing Eq. (20). Putting everything together, we have

g(0.02) ≈ 1.772730 > 0,

g(0.7) ≈ −0.190743 < 0,

g(0.9) ≈ 2.055231 > 0,

g(0.99) ≈ −0.216938 < 0.

Since g is continuous in range (0, 1], there exists a local maxima of θ1 between 0.02 and 0.7 as well
as between 0.9 and 0.99. Therefore, the entropy regularization objective could have multiple local
maximas.

A.3 Proof of Theorem 1

This theorem is a direct corollary of Theorem 5 in [49], which has the following statement:

Computing the expectation of a logistic regression model w.r.t. a uniform data distribution is #-hard.

Note that with β = 0.5, the distribution Dβ is essentially uniform, Thm. 1 follows directly from [49].

22

A.4 Proof of Theorem 2

This proof largely follows the proof of Theorem 5 in [49]. The proof is by reduction from #NUMPAR,
which is defined as follows. Given n positive integers k1, . . . , kn, we want to count the number of
subset S ⊆ [n] that satisfies

∑
i∈S ki =

∑
i 6∈S ki. #NUMPAR is known to be #P-hard.

Fix an instance of #NUMPAR, k1, . . . , kn, and assume w.l.o.g. that the sum of the numbers is even,
i.e.,

∑
i ki = 2c for some natural number c. Define P := {S | S ⊆ [n],

∑
i∈S ki = c}. By definition

|P | is the solution to the #NUMPAR problem. Note that for each S ∈ P , its complement S̄ should
also be a member of P , and hence |P | is even.

Define a logistic regression model as F (x1, . . . , xn) := σ(w0 +
∑n
i=1 wi · xi), where σ is the

sigmoid function. Define the normalized model of F as G(x1, . . . , xn) := F (x1, . . . , xn)/Z,
where Z :=

∑
x∈val(X) F (x1, . . . , xn). Denote the entropy of a normalized logistic regressor G as

ENT(G) := −∑x∈val(X)G(x) logG(x).

We now describe an algorithm that computes |P | using an oracle for ENT(G), whereG is a normalized
logistic regression model. Denote m as a large natural number to be chosen later, and define the
following weights

w0 := −m
2
−mc, wi := mki(∀i ∈ [n]).

Let F be the logistic regressor corresponds to the above weights and G the normalized model of F .
We can represent ENT(G) as follows:

ENT(G) = −
∑

x∈val(X)

F (x)

Z
log

F (x)

Z
= −

∑
x∈val(X)

(F (x) logF (x)

Z
− F (x)

Z
logZ

)
= −

∑
x∈val(X)

F (x) logF (x)

Z
+ logZ.

For large enough m, F (x) will approach either 0 or 1. Therefore, the first term in the above equation
will approach 0. Therefore, for large enough m, we have

ENT(G) ≈ logZ = log
(∑
x∈val(X)

σ(w0 +

n∑
i=1

wi · xi)
)

= log
(∑
x∈val(X)

σ(w0 +

n∑
i=1

wi · xi)
)
.

For each S ⊆ [n], we define weight(S) := −m2 −mc+m(
∑
i∈S ki). Then,

exp(ENT(G)) ≈
∑

x∈val(X)

σ(−m
2
−mc+m(

∑
i∈[n]

kixi))

=
∑

x∈val(X)

σ(−m
2
−mc+m(

∑
i:xi=1

ki))

=
∑
S⊆[n]

σ(weight(S))

=
1

2

∑
S⊆[n]

(
σ(weight(S)) + σ(weight(S̄))

)
.

If S is a solution to #NUMPAR, then

σ(weight(S)) + σ(weight(S̄)) = 2σ(−m/2).

Othervise, one of weight(S) and weight(S̄) is ≥ m/2 and the other is ≤ −3m/2, and hence

σ(m/2) ≤ σ(weight(S)) + σ(weight(S̄)) ≤ 1 + σ(−3m/2).

For a large enough m such that 2σ(−m/2) < ε and 1− σ(m/2) < ε, we have

S ∈ P : 0 ≤ σ(weight(S)) + σ(weight(S̄)) ≤ ε,
S 6∈ P : 1− ε ≤ σ(weight(S)) + σ(weight(S̄)) ≤ 1 + ε.

