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A Additional background on backdoor/front-door adjustments

In causal inference, we are often times interested in the interventional distributions i.e p(y|do(x))
rather than p(y|x), as the former allows us to account for confounding effects. In order to obtain
the interventional density p(y|do(x)), we resort to do-calculus [20]. Here below we write out the
definition for the 2 most crucial formulaes; the front-door and backdoor adjustments, with which we
are able to recover the interventional density using only the conditional ones.

A.1 Back-door Adjustment

The key intuition of back-door adjustments is to find/adjust a set of confounders that are unaffected
by the treatment. We can then study the effect of the treatment has to the target.
Definition 1 (Back-Door). A set of variables Z satisfies the backdoor criterion relative to an ordered
pair of variables Xi, Xj in a DAG G if:

1. no node in Z is a descendant of Xi; and

2. Z blocks every path between Xi and Xj that contains an arrow into Xi

Similarly, if X and Y are two disjoint subsets of nodes in G, then Z is said satisfy the back-door
criterion relative to (X,Y ) if it satisfies the criterion relative to any pair (Xi, Xj) such that Xi ∈ X
and Xj ∈ Y

Now with a given set Z that satisfies the back-door criterion, we apply the backdoor adjustment,
Theorem 1 (Back-Door Adjustment). If a set of variables Z satisfies the back-door criterion relative
to (X,Y ), then the causal effect of X on Y is identifiable and is given by the formula

P (y|do(X) = x) =

∫
z

p(y|x, z)p(z)dz (18)

A.2 Front-door Adjustment

Front-door adjustment deals with the case where confounders are unobserved and hence the backdoor
adjustment is not applicable.
Definition 2 (Front-door). A set of variables Z is said to satisfy the front-door criterion relative to
an ordered pair of variables (X,Y ) if:

1. Z intercepts all directed paths from X to Y ;

2. there is no back-door path from X to Z; and

3. all back-door paths from Z to Y are blocked by X

Again, with an appropriate front-door adjustment set Z, we can identify the do density using the
front-door adjustment formula.
Theorem 2 (Front-Door Adjustment). If Z satisfies the front-door criterion relative to (X,Y ) and if
P (x, z) > 0, then the causal effect of X on Y is identifiable and is given by the formula:

p(y|do(X) = x) =

∫
z

p(z|x)

∫
x′
p(y|x′, z)p(x′)dx′dz (19)
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B Derivations

B.1 CMP Derivation

Proposition 2. Given dataset D1 = {(xi, yi, zi)}Ni=1 and D2 = {(ỹj , tj)}Mj=1, if f is the posterior
GP learnt from D2, then g =

∫
f(y)p(y|do(X))dy is a GP GP(m1, κ1) defined on the treatment

variable X with the following mean and covariance estimated using µ̂Y |do(X) ,

m1(x) = 〈µ̂Y |do(x),mf 〉Hky
= ΦΩx

(x)>(KΩx
+ λI)−1Kyỹ(Kỹỹ + λfI)−1t (20)

κ1(x, x′) = µ̂>Y |do(x)µ̂Y |do(x′) − µ̂>Y |do(x)Φỹ(Kỹỹ + λI)−1Φ>ỹ µ̂Y |do(x′) (21)

= ΦΩx
(x)>(KΩx

+ λI)−1K̃yy(KΩx
+ λI)−1ΦΩx

(x′) (22)

where µ̂Y |do(x) = µ̂Y |do(X)=x,Kỹy = Φ>ỹ Φy, mf and K̃yy are the posterior mean function and
covariance of f evaluated at y respectively. λ > 0 is the regularisation of the CME. λf > 0 is the
noise term for GP f . Ωx is the set of variables as specified in Prop.1.

