
A Constant Approximation Algorithm for Sequential
Random-Order No-Substitution k-Median Clustering

Tom Hess
Department of Computer Science

Ben-Gurion University of the Negev
Beer-Sheva, Israel

tomhe@post.bgu.ac.il

Michal Moshkovitz
Department of Computer Science

Tel-Aviv University∗
Tel Aviv, Israel

mmoshkovitz@eng.ucsd.edu

Sivan Sabato
Department of Computer Science

Ben-Gurion University of the Negev
Beer-Sheva, Israel

sabatos@cs.bgu.ac.il

Abstract

We study k-median clustering under the sequential no-substitution setting. In this
setting, a data stream is sequentially observed, and some of the points are selected
by the algorithm as cluster centers. However, a point can be selected as a center
only immediately after it is observed, before observing the next point. In addition, a
selected center cannot be substituted later. We give the first algorithm for this setting
that obtains a constant approximation factor on the optimal cost under a random
arrival order, an exponential improvement over previous work. This is also the first
constant approximation guarantee that holds without any structural assumptions
on the input data. Moreover, the number of selected centers is only quasi-linear
in k. Our algorithm and analysis are based on a careful cost estimation that avoids
outliers, a new concept of a linear bin division, and a multiscale approach to center
selection.

1 Introduction

Clustering is a fundamental unsupervised learning task used for various applications, such as anomaly
detection [Leung and Leckie, 2005], recommender systems [Shepitsen et al., 2008] and cancer
diagnosis [Zheng et al., 2014]. In recent years, the problem of sequential clustering has been actively
studied, motivated by applications in which data arrives sequentially, such as online recommender
systems [Nasraoui et al., 2007] and online community detection [Aggarwal, 2003].

In this work, we study k-median clustering in the sequential no-substitution setting, a term first
introduced in Hess and Sabato [2020]. In this setting, a stream of data points is sequentially observed,
and some of these points are selected by the algorithm as cluster centers. However, a point can
be selected as a center only immediately after it is observed, before observing the next point. In
addition, a selected center cannot be substituted later. This setting is motivated by applications in
which center selection is mapped to a real-world irreversible action. For instance, consider a stream
of website users, where the goal is to instantaneously identify users that serve as social cluster centers
and provide them with a promotional gift while they are still on the website. As another example,
consider recruiting representative participants for a clinical trial out of a stream of incoming patients.

∗This work was done while the author was at the University of California San Diego.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

The goal in the no-substitution k-median setting is to obtain a near-optimal k-median cost value,
while selecting a number of centers that is as close as possible to k. For an adversarially ordered
stream, it has been shown [Moshkovitz, 2021] that an algorithm that selects a number of centers
that is sublinear in the stream length cannot obtain a constant approximation guarantee, unless some
structural assumptions are imposed on the input data.

In this work, we show that in contrast, when the stream order is random, a constant approximation
guarantee can be obtained without imposing structural assumptions on the data. Previous works on the
random-order setting provide either an algorithm with an almost-constant approximation assuming a
bounded metric space [Hess and Sabato, 2020] or an algorithm with an approximation factor that is
exponential in k [Moshkovitz, 2021]. Thus, our guarantees are stronger and more general than the
previous guarantees. Moreover, the number of centers selected by our algorithm is only quasi-linear
in k and does not depend on the stream length.

Main result. We propose a new algorithm, MUNSC (Multiscale No-Substitution Clustering), that
obtains a constant approximation factor with probability 1− δ over the random order of the stream,
while selecting only O(k log2(k/δ)) centers. MUNSC operates by executing several instances of a new
center-selection procedure, called SelectProc, where each instance is applied to a stream prefix of a
different scale. SelectProc decides which centers to select using a novel technique, in which a small
stream prefix is used to estimate a truncated version of the optimal cost of the entire stream. This
truncated version ignores outliers, and so can be estimated reliably. The value of the estimate is used
to determine which centers to select from the rest of the stream. The multiscale use of SelectProc
by MUNSC allows MUNSC to select only a quasi-linear number of centers.

As part of our analysis, we propose a new concept of a linear bin division, which allows a high-
probability association of the costs of stream subsets, while selecting a number of centers that is
independent of the stream length. This improves a previous construction of Meyerson et al. [2004].

The guarantees for MUNSC are provided in our main theorem, Theorem 4.1, stated in Section 4. Table 1
below compares our guarantees to previous works; See Section 2 for additional details. We note
that our algorithm and guarantees are easily extendable to k-means clustering, as well as to any
other clustering objective that satisfies the weak triangle inequality. MUNSC uses as a black box an
offline k-median approximation algorithm with a constant approximation factor. Whenever the offline
algorithm is efficient [e.g., Charikar et al., 2002, Li and Svensson, 2016], then so is MUNSC.

Limitations. The proposed algorithm is the first constant-approximation no-substitution clustering
algorithm that makes no structural assumptions on the input data set. The only limitation is the
assumption that the input order is random. This assumption is useful in cases where there is no
adversary and any order is as likely, as in the example applications mentioned above. Moreover, a
random order is a standard assumption in many streaming settings, satisfied also whenever the input
stream is drawn i.i.d. from a distribution. In some cases, the randomness assumption might hold
only approximately. In these cases, we expect a graceful degradation of the guarantees. We leave for
future work a comprehensive treatment of input orders that are neither random nor adversarial. We
expect the techniques of the current work to serve as a cornerstone in such a treatment.

