Appendix

A Efficient Implementation of Prox-Finito

Algorithm 3 Prox-Finito: Efficient Implementation

Input: 20 = L 3~ 29 step-size o, and 0 € (0, 1);

n

=1
for epoch k =0,1,2,--- do
for iterationt = kn + 1, kn+2,--- ,(k+ 1)n do

21 = prox,, ();

Pick 7; with some rule;

Compute df, = z'~! — aV fi(z'~1) — 2%

Update 2 = 2/~ + d! /n;

Update 2!, = 2/ " + 0d!, and delete d! ;
end for ’
5(k+1)n — (1 _ G)Ekn 4 02(k+1)n;

end for

B Operator’s Form

B.1 Proof of Proposition 1]
Proof. In fact, it suffices to notice that

Shntl Tapz" 1 if¢ € [n—1]
(1—9)an+7;(n)zkn+n_l if £ = n,

and the z-update in (7) directly follows (D). O
B.2  Proof of Proposition 3]
Proof. With definition (Z), we can reach the following important relation:

x = prox,,(y) <= 0€adr(z)+z—y. (23)

Sufficiency. Assuming x* minimizes F'(z) + r(z), it holds that 0 € VF(z*) + dr(z*). Let
2z = (I —aVf;)(z*) and z* = col{z7,..., 2%}, we now prove z* satisfies (9) and (T0).

7

Note Az* = + Zn: (I —aVf)(z*) =2 —aVF(z*)and 0 € z* — (z* — aVF(2*)) + a d r(z*),
i=1
it holds that
x* = prox,,.(¢* — aVF(z")) = prox,,. (Az") (24)
and hence
(I —aVf;)oprox,, (Az*)= (I —aVf)(z*) =2, Vie]n]. (25)

Therefore, z* satisfies (9) and (T0).

Necessity. Assuming z* = 7;z*, Vi € [n], we have z} = (I—aV f;)oprox,, (Az*). By averaging
all 27, we have

Az* = (I — aVF)oprox,, (Az"). (26)
Let 2* = prox,, (Az*) and apply prox,,. to (26), we reach
x* = prox,,.(¢* — aVF(z")), (27)

which indicates 0 € a dr(z*) + 2% — (2 — aF(2*)) < 0 € VF(z*) + 0r(z*), i.e. z*isa
minimizer. O
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C Cyclic—Convex

C.1 Proof of Lemmalll

Proof. Without loss of generality, we only prove the case in which 7 = (1,2,...,n) where 7, =
Tno0---0Ty07T].
To ease the notation, for z € R, we define h;-norm as

[E Z (mod,, (j — i — 1) + 1) || 21| (28)
Note [|z[2, = [l2[3, = ]2 when = = (1,2,...,n).

To begin with, we introduce the non-expansiveness of operator (I — aV f;) o prox,,., i.e.
I(I—aV fi)oprox,, (z) — (I—aV f) oprox,, (y)|? < lle—y|? Va,y € R andi € [n]. (29)
Note that prox,,,. is non-expansive by itself; see [30,[13]. I — o'V f; is non-expansive because
& — aVfi(x) =y +aV fi(y)|?

= o~y ~ 20(z — 9. V£i(2) - V(W) + * [V fila) ~ Vi)
<o =yl ~ (52~ 0?) IV ie) - Vi)
<z —yll* vreRyeR?

where the last inequality holds when o < % Therefore, the non-expansiveness of I — oV f; and
prox,, imply that the composition (I — aV f;) o prox,, is also non-expansive.