Proof for Proposition 2. Integral operator preserves Gaussianity under mild conditions (see condi-
tions [25]), therefore

g(x) =

∫
f(y)dP (y|do(X) = x) (23)

is also a Gaussian. For a standard GP prior f ∼ GP (0, ky) and data DE = {(ỹj , tj)}Mj=1, standard
conjugacy results for GPs lead to the posterior GP with mean m̄(y) = kyỹ(Kỹỹ + λfI)−1t and
covariance k̄y(y, y′) = ky(y, y′)− kyỹ(Kỹỹ + λfI)−1kỹy . Similar to [24], repeated application of
Fubini’s theorem yields:

Ef [g(x)] = Ef

[∫
f(y)dP (y|do(X) = x

]
=

∫
Ef [f(y)]dP (y|do(X) = x) (24)

=

∫
m̄(y)dP (y|do(X) = x) = 〈m̄, µ̂Y |do(X)=x〉 (25)

cov(g(x), g(x′)) =

∫ ∫
cov(f(y), f(y′))dP (y|do(X) = x)dP (y′|do(X) = x) (26)

=

∫ ∫
k̄y(y, y′)dP (y|do(x))dP (y′|do(x′)) (27)

= 〈µY |do(x), µY |do(x′)〉 − µ̂>Y |do(x)Φỹ(Kỹỹ + λI)−1Φ>ỹ µ̂Y |do(x′) (28)

= ΦΩx
(x)>(KΩx

+ λI)−1K̃yy(KΩx
+ λI)−1ΦΩx

(x′) (29)

B.2 Choice of Nuclear Dominant Kernel

Recall in section 3.2, we introduced the nuclear dominant kernel ry to ensure samples of µgp ∼
GP (0, kx ⊗ ry) are supported in Hkx ⊗Hky with probability 1. In the following we will present
the analytic form of the nuclear dominant kernel we used in this paper, which is the same as the
formulation introduced in Appendix A.2 and A.3 of [27]. Pick ky as the RBF kernel, i.e

ky(y, y′) = exp
(
− 1

2
(y − y′)>Σθ(y − y′)

)
(30)

where Σθ is covariance matrix for the kernel ky . The nuclear dominant kernel construction from [27]
then yield the following expression:

ry(y, y′) =

∫
ky(y, u)ky(u, y′)ν(du) (31)

where ν is some finite measure. If we pick ν(du) = exp(
||u||22
2η2 )du, then we have

ry(y, y′) = (2π)D/2|2Σ−1
θ + η−2I|−1/2 exp

(
− 1

2
(y − y′)>(2Σθ)

−1(y − y′)
)

(32)

× exp
(
− 1

2

(y + y′

2

)>(1

2
Σθ + η2I

)−1(y + y′

2

))
(33)
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B.3 BayesCME derivations

Proposition 3. The posterior GP of µgp given observations {x,y} has the following mean and
covariance:

mµ((x, y)) = kxx(Kxx + λI)−1KyyR
−1
yyryy (34)

κµ((x, y), (x′, y′)) = kxx′ry,y′ − kxx(Kxx + λI)−1kxx′ryyR
−1
yyryy′ (35)

In addition, the following marginal likelihood can be used for hyperparameter optimisation,

−N
2

(
log |Kxx + λI|+ log |R|

)
− 1

2
tr
(
(Kxx + λI)−1KyyR

−1
yyKyy

)
(36)

Proof of Proposition 3. Recall the Bayesian formulation of CME corresponds to the following model,
µgp ∼ GP (0, kx ⊗ ry) ,

ky (yi, y
′) = µgp (xi, y

′) + λ1/2εi (y′)

with εi ∼ GP (0, ry) independently across i. Now consider ky(yi, yj) as noisy evaluations of
µgp(xi, yj), we have the predictive posterior mean as

vec (ryykxx)
>

(Kxx ⊗Ryy + λI ⊗Ryy)
−1 vec(Kyy) = vec (ryykxx)

>
(

(Kxx + λI)
−1 ⊗R−1

yy

)
vec(Kyy)

= vec (ryykxx)
> vec

(
R−1

yyKyy (Kxx + λI)
−1
)

= tr
(
ryykxx (Kxx + λI)

−1
KyyR

−1
yy

)
= kxx (Kxx + λI)

−1
KyyR

−1
yyryy.

And the covariance is,

κ ((x, y) , (x′, y′)) = k(x, x′)r(y, y′)− vec (ryykxx)
>

(Kxx ⊗Ryy + λI ⊗Ryy)
−1 vec (ryy′kx′x)

= k(x, x′)r(y, y′)− vec (ryykxx)
>
(

(Kxx + λI)
−1 ⊗R−1

yy

)
vec (ryy′kx′x)

= k(x, x′)r(y, y′)− vec (ryykxx)
> vec

(
R−1

yyryy′kx′x (Kxx + λI)
−1
)

= k(x, x′)r(y, y′)− tr
(
ryykxx (Kxx + λI)

−1
kxx′ry′yR

−1
yy

)
= k(x, x′)r(y, y′)− kxx (Kxx + λI)

−1
kxx′ry′yR

−1
yyryy.