Paper structure. We discuss related work in Section 2. The formal setting and notations are
defined in Section 3. The algorithm and its guarantees are given in Section 4. In Section 5, we outline
the proof of the main result. Some parts of the proof are deferred to appendices, which can be found
in the supplementary material. We conclude with a discussion in Section 6.

2 Related Work

Several works have studied settings related to the no-substitution k-median clustering setting. Table 1
summarizes the upper bounds mentioned below. First, some works studied related settings under an
adversarial arrival order. Liberty et al. [2016] studied online k-means clustering, in which centers are
sequentially selected, and each observed point is allocated to one of the previously selected centers.
The proposed algorithm can be applied to the no-substitution setting, yielding an approximation factor
of O(log(n)), where n is the stream length. For this algorithm to select a sublinear number of centers,
the aspect ratio of the input data must be bounded. Bhaskara and Rwanpathirana [2020] studied
the same setting as Liberty et al. [2016], improving the approximation factor to a constant, under

2

Table 1: Comparing our guarantees to previous works. n is the stream length. Abbreviations:
LSS16: Liberty et al. [2016], BR20: Bhaskara and Rwanpathirana [2020], BM20: Bhattacharjee and
Moshkovitz [2021] Mo21: Moshkovitz [2021], HS20: Hess and Sabato [2020].

Reference arrival assumptions approximation number
order factor of centers

LSS16 adversarial bounded aspect ratio O(log(n)) O(k log2(n))

BR20 adversarial bounded aspect ratio constant O(k log2(n))

BM20 adversarial data properties O(k3) O(k log(k) log(n))

Mo21 random none exponential in k O(k5) or O(k log(n))

HS20 random bounded diameter constant+additive k

This work random none constant O(k log2(k))

the same assumptions. Bhattacharjee and Moshkovitz [2021] explicitly studied the no-substitution
setting, and provided an approximation factor of O(k3), under a different assumption on the input
data set.

The setting of a random arrival order has been studied in several recent works. Hess and Sabato
[2020] proposed an algorithm that selects exactly k centers. They obtained a constant approximation
factor, with an additional additive term that vanishes for large streams, under the assumption that
the metric space has a bounded diameter. Their guarantee is with high probability. Moshkovitz
[2021] obtained an approximation factor that is exponential in k, with a number of centers that is
linear in k and logarithmic in the stream length n. Assuming a known stream length, the same
work also obtained an approximation factor which is exponential in k while selecting O(k5) centers.
Both guarantees hold only with a constant probability. As can be seen in Table 1, to date, the only
known constant approximation algorithms for no-substitution k-median clustering impose structural
assumptions on the input data.

A related sequential clustering setting is the streaming setting [e.g., Guha et al., 2000, Ailon et al.,
2009, Chen, 2009, Ackermann et al., 2012, Braverman et al., 2016], in which the main restriction is
the amount of memory available to the algorithm. This setting allows substituting selected centers,
but algorithms in this setting can be used in the no-substitution setting, by collecting all the centers
ever selected. However, we are not aware of any algorithm in this setting with a competitive bound
on the total number of selected centers.

3 Setting and Notation

For an integer i, denote [i] := {1, . . . , i}. Let (X, ρ) be a finite metric space, where X is a set
of size n and ρ : X × X → R+ is a metric. For a point x ∈ X and a set T ⊆ X , we denote
ρ(x, T) := miny∈T ρ(x, y). For an integer k ≥ 2, a k-clustering of X is a set of (at most) k points
from X which represent cluster centers. Throughout this work, whenever an item is selected based
on minimizing ρ, we assume that ties are broken based on a fixed arbitrary ordering. Given a set
S ⊆ X , the k-median cost of T on S is cost(S, T) :=

∑
x∈S ρ(x, T). The k-median clustering

problem aims to select a k-clustering T of X with a minimal overall cost cost(X,T). We denote by
OPT an optimal solution to this problem: OPT ∈ argminT⊆X,|T |≤k cost(X,T). In the sequential
no-substitution k-median setting that we study, X is not known a priori. The points from X are
presented to the algorithm sequentially, in a random order. We assume that the stream length, n,
is provided as input to the algorithm; see Section 6 for a discussion on supporting an unknown
stream length. The algorithm may select an observed point as a center only before observing the next
point. Any selected point cannot later be removed or substituted. The goal of the algorithm is to
select a small number of centers, such that with a high probability, the overall cost of the selected
set on the entire X approximates the optimal k-median cost, cost(X,OPT). In other words, we
seek an algorithm with a low competitive ratio, in the sense of competitive analysis [Borodin and
El-Yaniv, 2005]. An offline k-median algorithm A is an algorithm that takes as input a finite set

3

Algorithm 1 The sequential clustering algorithm: MUNSC
input δ ∈ (0, 1), k ∈ N, n ∈ N (stream length), A (an offline k-median algorithm),

sequential access to the input stream.
1: α1 ← δ/(4k); For i ∈ N, αi ← α1 · 2i−1.
2: I ← blog2(1/(6α1))c , δ′ ← δ/(I + 1). 4 I is set so that αI+1 ∈ (1/12, 1/6].
3: Prepare I + 1 copies of SelectProc, indexed by i ∈ [I + 1], as follows:

In all copies, use inputs k, n,A, τ ← φαI+1
, and set the confidence parameter to δ′.