23

Therefore, we have

2n − |P |
2

(1− ε) ≤ exp(ENT(G)) ≤ |P |
2
ε+

2n − |P |
2

(1 + ε)

|P | ≥ 2n − 2 exp(ENT(G))

1− ε
|P | ≤ 2n(1 + ε)− 2 exp(ENT(G))

This gives a lower and upper bound for |P |. For small enough ε (governed by large enough m),
the difference between the lower and upper bound is less than 1, and hence |P | can be uniquely
determined, which proves the theorem.

A.5 Proof of Theorem 4

First note that according to Lem. 2, Eq. (2) is not a convex optimization problem. The key idea of
Alg. 3 is to propose a set of surrogate objective functions, and maximize the objective function Eq. (2)
by iteratively maximizing the surrogate objective. Concretely, we show the monotonic convergence
property of Alg. 3 by checking the correctness of the following three statements:
• Statement #1: The surrogate objective is easy to maximize as it is a concave function w.r.t. the
parameters.
• Statement #2: The surrogate objective is consistent with the original objective Eq. (2). That is,
whenever a set of surrogate objectives are improved, the true objective is also improved.
• Statement #3: The surrogate objectives can always be improved unless the original objective
Eq. (2) has zero first-order derivative.
• Statement #4: Solving Eq. (5) is equivalent to maximizing the surrogate objective.

Before verifying the statements, we first formally define the surrogate. Denote ENT(pn;θ) as the
entropy of the PC rooted at n and with parameters θ; the top-down probability of n, denoted Pnr (n),
is recursively defined as follows:

Pnr (n) :=


1 if n is the root node nr,∑
m∈pa(n) Pnr (m) if n is a sum unit,∑
m∈pa(n) θm,n · Pnr (m) if n is a product unit.

(21)

Given a set of reference parameters θref, we define the surrogate objective w.r.t. parameter θn,c as

Lsurr(θn,c;θ
ref) :=

1

N

N∑
i=1

log p(x(i);θref\{θref
n,c}, θn,c)︸ ︷︷ ︸

Term 1

+ τ ·Pnr (n;θref)·
(
−θn,c log θn,c+θn,c ·ENT(pc;θ

ref)
)

︸ ︷︷ ︸
Term 2

. (22)

Given parameters θold, we now describe an update procedure to obtain a set of new parameters θnew.

Parameter update procedure We start with an empty set of parameters θupdate := θold and
iteratively update its entries with updated parameters θnew

n,c . For every sum unit n traversed in pre-
order, we update the parameters {θn,c | c ∈ in(n)} by maximizing the sum of surrogate objectives:∑

c∈in(n)
Lsurr(θn,c;θ

update). (23)

After solving the above equation, the updated parameters {θn,c | c ∈ in(n)} replace the corresponding
original parameters in θupdate. As we will proceed to show in statement #4, maximizing Eq. (23) is
done in Lines 7 to 7 in Alg. 3.

Given the formal definition of the surrogate objective and the corresponding update process, we
re-state the three statements and prove their validity in the following.

• Statement #1: The surrogate objective Eq. (23) is concave w.r.t. parameters {θn,c | c ∈ in(n)}.

24

Proof. This statement can be proved by showing that ∀(n, c),∀θ, Lsurr(θn,c;θ) is concave. Specif-
ically, according to Lem. 3, the first term of Eq. (22) is concave; the second term of Eq. (22) is
concave since (i) −x log x is concave w.r.t. x, and (ii) Pnr (n;θref) and ENT(pc;θ

ref) are independent
of {θn,c′ | c′ ∈ in(n)}.

• Statement #2: For any sum unit n and any parameters θ, if we update n’s parameters (i.e.,
{θn,c | c ∈ in(n)}) by maximizing Eq. (23), the true objective Eq. (2) will also improve.