To compute the log likelihood, note that it contains the following two terms:

vec(Kyy)> (Kxx ⊗Ryy + λI ⊗Ryy)
−1 vec(Kyy) = vec(Kyy)>

(
(Kxx + λI)

−1 ⊗R−1
yy

)
vec(Kyy)

= vec(Kyy)>vec
(
R−1

yyKyy (Kxx + λI)
−1
)

= tr
(
Kyy (Kxx + λI)

−1
KyyR

−1
yy

)
and

−1

2

(
log |(Kxx + λI)⊗Ryy|

)
= −1

2
log
(
|(Kxx + λI)|N |R|N

)
= −N

2

(
log |Kxx + λI|+ log |R|

)
where we used the fact that determinant of Kronecker product of two N × N matrices A,B is:
|A⊗B| = |A|N |B|N .

Therefore the log likelihood can be expressed as

−N
2

(
log |Kxx + λI|+ log |R|

)
− 1

2
tr
(

(Kxx + λI)−1KyyR
−1
yyKyy

)
(37)
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B.4 Causal BayesCME derivations

The following proposition extend BAYESCME to the causal setting.
Proposition C.1 (Causal BayesCME). Denote µdogp as the GP modelling µY |do(X). Then using the Ω

notations introduced in proposition 1, the posterior GP of µdogp given observations {x, z,y} has the
following mean and covariance:

mdo
µ ((x, y)) = ΦΩx

(x)>
(
KΩx

+ λI
)−1

KyyR
−1
yyryy (38)

κdoµ ((x, y), (x′, y′)) = ΦΩx(x)>ΦΩx(x′)ry,y′ − ΦΩx(x)>(KΩx + λI)−1ΦΩx(x′)ryyR
−1
yyryy′

(39)

In addition, the following marginal likelihood can be used for hyperparameter optimisation,

−N
2

(
log |KΩx + λI|+ log |R|

)
− 1

2
tr
(
(KΩx + λI)−1KyyR

−1
yyKyy

)
(40)

Proof of Proposition C.1. In the following we will assume Z is the backdoor adjustment variable.
Front-door and general cases follow analogously. Denote µgp((x, z), y) as the BAYESCME model
for µY |X=x,Z=z(y). As we have

µY |do(X)=x =

∫ ∫
φy(y)p(y|x, z)p(z)dzdy (41)

=

∫
µY |X=x,Z=zp(z)dz (42)

= EZ [µY |X=x,Z ] (43)

It is thus natural to define µdogp as the induced GP when we replace µY |X=x,Z=z with µgp((x, z), ·),

µdogp(x, ·) = EZ [µgp((x, Z), ·)] (44)

Now we can compute the mean of µdogp,

mdo
µ (x, y) = Eµgp

EZ [µgp(x, Z, y)] (45)

= EZ
(

(kxx � kz(Z, z))(Kxx �Kzz + λI)−1KyyR
−1
yyryy

)
(46)

=
(

(kxx � µ>z Φz)(Kxx �Kzz + λI)−1KyyR
−1
yyryy

)
(47)

= ΦΩx
(x)>(KΩx

+ λI)−1KyyR
−1
yyryy (48)

Similarly for covariance, we have,

κdoµ ((x, y), (x′, y′)) = EZ,Z′ [cov
(
µgp((x, Z), y), µgp((x

′, Z ′), y′)
)
] (49)

and the rest is just algebra,

= ΦΩx
(x)>ΦΩx

(x′)ry,y′ − ΦΩx
(x)>(KΩx

+ λI)−1ΦΩx
(x′)ryyR

−1
yyryy′

(50)

B.5 BayesIME derivation

Now we have derived the Causal BAYESCME, it is time to compute 〈f, µdogp(x, ·)〉 where f ∈ Hky .
This requires us to be able to compute 〈f, ry(·, y)〉 which corresponds to the following:

〈f, ry(·, y)〉Hky
=
〈
f,

∫
ky(·, u)ky(u, y)ν(du)

〉
(51)