In copy i ∈ [I + 1], set α← αi.
In all but the last copy, set M ← 1 and γ ← 2αi.
In the last copy (index I + 1), set M ← log(8k+/δ

′), and γ ← 1− 2αI+1.
4: Read each point from the input stream and feed it to each of the copies of SelectProc.

If any of the copies selected the point, then select it as a center.

of points S and the parameter k, and outputs a k-clustering of S, denoted A(S, k). For β ≥ 1, we
say that A is a β-approximation offline k-median algorithm on (X, ρ), if for all input sets S ⊆ X ,
cost(S,A(S, k)) ≤ β · cost(S,OPTS), where OPTS is an optimal solution with centers from S.
Formally, OPTS ∈ argminT⊆S,|T |≤k cost(S, T).

4 The algorithm

In this section, we describe the proposed algorithm, MUNSC. MUNSC receives as input the value of
k, the confidence level δ ∈ (0, 1) and the total stream length n. We further assume access to some
black-box offline k-median algorithm A. The guarantees of MUNSC depend on the approximation
factor guaranteed by A. MUNSC has only sequential access to the input stream. Our main result is the
following theorem, showing that MUNSC obtains a constant approximation factor with a quasi-linear
number of centers. A proof sketch of the theorem is given in Section 5. The full proof is provided in
the supplementary.

Theorem 4.1. Let k, n ∈ N. Let δ ∈ (0, 1). Let (X, ρ) be a metric space of size n. Let Tout be the
set of centers selected by MUNSC for the input parameters δ, k, n. Suppose that the input stream is a
random permutation of X , and that the input black-box algorithm A is a β-approximation offline
k-median algorithm. Then, with a probability at least 1− δ,

1. |Tout| = O
(
k log2(k/δ)

)
, and

2. cost(X,Tout) ≤ Cβ · cost(X,OPT), where C > 0 is a universal constant.

We first give, in Section 4.1, a short overview of the structure of MUNSC. A core element of the
algorithm is the internal procedure SelectProc, which is used by MUNSC with several different sets
of input parameters, creating a multiscale effect that we discuss below. We explain the details of
SelectProc in Section 4.2. Then, in Section 4.3, we explain the design of MUNSC.

4.1 Algorithm structure overview

MUNSC is listed in Alg. 1. It works as follows: It initializes Θ(log(k/δ)) copies of the procedure
SelectProc, each with a different set of input parameters, where we define φα := 150 log(32k/δ)/α
for α > 0. It then iteratively reads the points from the input stream one by one, and feeds each point
to each of the copies of SelectProc, so that each copy sequentially observes the entire input stream.
Whenever any copy of SelectProc selects a point as a center, this point is selected by MUNSC as a
center.

The internal procedure SelectProc uses a robust cost estimation approach to select a small number of
centers. The procedure gets as input several technical parameters, in addition to the input parameters
of MUNSC. We explain the procedure and the meaning of the technical parameters in Section 4.2. The
values of the technical parameters set by MUNSC for each of the copies of SelectProc ensure that
MUNSC select a small number of centers, while obtaining a constant approximation factor. This is
done using a multiscale approach. We discuss this in detail in Section 4.3.

4

Algorithm 2 Internal procedure: SelectProc
input δ ∈ (0, 1), k ∈ N, n ∈ N, A (an offline k-median algorithm),

sequential access to the input stream.
Technical parameters: α ∈ (0, 16], γ ∈ (α, 1− 2α], M ∈ N, τ > 0.

1: 4 Phase 1 (Calculate an initial clustering Tα):
2: P1 ← the first αn points from the input stream.
3: Tα := {c1, . . . ck+} ← A(P1, k+) 4 Only calculation, no centers are actually selected here.
4: 4 Phase 2 (Estimate the cost of Tα on large optimal clusters):
5: P2 ← next αn points from the input stream.
6: ψ ← 1

3αcost2α(k+1)φα(P2, Tα) 4 ψ estimates the cost of Tα on large optimal clusters.
7: 4 Phase 3 (Select centers):
8: ∀i ∈ [k+], ni ← 0, Neari ← FALSE. 4 ni counts selected points associated with ci.

Neari indicates if a point close to ci was selected.
9: for γn iterations do

10: Read the next point x from the input stream.
11: i← argmini∈[k+] ρ(x, ci). 4 Find the closet center to x in Tα.
12: if ρ(x, ci) >

ψ
kτ or ¬Neari or ni ≤M then

13: Select x as a center. 4 This is the only line in which actual selections occur.
14: ni ← ni + 1.
15: If ρ(x, ci) ≤ ψ

kτ then Neari ← TRUE.
16: end if
17: end for

4.2 The internal procedure: SelectProc

In this section, we present the internal procedure, SelectProc. It has been observed in previous work
[Liberty et al., 2016] that knowing in advance the optimal cost on the entire stream allows a successful
center selection. Under a random arrival order, one may hope that obtaining a good estimate for the
optimal cost would be straight-forward. However, since the metric space is unbounded, even a small
number of outliers can bias the cost estimate considerably. We overcome this challenge by showing
that it suffices to estimate a version of the optimal cost that ignores outliers, and that this version can
be estimated reliably from a small prefix of the stream. Our analysis is based on a distinction between
small and large optimal clusters, which we formally define in Section 5 below.