We then check the operator 7;. Suppose u € R"® and v € R™?,

1 .
[Tows —Towlf, = - 3 (moda (G — i — 1) + 1)y — v,
J#i
+ (I~ aV ;) 0 prox,,. (Au) — (I - aV ;) o prox,, (Av)

(a) 1 o
< 3 (mody (G — i = 1)+ 1)y — v + [ Au — Av]?

i (30)
®) 1 o , 1< )
< = (modn (=i = 1)+ 1) fuy — s + > llu; — g

J#i j=1

1 .
= > (mody,(j — ) + 1) [[ug — v,]|* = u— vl

Jj=1

i—1"

In the above inequalities, the inequality (a) holds due to (29) and (b) holds because

n

| A — Av|\2—||fZ( —v)|? < ZHUZ_ULHQ (31)

=1

With inequality (30), we have that
[ Trw = Tooll2 = | TaTor1 -+ Tiw = ToTaoa -+ Tio|l7,
<N Tmer - Tiw — T1 - 'TWH%M,]

i | Tozs T =Tz Tav|f, @)
SR
< flu=vlf, = llu vl

O
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C.2 Proof of Lemmal[2

Proof. We define S, = (1 — 0)I 4 07T, to ease the notation. Then Zktn — G okn by Proposition

[} To prove Lemma 2] notice that V k = 1,2, - - -

[0 — A2 = S, 2k — b2

< (1= 0)]25 = 2* D2 4 0T 2k — Tz Dn2

D patr - omyz
The above relation implies that || z(*+1)™ — 2k7||2 is non-increasing. Next,

lz5HD" — 212 = (1 = 6)2*" + 0T (2"") — 2"

= (1= O)lI="" = 2*|7 + Ol T= (") — 2*|7 — 0(1 = 0) || =*" —

(C) * n n
< 2™ =27 - 001 = 012" = Te(2")17

n * 1-0 n n
= ||z - 2 Hi—THZk —Sa(z")|2

1-6
0

= |l2*" —2*|7 - [ S =

where equality (c) holds because Proposition [3]implies 7, z* = z*.

Summing the above inequality from 0 to k£ we have
1-6 ¢
||z(k+1)n _ Z’,a(”fr < HZO o Z*Hfr _ T Z ||zfn _ z(erl)n”i'
£=0

Since ||z(** 1" — 2F7|12 is non-increasing, we reach the conclusion.

C.3 Proof of Theorem[]

Proof. Since 25+ 71 = 2k% for 1 < j < n, it holds that

s(k+1)n _ o —kn —kn - . . kn+j—1y _ kn+j—1
z = (-0 0| 2ty 1n(([ oV frii)) (@ ) 2k
J:

_kn —kn . 1 n+j— n
= (1= 0 40 [ 274 32 (- V)t — 2l
j=1

(I = aV fr(p) (@770,

S

=(1-0)2" 40
j=1

which further implies that

1

(33)

T(=*)1%

(34)

(35)

)

(36)

1 - kn+j—1 —kn s(k+1)n 1 - kn+j5—1 —kn
E;Wﬂj)(x R o G D L A0 B €10

j=1
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As a result, we achieve

n 1 - n
k) = - > Ve (@)
i=1

1 LY
=2 (VI (&™) = Viry (@ H7) + = Z V fa(y (@971
=1 =
:l zn: (Vf . (gjkn) _ vf ) (mk’rrhi*l)) + L(an k+1)n L zn: kntj—1 zkn)
n 4 () 7(4) % na
Jj=1 =
1 & e .
==Y (= Vi) — (I = aViy) ')
j=1
1 kn _ketimy . Lk kn
+ Ga(z z )+ a(x Zhn).
(38)
Notice that
xk" — pI’OX ( kn)
= (" = aM) £ V() € 9r(atn),
o
relation (38)) can be rewritten as
VF(zF") + Vr(z*™)
Ly - wyy 4 Lk shtimy (40)
=S (= AV fa) (@) = (1= aV ) ()) 4 (57— 2040
j=1

Next we bound the two terms on the right hand side of (@0) by ||z(*+1)"™ — 2#7||2. For the second
term, it is easy to see

1 .. n k+1
| = (25 — 2 Dm)12 = n292a2||zlzﬂ(ﬂ) *Zfr(j) "2
J
@ 1 " (k+1)n) 2 (41)
< 7n292a2(23)(2 257, - 0" 1P)
j=1 j=1
(©) log(n) + .
< 2t — 2,

where inequality (d) is due to Cauchy’s inequality ( Y a;)* < Z L5 B; a? with 8; > 0,Vj € [n]
= :

and inequality (e) holds because Z 3 <log(n) + 1.