=

∫
f(u)ky(u, y)ν(du) (52)
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when f is a KRR learnt from D2, i.e f(y) = kyỹ(Kỹỹ + λfI)−1t, we have

= t>(Kỹỹ + λfI)−1

∫
kỹuky(u, y)ν(du) (53)

= t>(Kỹỹ + λfI)−1rỹy (54)
Now we are ready to derive BAYESIME.
Proposition 4. Given dataset D1 = {(xi, yi, zi)}Ni=1 and D2 = {(ỹj , tj)}Mj=1, if f is a KRR learnt
from D2 and µY |do(X) modelled as a V-GP using D1, then g = 〈f, µY |do(X)〉 ∼ GP(m2, κ2) where,

m2(x) = ΦΩx(x)>(KΩx + λI)−1KyyR
−1
yyRyỹA (55)

κ2(x, x′) = BΦΩx
(x)>ΦΩx

(x)− CΦΩx
(x)>(KΩx

+ λI)−1ΦΩx
(x′) (56)

where A = (Kỹỹ + λfI)−1t, B = A>RỹỹA and C = A>RỹyR
−1
yyRyỹA

Proof of Proposition 4. Using the µdogp notation from Proposition C.1, we can write the inner product
as 〈µdogp(x, ·), f〉, where the mean is,

m2(x) = E[µdogp(x, ·)]>f (57)

= ΦΩx
(x)>(KΩx

+ λI)−1KyyR
−1
yyR(y, ·)>f (58)

= ΦΩx
(x)>(KΩx

+ λI)−1KyyR
−1
yyRyỹ(Kỹỹ + λfI)−1t (59)

where we used the fact f is a KRR learnt from D2. The covariance can then be computed by realising
cov(f>µdogp(x, ·), f>µdogp(x′, ·)) = f>cov(µdogp(x, ·), µdogp(x′, ·))f .

B.6 BayesIMP Derivations

BAYESIMP can be understood as a model characterising the RKHS inner product of Gaussian
Processes. In the following, we will first introduce some general theory of inner product of GPs, and
introduce a finite dimensional scheme later on. Finally, we will show how BAYESIMP can be derived
right away from this general framework.

Before that, we will showcase the following identity for computing variance of inner products of
independent multivariate Gaussians,
Proposition C.2. Let µX := E[X] and ΣX := V ar(X) be the mean and variance of a multivariate
Gaussian rv, similarly µY ,ΣY for Gaussian rv Y . If X and Y are independent, then the variance of
their inner product is given by the following expression,

V ar(X>Y ) = µ>XΣY µX + µ>Y ΣXµY + tr
(

ΣY ΣX

)
(60)

Moreover, the covariance between X>Y1, X>Y2 follows a similar form,

cov(X>Y1, X
>Y2) = µ>XΣY1Y2

µX + µ>Y1
ΣXµY2

+ tr(ΣXΣY1Y2
) (61)

Proof.

Var
[
X>Y

]
= E

[(
X>Y

)2]− E
[
X>Y

]2
= E

[
X>Y Y >X

]
−
(
E[X]>E[Y ]

)2
= E

[
tr
(
XX>Y Y >

)]
−
(
µ>XµY

)2
= tr

(
E
[
XX>

]
E
[
Y Y >

])
−
(
µ>XµY

)2
= tr

((
µXµ

>
X + ΣX

) (
µY µ

>
Y + ΣY

))
−
(
µ>XµY

)2
= tr

(
µXµ

>
XµY µ

>
Y

)
+ tr

(
µXµ

>
XΣY

)
+ tr

(
ΣXµY µ

>
Y

)
+ tr (ΣXΣY )−

(
µ>XµY

)2
=
(
µ>XµY

)2
+ tr

(
µ>XΣY µX

)
+ tr

(
µ>Y ΣXµY

)
+ tr (ΣXΣY )−

(
µ>XµY

)2
= µ>XΣY µX + µ>Y ΣXµY + tr (ΣXΣY )

(62)
Generalising to the case for covariance is straight forward.
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RKHS inner product of Gaussian Processes

Let f1 ∼ GP (m1, κ1) and f2 ∼ GP (m2, κ2). We assume that f and g are both supported within
the RKHSHk. Can we characterise the distribution of 〈f1, f2〉Hk

?