SelectProc, listed in Alg. 2, uses the following notation. For two sets S, T ⊆ X and an integer
r, denote by farr(S, T) ⊆ S the set of r points in S that are the furthest from T according to the
metric ρ. If |S| < r, we define farr(S, T) := S and call farr(S, T) a trivial far set. Denote by
costr(S, T) := cost(S \ farr(S, T), T) the cost of T on S after discounting the r points that incur
the most cost. Let k+ := k + 38 log(32k/δ). SelectProc receives the same input parameters as
MUNSC. In addition, it requires several technical parameters, denoted α, γ,M and τ . We explain the
meaning of these parameters in the proper context below.

SelectProc works in three phases. For i ∈ [3], we denote by Pi the set of points that are read in
phase i. In each of the first two phases, an α fraction of the points in the stream is read. In the last
phase, a γ fraction of the points in the stream is read. Note that depending on the values of α and
γ, the procedure may ignore a suffix of the stream. The first two phases are used for calculations.
Centers are selected only during the third phase.

In the first phase, a reference clustering Tα is calculated using the input offline algorithm A. Note
that the centers in Tα cannot be selected as centers by SelectProc, since A calculates Tα only after
observing all the points in the phase. In the second phase, an estimate ψ of the cost of Tα is calculated.
In the third phase, SelectProc observes points from the stream one by one, deciding for each one
whether it should be selected as a center. For each observed point, SelectProc first finds the center
ci ∈ Tα which is closest to it. A point is then selected as a center if it satisfies one of three conditions:
(1) its distance from ci is more than ψ/(kτ) (where τ is one of the input technical parameters); (2) ci
does not yet have M associated points (where M is one of the technical parameters); or (3) no point
close to ci has been selected so far, as maintained by the Boolean variable Neari. In Theorem 5.1 in
Section 5, we provide a guarantee on the output of SelectProc, which upper bounds the number of

5

centers selected by SelectProc and the cost obtained by these centers, as a function of the technical
parameters.

Challenges and solutions in SelectProc. We give here an informal explanation of the workings
of SelectProc. The full analysis is provided in Section 5 and the supplementary. Consider the
clusters induced by some fixed optimal k-median clustering onX . Call these clusters optimal clusters.
Optimal clusters that are large (that is, include a sufficiently large fraction of X) are easy to identify
from a small random subset of points. Therefore, approximate centers for these clusters will be
identified in the first phase of SelectProc by the black box algorithm A, and will be included in
Tα. Thus, the cost of Tα on the subset of points that belong to large optimal clusters will be close
to optimal. Note that Tα is a clustering with k+ > k centers. This overcomes the fact that the
data set might include outliers which are not proportionally represented in each phase. Searching
for a k-clustering in P1 might thus lead to a clustering that is too biased towards such outliers. By
increasing the size of the solution searched in the first phase to k+, this allows the solution to include
the outliers as centers, while still choosing also centers that are close to the optimal centers of all
large clusters. The selection conditions of the third phase further guarantee that at least M points
are selected near each center ci ∈ Tα which represents a large cluster, thus making sure that a center
which is very close to each such ci is selected. This allows bounding the obtained cost on points in
large optimal clusters.

An additional challenge is to ensure that points in small optimal clusters are not too far from the set
Tout of all selected centers. Since the metric space is unbounded, even a single such point can destroy
the constant approximation factor. To overcome this, SelectProc selects a point near each center in
Tα, as well as all the points that are far from Tα. The threshold ψ/(kτ), which defines a point as far,
is set so that the number of points selected from large optimal clusters can be bounded. This bound
crucially relies on the accuracy of ψ as an estimate for the cost of Tα on large clusters. The required
accuracy is obtained by ignoring the points that are furthest from Tα when calculating the cost on P2

(see line 6). For small clusters, they hold a small number of points by definition, thus the number of
such points selected as centers is also bounded.

4.3 The clustering algorithm: MUNSC

As described above, MUNSC runs several copies of SelectProc on the same input stream: each point
is read from the input stream and then fed to each of the copies of SelectProc. Each of these copies
selects some centers, and the set of all selected centers is the solution of MUNSC. The difference
between the copies is in the value of the technical input parameters. First, the value of α (the stream
fraction for the first and second phases) is progressively doubled, starting with α1 = δ/(4k) and
ending with αI+1 = α1 · 2I , where I is set so that αI+1 ∈ (1/12, 1/6]. The value of τ (which
controls the selection threshold) is set to φαI+1

in all copies, based on the largest value of α. In all but
the last copy, γ (the stream fraction for the third phase) is set to 2αi, where i is the copy index. This
means that the first and second phase of copy i are each of size αi, while the third phase is of size
2αi (the rest of the stream is ignored by copy i). Therefore, copy i observes a 4αi = 2αi+1 fraction
of the stream. Thus, the first two phases of copy i+ 1 exactly overlap with the fraction of the stream
observed by copy i. Figure 1 illustrates the overlap of phases in consecutive copies of SelectProc.
In the last copy, indexed by I + 1, γ is set to 1− 2αI+1, thus this copy reads the entire stream. It can
be seen that each point, except for the first 2nα1 points, participates in the third phase of exactly one
copy of SelectProc. As our analysis below shows, this overlap between the phases guarantees that
the set of centers selected by the copies of SelectProc obtains a small cost on all the small optimal
clusters. The last copy is slightly different: in addition to setting the length of the third phase γ to
include all the points of the stream, it also sets the technical parameter M to a number larger than
1. We show below that in this way, the selected set of centers obtains a small cost on large optimal
clusters as well.