._.
.
I
A
S
<
Il
-

For the first term, we first note for2 < 57 <n

kn 1/ (k+1)n kn i .
kn4j—1 { no) ol ) 1S<j-1 (42)

(® 2y, > j -1
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By (29), we have

(I = aV fri)) (@7 = (I = aV fr ) (@)
=[|(I = aV fr(j)) 0 Prox,, (") — (I — aV fr(;)) o prox,,,.(z"")|?

<[ - P = \|72< wo’ )P
(=1 43)
1 on’e 16
HZ o~ )l < i A
n292 Fr(0) 92 n 7r(é) w(z
é:l (=1

IOg( )+1 (k+1)n kn |2
1B L s o2,

In the last inequality, we used the algebraic inequality that Z % < log(n) + 1. Therefore we have

I 2 (= aVfr) @7 = (I = aV fagy) (@) I
= 1D (I = aV ) @7 = (I = aV i) (@) |

=2

IN

1 log(n) +1 n n
Pa? (n— 1)2T||Z(k+l) — 2|2
log(n) +1, (k+1)n |2
<—F " ™|z,
B 1 L atn — pthr0my2 )
Combining (1) and (#4), we immediately obtain

min ||[VF(z*") + g||? < [|[VEF(z"") + Vr(zF™)||?

ged T(xk™)
<AL 3 (= aV ) @7 = (1 = 0T fug) ™) |2 + [ (57 = 26F 0 )
j=1
<o L ez OB R L)
= (aL) ankn _ z(k+1)n||fr
= (042L>2 9(1—9L)2(k+1) log(rgﬂ“zo_z*”i' 43)
O
D RR-Convex

D.1 Non-expansiveness Lemma for RR

While replacing order-specific norm with standard ¢, norm. the following lemma establishes that 7,
is non-expansive in expectation.

Lemma 3. Under Assumption 1, if step-size 0 < o < % and data is sampled with random reshuffling,
it holds that

Er | Trou — Trol? < Jlu— v (46)

It is worth noting that inequality (@6) holds for £2-norm rather than the order-specific norm due to the
randomness brought by random reshuffling.
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Proof. Given any vector h = [h(1), h(2),---, h(n)]T € R™ with positive elements where h;
denotes the i-th element of h, define ~A-norm as follows

EEDNIOIEAR 47)
for any z = col{z1, 29, - - , z,} € R"?. Following arguments in (30), it holds that
1 Tiw — Tovll; < llu— |3 (48)

where ' = h + Lh(i)1,, — h(i)e; and e; is the i-th unit vector. Define
1
M; =1+ —myel € R™*" (49)
n
where m; = 1,, — ne;, then we can summarize the above conclusion as follows.

Lemma 4. Given h 6 R"™ with positive elements and its corresponding h-norm, under Assumption|]]
if step-size 0 < o < 2, it holds that

[Tou = Tl < lu—vl3, VuveR™ (50)

Therefore, with LemmaEL we have that
1Tru = Tool? = | Tooy Trgne1y - Tryu — T n)TT(n o Trayvll3
<N Trg-1y - Tr)w — Trn—1) 7—7(1)””M¢<n>1
SN Trtn—2) - Try — Tr(n—2) TT(1)U||M,(TL,1)MT(H)1”