This situation would arise if f1 and f2 arise as GP posteriors in a regression model corresponding to
the priors f1 ∼ GP (0, r1), f2 ∼ GP (0, r2) where r1, r2 satisfy the nuclear dominance property. In
particular, we could choose

r1(u, v) =

∫
k (u, z) k (z, v) ν1 (dz) ,

r2 (u, v) =

∫
k (u, z) k (z, v) ν2 (dz) .

Posterior means in that case can be expanded as

m1 =
∑

αir1 (·, xi) , m2 =
∑

βjr2 (·, yj) .

We assume that f1 and f2 are independent, i.e. they correspond to posteriors computed on independent
data. Then

E 〈f1, f2〉Hk
= 〈m1,m2〉Hk

=
〈∑

αir1 (·, xi) ,
∑

βjr2 (·, yj)
〉
Hk

= α>Qβ,

where

Qij = q (xi, yj) := 〈r1 (·, xi) , r2 (·, yj)〉Hk

=

〈∫
k (·, z) k (z, xi) ν1 (dz) ,

∫
k (·, z′) k (z′, yj) ν2 (dz′)

〉
Hk

=

∫ ∫
〈k (·, z) , k (·, z′)〉Hk

k (z, xi) k (z′, yj) ν1 (dz) ν2 (dz′)

=

∫ ∫
k (z, z′) k (z, xi) k (z′, yj) ν1 (dz) ν2 (dz′) .

The variance would be given, in analogy to the finite dimensional case, by

var 〈f1, f2〉Hk
= 〈m1,Σ2m1〉Hk

+ 〈m2,Σ1m2〉Hk
+ tr (Σ1Σ2) ,

with Σ1f =
∫
κ1 (·, u) f(u)du and similarly for Σ2. Thus

〈m1,Σ2m1〉Hk
=

〈∑
αir1 (·, xi) ,

∑
αj

∫
κ2 (·, u) r1 (u, xj) du

〉
Hk

=
∑∑

αiαj

∫
〈r1 (·, xi) , κ2 (·, u)〉Hk

r1 (u, xj) du.

Now, given that kernel κ2 depends on r2 in a simple way, it should be possible to write down the full
expression similarly as for Qij above. In particular

κ2 (·, u) = r2 (·, u)− r2 (·,y)
(
R2,yy + σ2

2I
)−1

r2 (y, u) .

Hence

〈r1 (·, xi) , κ2 (·, u)〉Hk
= q (xi, u)− q (xi,y)

(
R2,yy + σ2

2I
)−1

r2 (y, u) .

However, this further requires approximating integrals of the type∫
q (xi, u) r1 (u, xj) du =

∫ ∫ ∫ ∫
k (z, z′) k (z, xi) k (z′, u) k (u, z′′) k (z′′, xj) ν1 (dz) ν2 (dz′) ν1 (dz′′) du,

etc. Thus, while possible in principle, this approach to compute the variance is cumbersome.
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A finite dimensional approximation

To approximate the variance, hence, it is simpler to consider finite-dimensional approximations to f1

and f2. Namely, collate {xi} and {yj} into a single set of points ξ (note that we could here take an
arbitrary set of points), and consider finite-dimensional GPs given by

f̃1 =
∑

ajk (·, ξj) , f̃2 =
∑

bjk (·, ξj) ,

where we selects distribution of a and b such that evaluations of f̃1 and f̃2 on ξ, Kξξa and Kξξb
respectively, have the same distributions as evaluations of f1 and f2 on ξ. In particular, we take

a ∼ N
(
K−1
ξξ m1 (ξ) ,K−1

ξξ K1,ξξK
−1
ξξ

)
, b ∼ N

(
K−1
ξξ m2 (ξ) ,K−1

ξξ K2,ξξK
−1
ξξ

)
,

where we denoted by m1 (ξ) a vector such that [m1 (ξ)]i = m1 (ξi) and by K1,ξξ a matrix such that
[K1,ξξ]ij = κ1 (ξi, ξj).