The use of several copies of SelectProc with different phase sizes ensures that MUNSC selects only
a quasi-linear number of centers, by overcoming the following challenge: On the one hand, the first
phase and the second phase must be small, otherwise we might miss a point that needs to be selected,
since no points are selected in these two phases. On the other hand, small first and second phases
lead to a poor quality of the reference clustering Tα. The multiscale approach makes sure that almost
all points participate in some selection phase, while at the same time improving the quality of Tα as

6

α1 α1 2α1

P1

P1

P1

P2

P2

P2

P3 (selection)

P3 (selection)

P3 (selection)

2α1 2α1 4α1

4α1 4α1 8α1

1st copy

2nd copy

3rd copy

Figure 1: Illustrating the phases in copies 1, 2, 3 of SelectProc within MUNSC.

α grows. Our analysis below shows that in this way, the number of centers selected by each copy
remains similar, even though larger values of α lead to a larger selection phase.

Using MUNSC in a bounded memory setting. MUNSC can be used in a bounded memory setting,
by using a 1-pass streaming clustering algorithm as the black-box algorithm A. For instance, the
algorithm of Charikar et al. [2003] requires O(k · polylog(n)) memory. MUNSC can be implemented
to require additional memory of only O(k log(k/δ)) on top of the requirements of the black-box
algorithm. We now explain in full how this can be done. First, consider the memory requirements of
SelectProc: In phase 1, the points can be fed to A one by one and do not need to be saved in memory.
Only Tα, the k+ = O(k + log(1

δ)) output points of A, need to be saved in memory. In phase 2,
calculating the truncated cost of Tα on P2 can be done by saving at most 2α·(k+1)φα = O(k log(kδ))
at any time, so as to identify the farthest points from Tα, which are the ones to disregard. In phase 3,
the points are inspected one by one and do not need to be saved in memory (if one wishes to save the
selected centers in memory, although this is not in principle required in our setting, then an additional
O(k log(kδ)) factor is added). In total, SelectProc can be implemented using a memory size of
O(k log(kδ)) + the memory requirments of A. MUNSC runs O(log(kδ)) parallel runs of SelectProc.
Thus, it requires at most a memory size of O(log(kδ)(k log(kδ) + the memory requirements of A)).
In fact, this can be made even more memory-efficient, by using an algorithm A which is a streaming
anytime algorithm. In this case, it is possible to use a single copy of A for all the parallel runs
of SelectProc, since P1 in the i’th copy of SelectProc is the prefix of P1 in the i + 1’th copy
(see Figure 1). That is, A is run on the entire stream and whenever a phase 1 of any copy ends, its
current set of centers is retrieved for this copy. In this case, the memory size required by MUNSC is
O(k log2(kδ)) + the memory requirements of A.

5 Analysis

In this section, we give an overview of the proof of Theorem 4.1. The supplementary provides the full
proof. Denote the centers in the optimal solution OPT by {c∗i }i∈k, and the clusters induced by OPT
(the optimal clusters) by {C∗i }i∈k. Formally, C∗i := {x ∈ X | i = argminj∈[k] ρ(c∗j , x)}. Optimal
clusters with fewer than φα points are α-small optimal clusters, and the complement are α-large.
Denote the indices of α-small and α-large clusters by Iαsmall := {i ∈ [k] | |C∗i | < φα} and Iαlarge :=

[k] \ Iαsmall, and the points in these clusters by Cαsmall :=
⋃
i∈Iαsmall

C∗i and Cαlarge :=
⋃
i∈Iαlarge

C∗i .
To prove Theorem 4.1, we provide the following guarantee on the centers selected by SelectProc.

Theorem 5.1. Let k, n ∈ N. Let δ ∈ (0, 1). Let (X, ρ) be a metric space of size n. Let Tout be the
set of centers selected by SelectProc for the input parameters δ, k, n, α ∈ (0, 1/6], γ ∈ (α, 1−2α],
M ∈ N, τ > 0. Suppose that the input stream is a random permutation of X , and that A is a
β-approximation offline k-median algorithm. Then, with a probability at least 1− δ/2,

1. |Tout| = O
(
γ
αk log(k/δ) + kτ + (k + log(k/δ))M

)
;

2. For any i ∈ [k], if c∗i ∈ P3, then

cost(C∗i , Tout) ≤ cost(C∗i , {c∗i }) +
|C∗i |
kτ

(36β + 20)cost(X,OPT); (1)

3. If γ = 1− 2α, τ = φα and M = log(8k+/δ), then

cost(Cαlarge, Tout) ≤ cost(Cαlarge,OPT) + (468β + 260)cost(X,OPT). (2)

7

The proof of Theorem 4.1, provided in Appendix A, uses part 1 to bound the total number of centers,
and parts 2 and 3 to bound the cost of small and large optimal clusters, respectively. The statement of
Theorem 5.1 hints to the reason for the multiscale design of MUNSC: On the one hand, part 2 gives
an approximation upper bound only if the cluster center appears in the third phase. For this to hold
with a high probability, the third phase needs to be very large. On the other hand, for a quasi-linear
bound on selected centers in part 1, the ratio between the third phase and the first phases (γ/α) needs
to be small. The multiscale design overcomes this by keeping the ratio constant in each copy of
SelectProc, while ensuring that the union of all third phases is almost the entire stream.