51
< (51)
< ”7;(1)“ - 7:'(1)1)”?\/17(2)“‘1\47@)11"
2
< flu — vHMT(l)mMT(n)ﬂn'
With the above relation, if we can prove
E M) Myyl, =1, (52)
then we can complete the proof by
E | T7u — 7—T'UHQ <Erflu— UH?VIT(UWMT(”)IL” = |lu— v||12EMT(1)~--MT(n)ILn = |lu— UHQ- (53)
To prove (52), we notice that elm; = 1,Vi # j which leads to
mT(jl)eZ(jl)mT(jQ)eZ(h)~~om7(jt)ef(jt) = mT(jl)eZ(jt), Vi1 < jo < -+ < js. This fact
further implies that
1 T 1 T
Moy Mgy = (I + —mzyer) - (1 + *mrm)@r(n))
T
=I+- Zmze +Z Z () €7 (51) " MG Ca ()
t=2j1< - <]f
1 T
STy med Y Y ( 2 )t
t=2 i+t—1<j
Jj—i+1 j—i—1
ey md sy (0 )nt ——
i<j t=2
1 L
=1+ - Zmze +Zm7()67(3) )J—z—l_ (54)
i<J
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n
It is easy to verify > m;el1,, = 0 and

i=1
Er moiyer)bn = Loy 2 M€ Ln
#J
R (55)
= n—l (Zml> €; meief 1, =0.
=1 j=1 i=1
We can prove (52) by combining (34) and (53). O

D.2 Proof of Theorem 2

Proof. In fact, with similar arguments of Appendix[C.2]and noting 7, z* = z* for any realization of
T, We can achieve

Lemma S. Under Assumption (I} if step-size 0 < a < % and the data is sampled with random

reshuffling, it holds for any k = 0,1, - - - that

EHz(k—&-l)n _ ZlmH2 <

0 0_ _*x|2

Based on Lemma (5), we are now able to prove Theorem 2} By arguments similar to Appendix [C.3]
IVr(zkn) = L(zkn — 2h) € 9 r(a*") such that

VE(z*™) + Vr(z"™)

R : 1 57
S (= aV o )@ = (L= aV fry ) (#) 4 (27— o) OP
T na = O
The second term on the right-hand-side of can be bounded as
1 skn s(k+1)n 1 - kn (k+1)n 2 1 kn (k+1)n 2
||%(Z —Z )H=mllzzj -z [ Sm”z -z = (58)
j=1
To bound the first term, it is noted that 2 < j < n,
kn 1, (k+1)n kn . )
zkn(—g)] 1 {Z?(e) + ?(Z‘rk.(f) - ZTK.(E))» 1<i<j—-1 (59)
ke ZT:(E), £>5—1.
By (29), we have

(I = aV fry ) @71 — (I = aV £, ) (")
:”(I - anTk(j)) © proxar(gkn+j_1) - (I - avfﬂc(j)) © pI‘OXar(Ekn)||2

. 1< i
[ A H;E ]
(=1 (60)

i—1 . j—1
1,3 k1 j—1 k+1
=gz | DT = AP < Yl —
(=1 =1

j—1
< 2 ||z(k+1)n _ zanQ.
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Therefore we have

n

|ﬁ%§:«1—avﬂmﬂ@”””)—U—avﬂmﬂm“»W
j=1
= I (= V)@ 7) — (1= aV fr ) (@) |2
j=2

1 n : n 1 i .,
=a 2 VI 1L el (U= @V )@ — U = 0¥ ) ) I

1 < 1 -1
S D VI 1Y 2 2
n2a? ; ; Vi—1 n?

<4 1 |
~9nb2q2

‘z(k-‘rl)’rb _ zan2~ (61)

[S[)

IN

In the last inequality, we use the algebraic inequality that > /j — 1 < fln Vrdr = %x% ’711 %n
j=2

Combining (38) and (61)), we immediately obtain

min ||VF(z") 4 g|? < |[VE(z*") + Vr(zb)||?
gedr(xkn)

2

<G A1 (5la0 D (= aVn) @97 = (1= a9 £y, ) 4) |

i skn s(k+1)n 2)
I (27— 2|

szn _ Z(k+1)n||2 +

2 72
5 > L szniz(k+1)nH2

|an _ z(k+1)n||2)

1
nf2a2 |

«
) ? L2 1 0 * (|2
L) a—ogErna FIn ©62)