Proof. Consider updating the parameters correspond to sum unit n (i.e., {θn,c | c ∈ in(n)}) by
maximizing Eq. (23). We can re-arrange the entropy ENT(pnr) as follows:

ENT(pnr)
(a)
= −

∑
(n′,c′)∈edges(pnr)

Pnr (n
′) · θn′,c′ log θn′,c′

= −
∑

(n′,c′)∈edges(pn)
Pnr (n

′) · θn′,c′ log θn′,c′ + const

= −
∑

(n′,c′)∈edges(pn)

(∑
m∈pa(n)

Pnr (m)
)
· Pn(n′) · θn′,c′ log θn′,c′ + const

= −
∑

(n′,c′)∈edges(pn)
Pnr (n) · Pn(n′) · θn′,c′ log θn′,c′ + const

= Pnr (n) · ENT(pn) + const

(b)
= Pnr (n) ·

∑
c∈in(n)

(
−θn,c log θn,c+θn,c ·ENT(pc)

)
+ const,

where const denotes terms that do not depend on {θn,c′ | c′ ∈ in(n)}; (a) and (b) directly apply
Lem. 4 and Lem. 1, respectively.

Thus, the true objective Eq. (2) can be written as follows:

1

N

N∑
i=1

log p(x(i)) + τ · ENT(p)

=
1

N

N∑
i=1

log p(x(i)) + τ · Pnr (n) ·
∑

c∈in(n)

(
−θn,c log θn,c+θn,c ·ENT(pc)

)
+ const (24)

Compare Eq. (24) and Eq. (22), we can see that they only differs in some constant terms. Therefore,
maximizing Eq. (22) w.r.t. {θn,c′ | c′ ∈ in(n)} will lead to an increase in the true objective
Eq. (2).

• Statement #3: The surrogate objectives can always be improved unless the original objective
Eq. (2) has zero first-order derivative.

Proof. Recall from Eq. (24) that for any sum unit n, the true objective Eq. (2) can be written as the
sum of Eq. (22) and terms that are independent with the parameters of n (i.e., {θn,c′ | c′ ∈ in(n)}).
Therefore, the true objective can always be improved by maximizing the surrogate objective Eq. (23)
as long as the true objective has non-zero first-order derivative w.r.t. the parameters.

• Statement #4: Solving Eq. (5) is equivalent to maximizing the surrogate objective.

Proof. We want to maximize the surrogate objective given the assumption that the parameters w.r.t. a
sum unit sum up to 1:

maximize
θn,c

Lsurr(θn,c;θ
ref), such that

∑
c∈in(n)

θn,c = 1. (25)

25

Algorithm 5 Forward pass (expected flows)
1: Input: A non-deterministic PC p; sample x
2: Output: value[n]:=(x∈supp(n)) for each unit n
3: foreach n traversed in postorder do
4: if n isa input unit then value[n]←fn(x)
5: elif n isa product unit then
6: value[n]←

∏
c∈in(n) value[c]

7: else //n is a sum unit
8: value[n]←

∑
c∈in(n) θn,c · value[c]

Algorithm 6 Backward pass (expected flows)
1: Input: A non-deterministic PC p; ∀n, value[n]
2: Output: eflow[n, c] := Ez∈pc(·|x;θ)((x,z) ∈

(γn∩γc)) for each pair (n, c), where n is a sum
unit and c∈ in(n)

3: ∀n, context[n]←0; context[nr]←value[nr]
4: foreach sum unit n traversed in preorder do
5: foreach m ∈ pa(n) do (denote g←pa(m))
6: f← value[m]

value[g]
· context[g] · θg,m

7: context[n] += f; flow[g,m] = f

Since the surrogate objective Lsurr(θn,c;θ
ref) is concave, maximizing the surrogate objective is

equivalent to finding its stationary point. Specifically, we solve Eq. (25) with the Lagrange multiplier
method (variable λ corresponds to the constraint):

maximize
θn,c

minimize
λ

Lsurr(θn,c;θ
ref)− λ(1−

∑
c∈in(n)

θn,c)

Its KKT conditions can be written as:{
Fn,ci (D)

|D|·θn,ci
− τ · Pnr (n;θref)(log θn,ci + 1 + ENT(pci ;θ

ref)) + λ = 0 (∀1 ≤ i ≤ |in(n)|),∑
c∈in(n) θn,c = 1.

It is easy to verify that the above equation is equivalent to Eq. (5) by substituting the definitions in
Lines 7-8 in Alg. 3.

Therefore, by following the parameter update procedure, we can always make progress since the
surrogate objective is concave (statement #1) and the true objective improves as long as the surrogate
objective increases (statement #2). Finally, the learning procedure will not terminate unless a local
maximum is achieved (statement #3).