In the rest of the section, we give the proof of Theorem 5.1: In Section 5.1, we introduce the concept
of linear bin divisions, and derive its properties. In Section 5.2, we give an overview of the proof of
Theorem 5.1, using the results of Section 5.1. The full proof is provided in the supplementary.

5.1 Linear bin divisions

A main tool in the proof of Theorem 5.1 is partitioning sets of points from the input stream into
subsets, such that each of the subsets is probably well represented in a relevant random subset of the
stream. Meyerson et al. [2004] defined the concept of a bin division of X with respect to a clustering
T , which is a partition of X into bins of equal size, where points are allocated to bins based on their
distance from T . Here, we define the concept of a linear bin division, in which the bins linearly
increase in size. This gradual increase allows keeping the size of the first bin independent of the
stream length, while still proving that with a high probability, the overlap of each of the bins in
the division with random subsets of the stream is close to expected. The fixed size of the first bin
is crucial for deriving guarantees that are independent of the stream length. In addition, the ratio
between adjacent bin sizes is kept bounded, which allows proving a bounded approximation factor.

Definition 5.2 (Linear bin division). Let W,T ⊆ X be finite sets, and z ∈ N. A z-linear bin division
of W with respect to T is a partition B = (B(1), . . . ,B(L)) of W (for an integer L) such that:

1. If z ≤ |W |, then ∀i ∈ [L], |B(i)| ≥ z · (i+ 1)/2. Otherwise, the bin division is called trivial,
and defined as B := B(1) := W .

2. |B(1)| ≤ 5
2z.

3. ∀i ∈ [L− 1], |B(i+ 1)|/|B(i)| ≤ 3/2.

4. ∀i ∈ [L− 1], and ∀x ∈ B(i), x′ ∈ B(i+ 1), it holds that ρ(x, T) ≥ ρ(x′, T).

A linear bin division exists for any size of W : For |W | ≤ z, the conditions trivially hold. For
|W | ≥ z, the three first properties hold for the following allocation of bin sizes: Let L be the largest
integer such thatB :=

∑
i∈[L] z ·(i+1)/2 ≤ |W |. Set the size of B(i) to z ·(i+1)/2+(|W |−B)/L.

Property 1 clearly holds. Property 2 holds since (|W | −B)/L ≤ (z(L+ 2)/2)/L ≤ 3z/2. Property
3 holds since (i+ 2 + a)/(i+ 1 + a) ≤ 3/2 for all i ≥ 1 and any non-negative a. To satisfy property
4, allocate the elements of W into the bins in descending order of their distance from T .

We say that a set is well-represented in another set if the size of its overlap with the set is similar to
expected. This extends naturally to bin divisions. Formally, this is defined as follows.

Definition 5.3 (Well-represented). Let W be a finite set and A,B ⊆ W . We say that B is well-
represented in A for W if |B ∩ A|/|B| ∈ [r/2, (3/2)r], where r := |A|/|W |. We say that a linear
bin division B of W is well represented in A for W if each bin in B is well represented in A for W .

The following lemma shows that if A is selected uniformly at random from W , then any fixed set
B is well-represented in A with a high probability. Moreover, the same holds for any z-linear bin
division of W with a sufficiently large z. The proof of the lemma is provided in Appendix B.

Lemma 5.4. Let W be a finite set. Let B ⊆W be a set, and let B be a z-linear bin division of some
subset of W with respect to some T , for some integer z. Let A ⊆W be a set of size r|W | selected
uniformly at random from W . Then the following hold:

1. With a probability at least 1− 2e−
r|B|
10 , B is well-represented in A for W .

2. If z ≥ 10 log(4/δ)/r, then with a probability 1− δ, B is well represented in A for W .

8

We now state and prove a main property of linear bin divisions, which will allow us to use sub-streams
of the input stream to bound the cost of a clustering on X .

Lemma 5.5. Let W ⊆ X and let z ∈ N. Let B be a z-linear bin division of W with respect to
some T . Let A ⊆ W and r ∈ (0, 1). If ∀i ∈ [L], |B(i) ∩ A|/|B(i)| ≤ r, then cost(A \ B(1), T) ≤
3
2rcost(W,T).

Proof. Let L be the number of bins in B. We first prove the following inequality, which relates the
cost of the intersection of a bin with A to the cost of the preceding bin.

∀i ∈ [L− 1], cost(A ∩ B(i+ 1), T) ≤ 3

2
r · cost(B(i), T). (3)

To prove Eq. (3), fix i ∈ [L − 1], and denote b := maxx∈B(i+1) ρ(x, T). By the assumptions, we
have |A ∩ B(i+ 1)| ≤ r|B(i+ 1)|. Hence, cost(A ∩ B(i+ 1), T) ≤ r|B(i+ 1)| · b. By property 3
of linear bin divisions, |B(i + 1)| ≤ 3

2 |B(i)|. Therefore, cost(A ∩ B(i + 1), T) ≤ 3
2r|B(i)| · b.

In addition, by property 4 of linear bin divisions and the definition of b, ∀x ∈ B(i), b ≤ ρ(x, T).
Therefore, cost(B(i), T) ≥ |B(i)| · b. Combining the two inequalities, we get Eq. (3). It follows that:

cost(A \ B(1), T) =

L∑
i=2

cost(A ∩ B(i), T) ≤ 3

2
r

L−1∑
i=1

cost(B(i), T) ≤ 3

2
rcost(W,T).