Then, clearly 〈
f̃1, f̃2

〉
Hk

= a>Kξξb

=
(
K

1/2
ξξ a

)> (
K

1/2
ξξ b

)
,

and now we are left with the problem of computing the mean and the variance of inner product
between two independent Gaussian vectors, as given in Proposition C.2. We have

E
〈
f̃1, f̃2

〉
Hk

=
(
K

1/2
ξξ K

−1
ξξ m1 (ξ)

)> (
K

1/2
ξξ K

−1
ξξ m2 (ξ)

)
= m1 (ξ)

>
K−1
ξξ KξξK

−1
ξξ m2 (ξ)

= m1 (ξ)
>
K−1
ξξ m2 (ξ) ,

and

var
〈
f̃1, f̃2

〉
Hk

=
(
K

1/2
ξξ K

−1
ξξ m1 (ξ)

)>
K
−1/2
ξξ K2,ξξK

−1/2
ξξ

(
K

1/2
ξξ K

−1
ξξ m1 (ξ)

)
+

(
K

1/2
ξξ K

−1
ξξ m2 (ξ)

)>
K
−1/2
ξξ K1,ξξK

−1/2
ξξ

(
K

1/2
ξξ K

−1
ξξ m2 (ξ)

)
+ tr

(
K
−1/2
ξξ K1,ξξK

−1/2
ξξ K

−1/2
ξξ K2,ξξK

−1/2
ξξ

)
= m1 (ξ)

>
K−1
ξξ K2,ξξK

−1
ξξ m1 (ξ)

+ m2 (ξ)
>
K−1
ξξ K1,ξξK

−1
ξξ m2 (ξ)

+ tr
(
K1,ξξK

−1
ξξ K2,ξξK

−1
ξξ

)
.

Coming back to BayesIMP

Now coming back to the derivation of BayesIMP. We will first provide two finite approximation of f
and µdogp(x, ·) in the following two propositions. Recall these finite approximations are set up such
that they match the distributions of evaluations of f and µdogp at ŷ = [y> ỹ>]>. The latter thus act as
landmark points for the finite dimensional approximations.
Proposition C.3 (Finite dimensional approximation of f ). Let ŷ = [y> ỹ>]> be the concatenation
of y and ỹ. We can approximate f with ,

f̃ |t ∼ N(mf̃ ,Σf̃ ) (63)

where,

mf̃ = ΦŷK
−1
ŷŷRŷỹ(Rỹỹ + λfI)−1t (64)

Σf̃ = ΦŷK
−1
ŷŷ R̄ŷŷK

−1
ŷŷ Φ>ŷ (65)

and R̄ŷŷ = Rŷŷ −Rŷỹ(Rỹỹ + λfI)−1Rỹŷ.
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Similarly for µdogp(x, ·), we have the following

Proposition C.4 (Finite dimensional approximation of µdogp(x, ·)). Let ŷ = [y> ỹ>]> be the con-
catenation of y and ỹ. We can approximate µdogp(x, ·) with ,

µ̃dogp(x, ·)| vec(Kyy) ∼ N(mµ̃,Σµ̃) (66)

where,

mµ̃ = ΦŷK
−1
ŷŷRŷyR

−1
yyKyy(KΩx

+ λI)−1ΦΩx
(x) (67)

Σµ̃ = ΦŷK
−1
ŷŷK

µ
ŷŷK

−1
ŷŷ Φ>ŷ (68)

where Kµ
ŷŷ = ΦΩx

(x)>ΦΩx
(x)Rŷŷ −

(
ΦΩx

(x)>(KΩx
+ λI)−1ΦΩx

(x)
)
RŷyR

−1
yyRyŷ

Now we have everything we need to derive the main algorithm in our paper, the BAYESIMP. Note
that we did not introduce the µdogp notation in the main text to avoid confusion as we did not have
space to properly define µdogp.

Proposition 5 (BAYESIMP). Let f and µY |do(X) be GPs learnt as above. Denote f̃ and µ̃Y |do(X)

as the finite dimensional approximation of f and µY |do(X) respectively. Then g̃ = 〈f̃ , µ̃Y |do(X)〉 has
the following mean and covariance:

m3(x) = ExKyŷK
−1
ŷŷRŷỹ(Rỹỹ + λfI)−1t (69)