A.6 Correctness of Algorithms 1 and 2

The correctness of Alg. 1 and 2 can be justified directly by the proof of Thm. 3. Specifically, since
with β = 1, the softened dataset Dβ is equivalent to D, we can use the proof in Appendix A.1 and set
β = 1 (the proof holds for any β ∈ (0.5, 1]).

A.7 Proof of Proposition 1

The first statement (i.e., Eq. (2)) could be non-concave) is proved in Lem. 2. The second statement
(i.e., Eq. (2) could have multiple local maximas) is proved in Lem. 5.

B Method or Experiment Details

B.1 Soften non-boolean datasets

As a direct extension of softening boolean datasets, datasets with categorical variables can be similarly
softened. Suppose X is a categorical variable with k categories. For an assignment x = j, we can
soften it as follows {

P (x = i) = 1−β
k (i 6= j),

P (x = j) = β.

To compute the flow Fn,c(Dβ) w.r.t. a softened categorical dataset, we can again adopt Alg. 1 and 2
by choosing

fn(x) = β ·1[x ∈ supp(n)] +
1− β
k
·1[x 6∈ supp(n)].

26

B.2 Solving Equation 5

Denote γci :=entropy[ci], our goal is to solve the following set of equations:{
die
−ϕn,ci − b · ϕn,ci + b · γci = y (∀i ∈ {1, . . . , |in(n)|}),∑|in(n)|
i=1 eϕn,ci = 1.

We break down the problem by iteratively solve for {ϕn,ci}|in(n)|i=1 and y, respectively.

• Solve for y. Given variables {ϕn,ci}|in(n)|i=1 , we update y as

y =
1

|in(n)|

|in(n)|∑
i=1

die
−ϕn,ci − b · ϕn,ci + b · γci .

• Solve for {ϕn,ci}|in(n)|i=1 . Given y, we first update each ϕn,ci individually by solving the equation

die
−ϕn,ci − b · ϕn,ci + b · γci = y.

Specifically, this is done by iterative Newton method update:

ϕn,ci +=

di
ϕn,ci

+ b · (γci − ϕn,ci) + y

di
ϕn,ci

+ b

After one Newton method update step for every parameter in {ϕn,ci}|in(n)|i=1 , we enforce the constraint∑|in(n)|
i=1 eϕn,ci = 1 by

ϕn,ci −= log
(|in(n)|∑

i=1

eϕn,ci
)
.

B.3 Details of the Experiments on Deterministic PCs

PC structures For each dataset, we adopt 16 PCs by running Strudel [17] for
{1000, 1200, 1400, . . . , 4000} iterations except for the dataset “dna”, which we ran Strudel for
{50, 100, 150, . . . , 800} iterations since the learning algorithm takes significantly longer for this
dataset.

Hyperparameters We always perform hyperparameter search using the validation set, and report
the final performance on the test set. Whenever we use data softening or entropy regularization, we
also add pseudocount α=1 since it yields better performance.

Server specifications All our experiments were run on a server with 72 CPUs, 512G Memory, and
2 TITAN RTX GPUs.

Detailed results See Table 3 for extended numerical results.

B.4 Details of the Experiments on Non-Deterministic PCs

The HCLT structure For the experiments on the twenty datasets, we set the hidden size of the
HCLT structure as 12, i.e., every latent variable Z is a categorical variable with 12 categories.
Additionally, following [17, 16], we learn a mixture of 4 HCLTs to achieve better performance. For
the protein sequence dataset, we adopted a mixture of 2 HCLTs with hidden size 32.

Hyperparameters Due to the complexity of running EM iteratively, we were not able to perform
a grid-search for hyperparameters since that would take too long. In our experiments, we tried the
following sets of hyperparameters (for α, β, and τ): (0.1, 1.0, 0.0), (0.2, 1.0, 0.0), (0.4, 1.0, 0.0),
(0.1, 0.998, 0.0), (0.1, 1.0, 0.001), and (0.1, 0.998, 0.001). Among these hyperparameter choices,
(0.1, 0.998, 0.001) achieved the best validation LL in most datasets, and thus we reported this set
of results. Therefore, for non-deterministic PCs, it is also beneficial to combine both proposed
regularization techniques.

27

Table 2: Full results on the 20 density estimation benchmarks. As an extension of Table 1, we report
the average test-set log-likelihood of all baselines: Strudel [17], LearnPSDD [16], EinSumNet [13],
LearnSPN [18], ID-SPN [47], and RAT-SPN [48].