This proves the statement of the lemma.

To prove Theorem 5.1, we define an event, denoted E, which holds with a high probability. We prove
each of the claims in the theorem under the assumption that this event holds. To define the event, we
first provide some necessary notation. Consider a run of SelectProc with some fixed set of input
parameters, and assume that the input stream is a random permutation of the points in X . Recall that
Tα = {c1, . . . , ck+} is the clustering calculated in the first phase of SelectProc. Denote the clusters
induced by Tα on X by C1, . . . , Ck+ , where Ci := {x ∈ X | i = argminj∈k+ ρ(cj , x)}. We define
several sets and bin divisions, which will be used to define the required event. Let Ba be a (φα/15)-
linear bin division of X with respect to OPT. Define Fb := farkφα(X \ P1, Tα), and let Bb be a
(φα/3)-linear bin division ofX\(P1∪Fb) with respect to Tα. Define Fc := far4(k+1)φα(X\P1, Tα),
and let Bc be a (φα/3)-linear bin division of X \ (P1 ∪ Fc) with respect to Tα. Lastly, define
Fd := far5(k+1)φα(X \ P1, Tα). Note that each of these objects may be trivial if the stream is small.

The event E is defined as the following conjunction: (1) For each i ∈ Iαlarge, C∗i is well-represented
in P1 and in P1 ∪ P2 for X . (2) Each of Fb and Fc is trivial or well-represented in P2 for X \ P1; Fd
is trivial or well-represented in P3 for X \ P1. (3) Ba is trivial or well-represented in P1 for X; Each
of Bb and Bc is trivial or well-represented in P2 for X \P1, and (4) For each i ∈ [k+], one of the first
log2(8k+/δ) points observed from Ci in P3 is closer to ci than at least half of the points in Ci ∩ P3.

The following lemma, proved in Appendix C, shows that E holds with a high probability.

Lemma 5.6. Consider a run of SelectProc with fixed input parameters. Assume that the input
stream is a random permutation of the points of X . Then E holds with a probability at least 1− δ/2.

5.2 Theorem 5.1: proof overview

In this section, we give an overview of the proof of Theorem 5.1. The full proof is given in Appendix D.
In the first phase of SelectProc, the clustering Tα is calculated using the offline algorithm A. We
first bound the cost of Tα on points in α-large optimal clusters.

Lemma 5.7. If E holds, then cost(Cαlarge, Tα) ≤ (18β + 10)cost(X,OPT).

In the second phase of SelectProc, the goal is to estimate a truncated version of the cost of Tα on
X . This truncated version ignores the cost on the outliers, which are the kφα furthest points from
Tα in X . Setting the estimate to ψ = 1

3αcost2α(k+1)φα(P2, Tα) ignores the furthest 2α(k + 1)φα
points in P2, which with a high probability include all the kφα outliers in X . The following lemma
bounds ψ between two versions of a truncated cost of Tα.

Lemma 5.8. If E holds, then 1
9cost5(k+1)φα(X \ P1, Tα) ≤ ψ ≤ costkφα(X,Tα).

9

The proof of this lemma uses the linear bin divisions studied in Section 5.1. In particular, the upper
bound uses Lemma 5.5, and the lower bound uses the specific construction of the bin sizes.

From the lemmas above, it can be seen that ψ is also upper bounded by the optimal cost, as follows.
α-small optimal clusters are smaller than φα, thus their total size is less than kφα. It follows that

costkφα(X,Tα) ≤ cost(X \ Cαsmall, Tα) = cost(Cαlarge, Tα). (4)

Combining Lemma 5.7, Eq. (4) and Lemma 5.8, we get that ψ is upper bounded by the optimal cost.

In the third phase, the points selected as centers include (among others) all the points with a distance
of more than ψ/(kτ) from Tα. This allows bounding the cost of Tout on points in some of the optimal
clusters by a linear expression in ψ/(kτ). Combined with the upper bound on ψ, this allows proving
part 2 of Theorem 5.1. Part 3 bounds the cost of Tout on large optimal clusters, for specific settings
of the technical parameters of SelectProc. To prove this part, we show that under these parameter
settings, the centers selected based on the reference clustering Tα include sufficiently many points
around each large optimal cluster. We then show that one of these points is close to the optimal center.

Lastly, part 1 of Theorem 5.1 upper bounds the number of centers selected by SelectProc. The
following lemma upper-bounds the number of points that are selected because they are far from Tα.

Lemma 5.9. Let N := |{x ∈ P3 | ρ(x, Tα) > ψ/(kτ)}|. Under E, N ≤ 8(k + 1)φα
γ

1−α + 9kτ .

The proof Lemma 5.9 uses the lower bound on ψ shown in Lemma 5.8, to conclude that there cannot
be too many points that are more than ψ/(kτ) far from Tα, since this would make the truncated cost
in the lower bound larger than ψ. We note that the resulting upper bound is independent of the stream
size, due to the specific construction of the bin sizes in the linear bin division. Using this lemma, we
can prove part 1 of SelectProc. The full proof of Theorem 5.1 is given in Appendix D.

6 Discussion

In this work, we provided MUNSC, the first constant-approximation algorithm for sequential no-
substitution k-median clustering that does not require structural assumptions on the input data.
Moreover, the number of centers selected by MUNSC is only quasi-linear in k.