κ3(x, x′) = ExΘ>1 R̃ŷŷΘ1E
>
x′︸ ︷︷ ︸

Uncertainty fromD1

+ Θ
(a)
2 Fxx′ −Θ

(b)
2 Gxx′︸ ︷︷ ︸

Uncertainty fromD2

+ Θ
(a)
3 Fxx′ −Θ

(b)
3 Gxx′︸ ︷︷ ︸

Uncertainty from Interaction

(70)

where Ex = ΦΩx
(x)>(KΩx

+ λI)−1, Fxx′ = ΦΩx
(x)>ΦΩx

(x′), Gxx′ = ΦΩx
(x)>(KΩx

+

λI)−1ΦΩx(x′), and Θ1 = K−1
ŷŷRŷyR

−1
yyKyy, Θ

(a)
2 = Θ>4 RŷŷΘ4,Θ

(b)
2 = Θ>4 RŷyR

−1
yyRyŷΘ4

and Θ
(a)
3 = tr(K−1

ŷŷRŷŷK
−1
ŷŷ R̄ŷŷ),Θ

(b)
3 = tr(RŷyR

−1
yyRyŷK

−1
ŷŷ R̄ŷŷK

−1
ŷŷ ) and Θ4 =

K−1
ŷŷRŷỹ(Kỹỹ + λf )−1t. R̄ŷŷ is the posterior covariance of f evaluated at ŷ

Proof of Proposition 5. Since g̃ = 〈f̃ , µ̃dogp〉 is an inner product between two finite dimensional GPs,
we know the variance (as given by Proposition C.2) is characterised by,

var(g) = m>µ̃Σf̃mµ̃ +m>
f̃

Σµ̃mf̃ + tr(Σf̃Σµ̃) (71)

Expanding out each terms we get Proposition 5:

m>µ̃Σf̃mµ̃ = ExΘ>1 R̃ŷŷΘ1E
>
x′ (72)

m>
f̃

Σµ̃mf̃ = Θ
(a)
2 Fxx′ −Θ

(b)
2 Gxx′ (73)

(74)

while the first two terms resembles the uncertainty obtained from IMP and BAYESIME, the trace
term is new and we will expand it out here,

tr(Σf̃Σµ̃) = tr
(

ΦŷK
−1
ŷŷK

µ
ŷŷK

−1
ŷŷ Φ>ŷ ΦŷK

−1
ŷŷ R̄ŷŷK

−1
ŷŷ Φ>ŷ

)
(75)

= tr
(
K−1

ŷŷK
µ
ŷŷK

−1
ŷŷ R̄ŷŷ

)
(76)

= tr
(
K−1

ŷŷ

(
Fxx′Rŷŷ −Gxx′RŷyR

−1
yyRyŷ

)
K−1

ŷŷ R̄ŷŷ

)
(77)

= Θ
(a)
3 Fxx′ −Θ

(b)
3 Gxx′ (78)
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C Details on Experimental setup

C.1 Details on Ablation Study

C.1.1 Data Generating Process

We use the following causal graphs, X −→ Y and Y −→ T , to demonstrate a simple scenario for
our data fusion setting. As linking functions, we used for D1, Y = xcos(πx) + ε1 and for D2,
T = 0.5 ∗ y ∗ cos(y) + ε2. where εi ∼ N (0, σi). Here below we plotted the data for illustration
purposes.
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Figure 9: (Left) Illustration of D1 (Right) Illustration of D2

C.1.2 Explanation on the extrapolation effect

In the main text we referred to the case where IMP is better than BAYESIME as extrapolation effect.
We note from the figure above that in D1 we have x around −4 being mapped onto y values around
−3. Note however, that in D2, we do not observe any values Ỹ below −2. Hence, because IMP uses
a GP model for D2 we are able to account for this mismatch in support and hence attribute more
uncertainty to this region, i.e. we see the spike in uncertainty in Fig.5 for IMP.

C.1.3 Calibration Plots

To investigate the accuracy of the uncertainty quantification in the proposed methods, we perform a
(frequentist) calibration analysis of the credible intervals stemming from each method. Fig. 10 gives
the calibration plots of the Sampling methods (sampling-based method of [15]) as well as the three
proposed methods. On the x-axis is the portion of the posterior mass, corresponding to the width of
the credible interval. We will interpret that as a nominal coverage probability of the true function
values. On the y-axis is the true coverage probability estimated using the percentage of the times
true function values do lie within the corresponding credible intervals. A perfectly calibrated method
should have nominal coverage probability equal to the true coverage probability, i.e. being closer to
the diagonal line is better.

C.2 Details on Synthetic Data experiments

C.2.1 Data Generating Process for simple synthetic dataset

For the first simple synthetic dataset (See Fig.6 (Top)) we used the following data generating graph is
defined as.