Dataset HCLT EiNet LearnSPN ID-SPN RAT-SPN Strudel LearnPSDD
accidents -26.78 -35.59 -40.50 -26.98 -35.48 -29.46 -28.29
ad -16.04 -26.27 -19.73 -19.00 -48.47 -16.52 -20.13
baudio -39.77 -39.87 -40.53 -39.79 -39.95 -42.26 -41.51
bbc -250.07 -248.33 -250.68 -248.93 -252.13 -258.96 -260.24
bnetflix -56.28 -56.54 -57.32 -56.36 -56.85 -58.68 -58.53
book -33.84 -34.73 -35.88 -34.14 -34.68 -35.77 -36.06
c20ng -151.92 -153.93 -155.92 -151.47 -152.06 -160.77 -160.43
cr52 -84.67 -87.36 -85.06 -83.35 -87.36 -92.38 -93.30
cwebkb -153.18 -157.28 -158.20 -151.84 -157.53 -160.50 -161.42
dna -79.33 -96.08 -82.52 -81.21 -97.23 -87.10 -83.02
jester -52.45 -52.56 -75.98 -52.86 -52.97 -55.30 -54.63
kdd -2.18 -2.18 -2.18 -2.13 -2.12 -2.17 -2.17
kosarek -10.66 -11.02 -10.98 -10.60 -10.88 -10.98 -10.99
msnbc -6.05 -6.11 -6.11 -6.04 -6.03 -6.05 -6.04
msweb -9.90 -10.02 -10.25 -9.73 -10.11 -10.19 -9.93
nltcs -6.00 -6.01 -6.11 -6.02 -6.01 -6.06 -6.03
plants -14.31 -13.67 -12.97 -12.54 -13.43 -13.72 -13.49
pumbs* -23.32 -31.95 -24.78 -22.40 -32.53 -25.28 -25.40
tmovie -50.69 -51.70 -52.48 -51.51 -53.63 -59.47 -55.41
tretail -10.84 -10.91 -11.04 -10.85 -10.91 -10.90 -10.92

Table 3: Results comparing different regularization approaches using the 20 density estimation
benchmarks. This table contains the part of the results summarized in Fig. 5. Specifically, we report
performance of the PC generated by running Strudel [17] for 4,000 steps, except for dna, where we
ran the learner for 1,000 steps.

Dataset Laplace smoothing Data softening Entropy reg. Data softening + Entropy reg.
accidents -29.37 -29.37 -29.39 -29.37
ad -16.39 -16.39 -16.55 -16.39
baudio -42.89 -42.75 -42.78 -42.59
bbc -258.82 -258.64 -258.71 -258.35
bnetflix -59.51 -59.34 -59.19 -59.07
book -36.93 -36.81 -37.05 -36.69
c20ng -160.84 -160.80 -160.81 -160.73
cr52 -91.97 -91.91 -91.99 -91.86
cwebkb -159.93 -159.78 -159.97 -159.67
dna -95.63 -94.90 -95.24 -94.87
jester -56.19 -55.95 -55.83 -55.62
kdd -2.19 -2.18 -2.19 -2.17
kosarek -11.03 -11.00 -11.04 -10.97
msnbc -6.04 -6.04 -6.04 -6.04
msweb -10.11 -10.08 -10.12 -10.06
nltcs -6.18 -6.10 -6.17 -6.09
plants -13.56 -13.42 -13.56 -13.41
pumbs* -25.66 -25.66 -25.69 -25.68
tmovie -59.56 -59.44 -59.53 -59.35
tretail -11.34 -11.30 -11.35 -11.27

Detailed results As an extension of Table 1, Table 2 provides the average test set log-likelihood for
all adopted baselines.

Hyperparameters of RAT-SPN We took the RAT-SPN results on the twenty density estimation
benchmarks from the original paper. Therefore, the hyperparameter settings for RAT-SPN are the
same as reported in the original paper: cross-validate the split-depth D ∈ {1, 2, 3, 4} and the number
of sum-weights Ws ∈ {1e3, 1e4, 1e5}, and used Eq. (1) in [48] to select R, S, and I. Following the
original paper, dropout is not used for training the generative models.

28