MUNSC can also be used when the stream length n is not known in advance, using a simple doubling
trick. Moshkovitz [2021] showed that an unknown stream length with an approximation factor that
does not depend on n require a logarithmic dependence on n in the number of selected centers.
Indeed, a doubling trick for MUNSC would preserve the approximation factor, increasing the number
of selected centers only by the unavoidable Θ(log(n)) factor.

Funding Transparency Statement

Sivan Sabato and Tom Hess were supported in part by the Israel Science Foundation (grant No.
555/15) and by the United-States-Israel Binational Science Foundation (BSF) (grant no. 2017641).
Michal Moshkovitz has received funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation program (grant agreement No. 882396), by
the Israel Science Foundation (grant number 993/17), Tel Aviv University Center for AI and Data
Science (TAD), and the Yandex Initiative for Machine Learning at Tel Aviv University.

References
Marcel R Ackermann, Marcus Märtens, Christoph Raupach, Kamil Swierkot, Christiane Lammersen,

and Christian Sohler. StreamKM++: A clustering algorithm for data streams. Journal of Experi-
mental Algorithmics (JEA), 17:2–4, 2012.

Charu C Aggarwal. A framework for diagnosing changes in evolving data streams. In Proceedings of
the 2003 ACM SIGMOD international conference on Management of data, pages 575–586. ACM,
2003.

Nir Ailon, Ragesh Jaiswal, and Claire Monteleoni. Streaming k-means approximation. In Advances
in neural information processing systems, pages 10–18, 2009.

10

Aditya Bhaskara and Aravinda Kanchana Rwanpathirana. Robust algorithms for online k-means
clustering. In Algorithmic Learning Theory, pages 148–173, 2020.

Robi Bhattacharjee and Michal Moshkovitz. No-substitution k-means clustering with adversarial
order. In Algorithmic Learning Theory, pages 345–366. PMLR, 2021.

Allan Borodin and Ran El-Yaniv. Online computation and competitive analysis. cambridge university
press, 2005.

Vladimir Braverman, Dan Feldman, and Harry Lang. New frameworks for offline and streaming
coreset constructions. arXiv preprint arXiv:1612.00889, 2016.

Moses Charikar, Sudipto Guha, Éva Tardos, and David B Shmoys. A constant-factor approximation
algorithm for the k-median problem. Journal of Computer and System Sciences, 65(1):129–149,
2002.

Moses Charikar, Liadan O’Callaghan, and Rina Panigrahy. Better streaming algorithms for clustering
problems. In Proceedings of the thirty-fifth annual ACM symposium on Theory of computing,
pages 30–39. ACM, 2003.

Ke Chen. On coresets for k-median and k-means clustering in metric and euclidean spaces and their
applications. SIAM Journal on Computing, 39(3):923–947, 2009.

Devdatt P Dubhashi and Desh Ranjan. Balls and bins: A study in negative dependence. BRICS
Report Series, 3(25), 1996.

Sudipto Guha, Nina Mishra, Rajeev Motwani, and Liadan O’Callaghan. Clustering data streams. In
Foundations of computer science, 2000. proceedings. 41st annual symposium on, pages 359–366.
IEEE, 2000.

Tom Hess and Sivan Sabato. Sequential no-substitution k-median-clustering. In International
Conference on Artificial Intelligence and Statistics, pages 962–972. PMLR, 2020.

Kumar Joag-Dev and Frank Proschan. Negative association of random variables with applications.
The Annals of Statistics, pages 286–295, 1983.

Kingsly Leung and Christopher Leckie. Unsupervised anomaly detection in network intrusion
detection using clusters. In Proceedings of the Twenty-eighth Australasian conference on Computer
Science-Volume 38, pages 333–342. Australian Computer Society, Inc., 2005.

Shi Li and Ola Svensson. Approximating k-median via pseudo-approximation. SIAM Journal on
Computing, 45(2):530–547, 2016.

Edo Liberty, Ram Sriharsha, and Maxim Sviridenko. An algorithm for online k-means clustering.
In 2016 Proceedings of the Eighteenth Workshop on Algorithm Engineering and Experiments
(ALENEX), pages 81–89. SIAM, 2016.

Adam Meyerson, Liadan O’callaghan, and Serge Plotkin. A k-median algorithm with running time
independent of data size. Machine Learning, 56(1-3):61–87, 2004.

Michal Moshkovitz. Unexpected effects of online no-substitution k-means clustering. In Algorithmic
Learning Theory, pages 892–930. PMLR, 2021.

Olfa Nasraoui, Jeff Cerwinske, Carlos Rojas, and Fabio Gonzalez. Performance of recommendation
systems in dynamic streaming environments. In Proceedings of the 2007 SIAM International
Conference on Data Mining, pages 569–574. SIAM, 2007.

Andriy Shepitsen, Jonathan Gemmell, Bamshad Mobasher, and Robin Burke. Personalized recom-
mendation in social tagging systems using hierarchical clustering. In Proceedings of the 2008
ACM conference on Recommender systems, pages 259–266. ACM, 2008.

Bichen Zheng, Sang Won Yoon, and Sarah S Lam. Breast cancer diagnosis based on feature
extraction using a hybrid of k-means and support vector machine algorithms. Expert Systems with
Applications, 41(4):1476–1482, 2014.

11