• X −→ U : U = 2 ∗X + ε

• Z −→ X : X = 3 ∗ cos(Z) + ε

• {Z,U} −→ Y : Y = U + exp(−Z) + ε

22



0.0 0.2 0.4 0.6 0.8 1.0
Nominal coverage probability

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 co
ve

ra
ge

 p
ro

ba
bi

lit
y

Calibration Plot

Sampling
IMP
BayesIME
BayesIMP
Opt

Figure 10: Calibration plots of Sampling method as well as our 3 proposed methods. We clearly see
that BAYESIMP is the best calibrated method amongst all other methods.

• Y −→ T : T = cos(Y )− exp(−y/20) + ε

where ε ∼ N (0, σ2) and Z ∼ U [−4, 4], where for D2 we have that Ỹ ∼ U [−10, 10]. In addition,
with probability π = 1/2 we shift U by +1 horizontally and −3 vertically to thus create the
multimodality in the data. In order to generate from the interventional distribution, we simply remove
the edge from Z −→ X and fix the value of x.

C.2.2 Data Generating Process for harder synthetic dataset from [15]

For the first simple synthetic dataset (Fig.6(Bottom)) we used the same data generating format as in
[15].

• U1 = ε1

• U2 = ε2

• F = ε3

• A = F 2 + U1 + εA

• B = U2 + εB

• C = exp(−B) + εC

• D = exp(−C)/10 + εD

• E = cos(A) + C/10εE

• Y1 = cos(D) + sin(E) + U1 + U2

• Y2 = cos(D) + sin(E) + U1 + U2 + 2π

• T = 6 ∗ sin(3 ∗ Y ) + ε

where the noise is fixed to be N (0, 1) and where we switch with π = 1/2 from mode Y1 and Y2,
where Ỹ ∼ U [−2, 9] for D2.

C.3 Details on Healthcare Data experiments

C.3.1 Data Generating Process

For the healthcare dataset, D1, (Fig.1) we used the same data generating format as in [15] with the
difference that we make statin continuous and increased the age range.

• age = U [15, 75]
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• bmi = N (27− 0.01 ∗ age, 0.7)

• aspirin = σ(−8.0 + 0.1 ∗ age+ 0.03 ∗ bmi)
• statin = −13 + 0.1 ∗ age+ 0.2 ∗ bmi
• cancer = σ(2.2− 0.05 ∗ age+ 0.01 ∗ bmi− 0.04 ∗ statin+ 0.02 ∗ aspirin)

• PSA = N (6.8 + 0.04 ∗ age− 0.15 ∗ bmi− 0.6 ∗ statin+ 0.55 ∗ aspirin+ cancer, 0.4)

As for the second dataset, D2 we firstly fit a GP on the data collected from [7]. Once we have the
posterior GP, we can then use it as a generator for the D2 as it takes as input PSA. This generator
hence acts as a link between D1 and D2. This way we are able to create a simulator that allows us to
obtain samples from E[Cancer volume|do(Statin)] for our causal BO setup.

C.4 Bayesian Optimisation experiments with IMP and BAYESIME

Figure 11: (Left) Simple graph using backdoor adjustment (Middle) Simple graph using front-door
adjustment (Right) Harder graph using front-door adjustment. BAYESIMP strikes the right balance
between IMP and BAYESIME and all three perform better than CBO and the GP baseline.

The main text compares BAYESIMP to CBO and the baseline GP with no learnt prior in the Bayesian
Optimisation experiments. Here, we include IMP and BAYESIME (i.e. simplified versions of
BAYESIMP that account for only one source of uncertainty each) in those comparisons. We see from
Fig.11 that BAYESIMP is comparable to IMP and BAYESIME in most cases. While BAYESIMP
is not the best performing method in every scenario, it does hit a good middle ground between the
first two proposed methods. For Fig.11 (Left, Middle) we used N = 100 and M = 50. In the left
figure, BAYESIME and BAYESIMP are very similar, whereas IMP is considerably worst. In the
middle figure, all methods seems to perform well without much difference. In the right figure, we
have N = 500 and M = 50 and this is a case where IMP is best, while BAYESIME appears to get
stuck in a local optimum (recall that BAYESIME does not take into account uncertainty in D2 where
there is little data). We note that all three methods converge faster than the current SOTA CBO.
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