E Proof of Theorem 3

Proof. Before proving Theorem [3] we establish the epoch operator S, and S are contractive in the
following sense:

Lemma 6. Under Assumption if step size 0 < o < —2—, it holds that

p+L?
20 L
_ 2 . 2
IS5 = Sevll2 < (1= S5 fu o2 (©3)
20auL
B I a2
E|Su— S _(1 HL)HU v (64)

Vu, v € R, where 6 € (0,1) is the damping parameter.
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Proof of Lemmal6] For -order cyclic sampling, without loss of generality, it suffices to show the

case of 7 = (1,2,...,n). To begin with, we first check the operator 7;. Suppose u, v € R"?,
[ Tiw — 7?v||hi
1 o
= Y (mody(j — i —1) + 1) fluy — vy
J#i
+||(I = aVf;)oprox,, (Au) — (I — aVf;) o prox,, (Av) |
(f) 1 L 2auL
< o2 (modn(G =i = 1)+ 1)y s+ (1= ) Au — Avf?
J#i
1 o 1 & 20
<= (mod,(j —i— 1)+ 1) [lu; — vl + =D u; — v;]|* = ——|| Au — Av|®
n j# ni w+ L
2auL
- ,Z mod, (j — i) + 1) [[u; — v;]|2 — “ 7l Au — Av|?
2oL
=l = vl — 7 A — v (65)
where h;-norm in the ﬁrst equality is defined as (28) with || - |7, = || - [, = || - [|? and inequality
(f) holds because

lz = aVfi(z) =y +aV fi(y)|?
= llz = ylI* = 2a(z —y, Vfi(z) = Vfi(y)) + *|Vfi(z) = Vfi(y)|

2auL 9 20 9 9
< _ _ _ ) _ .
< (- le =l = (g~ @?)IVA@ - V)
2a,uL 9 d d
< —
<(1- T )H y|?, VeeR%yeR (66)
where the last inequality holds when o < 2. Furthermore, the inequality (66) also implies that
[ Teul — [Tov)il|? = (1 — anz‘) ° PI"OXM(AU) — (I - aVf;) o prox,, (Av)||?
2cuL
<(1- )||A — Avl]?. (67)
A+

where [-]; denotes the i-th block coordinate.

Combining (63) and (67), we reach

2 2 . 77(04) - L -01.112

where n(a) = 20‘“L . With (68) and the following fact

H[Tnu]j — [Tyl = [T - - ToThwly = [T; - - ToTawls 1%, (69)
we have

[ Tou — Tool2 < | Toer -+ Thiw— Toa - - Thw|l2, | — (:;()a) [Truln = [Tzv]al?
Tz T T Tl = 20 3 (Tl ool
i=n—1
<.
_oll2 — La) - L 12
< = vl = 2y S e~ 7ol
ol - 2T T
1 —n(a)
n(a) 2
< u—'ufr—iTu Tzv|7 (70)
=l - T2 n
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where the last inequality holds because ||u — v||?> > ||u — v||2, Vu,v € R
With (70), we finally reach

2apL
T = Towlls < (1= 257 ) = ol (71)
In other words, the operator is a contraction with respect to the m-norm. Recall that S, = (1 — 0)I +
07, we have
I1Sxu = Szvll7 < (1= 0)llu — o7 +0l| Tru — Troll7
2auL
Yl = vl

<(1=0)fu—wv|2+6(1-

p+ L
29a,uL
= (1= el (72)
As to random reshuffling, we use a similar arguments while replacing || - ||2 by || - ||?. With similar
arguments to (68)), we reach that
Tru— Tooll} < o — vl — 2L n(o) [ Trals — [Tl 73
[Tiw = Tivll, < llw = vllagn O Tiul; = [Tiv]ill (73)

1 —n(a)

for any h € R? with positive elements, where h-norm follows ([@7) and M follows (@9). Furthermore,
it follows direct induction that (M (i41) -+ M(n)1,) (7(i)) = (1 + 2)"~=1 > 1, and we have

1Ty Ty = Trgy = Tr) 0l M, gy Mo 1
SNTr—ny - Tryw = Tri—1y - Try Ol M, o Moy M1

a .
ne) (M (is1y - Moy L) (T [ Triy - Trywleiy — [Trgy -+ Try Ve II?

~ 1-1n(a)
S”ﬁ(ifl) o T HU — T (i—1) T(l 'U”MT( HMrig1yMeyln
n(a) 2
_ "% L N [Ty e , 74
1= () Ty - Trywley = [Try - Try vl (74)

Therefore, with the fact that
[[Truley = [ToleoI? = Ty - T Tryuley = [Try - T Tryvle 12 (75)
it holds that
[Tu — Trol|?
=Ty Trys — Tony - Try 3
<||T; T — T T 2 _ @) Tul, — T 2
> /r(n—1) T(l)u T(n—1) T(l)v”MT(n)]ln 1— n(a) ||[ ‘f'u']n [ TU]T(”«)H

T2y Trye = Trna) - Tr)lar a1, 1

n

n(a) 2
- TSr(@@) — /YT 76
1—77(06).2 1[T-ulr) — [Trvle l (76)
i=n—1
<.
_nla)
§||u_v||?\4.r(1)“~MT(n)]ln 77(05 ZH TU 'l) - v}‘l’(l)”Q
n(a)
:||u_v||?\47.(1)MT(n)]ln 77( )”7:'1"’_7;1)”2'
Taking expectation on both sides and use the fact (32), we reach
E, |Tou— Tl < flu— o) - —22 5 T — T a7
1—n(a)
The left part to show contraction of S, in expectation is the same as (72). O
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Based on Lemma([6] we are able to prove Theorem[3] When samples are drawn via 7-order cyclic
sampling, recall that 2" = S;z(F~ D" and 2* = S, z*, we have

20ap LNk
kn * (|2 0 * (|2
2" —z <<1—7) z' — 255, 78
| Iz < L I I (78)
The corresponding inequality for random reshuffling is
20l Nk
E |25 — 2|2 < (1- j?}/) 12° — 2*||2. (79)

Notice that
|2 — 2*||* =||prox,, (Az"") — prox,, (Az")|]”

SHAan _AZ*H2

< log(m)FL )| 2kn _ 2%||2 for m-order cyclic sampling (80)
- Lllzkm — 2*||2 for random reshuffling.
Combining with and (79), we reach
20 L\ *
®) o — ot < (1= S5) © (81)
where
C— % |2*" — 2*||2  for 7-order cyclic sampling
Li|zkm — 2*||2 for random reshuffling.
O

Remark 5. One can taking expectation over cyclic order 7 in[I6]to obtain the convergence rate of
Prox-DFinito shuffled once before training begins

29a,uL)k
w+L

Elle*" — 2| < (1 -

where C = 7(n+1)(212%(n)+1) |20 — 2|2

F Optimal Cyclic Order

Proof. We sort all {||zY — 27||*}"_, and denote the index of the (-th largest term ||z) — z7||? as

i¢. The optimal cyclic order 7* can be represented by 7* = (iy,42, - ,in—1,1,). Indeed, due to
sorting inequality, it holds for any arbitrary fixed order 7 that |20 —2z*||2, = "), £||z;, — 25 |12 <
STy Ll =2t P = 120—272. O

G Adaptive importance reshuffling

kn

Proposition 6. Suppose z*™ converges to z* and {||z{ — z¥||* : 1 < i < n} are distinct, then there

exists ko such that

CL?
(k+1—ko)f(1—6)

min VE(z") +¢g|]? <
min,[VF@) +g]? <

where 6 € (0,1) and C = (Z)180EL 2ko _ o512,

kn k+1

Proof. Since zF™ converges to z*, we have w* ! converges to [|z° — z*||2. Let e =  min{|||2) —
2212 — |29 — zj||2| : 1 < i # j < n}, then there exists ko such that Vk > ko, it holds that

|wk (i) — ||2% — 2¢]|?| < € and hence the order of {w" (i) : 1 < i < n} are the same as 7* for all
k > ko. Further more by the same argument as Appendix we reach the conclusion. O
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Table 2: Step sizes suggested by best known analysis

Step size DFinito SVRG SAGA
2 1 2L 1 1
RR T v n 2 i clse TR ALL i [37]
Cyc. sampling LLW /& (18] ﬁm 23]

H Best known guaranteed step sizes of variance reduction methods under
without-replacement sampling

I Existence of highly heterogeneous instance

Proposition 7. Given sample size m, strong convexity i, smoothness parameter L (L > ), step size
« and initialization {29}7_,, there exist { fi}, such that f;(x) is p-strongly convex and L-smooth
with fixed-point z* satisfying ||z° — 2*||2. = (9( 20 — z*||2

Proof. Let fi(z) = 4[| Aixz — b;|?, we show that one can obtain a desired instance by letting A = y
and choosing proper A; € R¥*4 b, € R¥,

First we generate a positive number 3 = ¢2 € (0,1) and vectors {t; € R? : ||t;|| = /n}?,. Let
v=4<1 Z(z? — q*~'t;). Then we generate A; € R¥*4 such that uI < ATA; < LI,1<i<mn,

n
=1

which assures f; are p-strongly convex and L-smooth.

After that we solve AT 6 = 1 (20 — v — ¢"='t;), V1 < i < n. Note these {d;}I; exist as long as
we choose k > d. Therefore we have Z ATs; =3 L(29 — v — ¢"~'t;) = 0 by our definition of v.
i=1 i=1
Since V fi(x) = AT (A;z — b;), then by letting b; = A;v + §;, it holds that
1 n
= Z Vfi(z)
== Z AT (A — by)
n (82)
L
== ZAfAi(x —v) =~ > AT
i=1 i=1
_ 1 iATA»(x —v)
n - Lo
i=1
and hence we know VF(v) = 0, i.e., z* = v is a global minimizer.
We finally follow Remark I]to reach
zi = (I —aVfi)(az")
= v — aAT (A —b;)
= v+ aAls;
=2 — ¢ 't (83)

and hence ||z —271? = ¢?Y||t;]|? = nB*~". By direct computation, we can verify that ||z° —
27 = 020 = 27|, O
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J More experiments

DFinito vs SGD vs GD. In this experiment, we compare DFinito with full-bath gradient descent (GD)
and SGD under RR and cyclic sampling (which is analyzed in [22]). We consider the regularized
logistic regression task with MNIST dataset (see Sec.[5.I). In addition, we manipulate the regularized
term 3 ||z||? to achieve cost functions with different condition numbers. Each algorithm under RR is
averaged across 8 independent runs. We choose optimal constant step sizes for each algorithm using
the grid search. In Fig.[3] it is observed that SGD under without-replacement sampling works, but

MNIST: k=23 MNIST: k=147 MNIST: k=138.9
—e— GD 10° —e— GD 10-1 —e— GD
—e— RR-SGD ) —e— RR-SGD —e— RR-SGD
L -4- Cyc-SGD _ 10” -4- Cyc-SGD . N -4- Cyc-SGD
g .o —e— RR-DFinito [ —e— RR-DFinito 21073 \ —e— RR-DFinito
i} —4- . fr} S N frr 3\ - _DFi
v +- Cyc DFTJto o 4= Cyc. EJEE:O o - et +- Cyc. DFlmto\:
> 2 10~ >
E 1, 10 £ 105 N\
& & 10-¢ & ‘\‘
\
10-10 1077 )
\
AN
10712
20 30 40 50 10 20 30 40 50 0 50 100 150 200
#Gradients /n #Gradients /n #Gradients /n

Figure 3: Comparison between DFinito, SGD and GD over MNIST across different conditioning scenarios.
The relative error indicates (E)||Vz — x*[|?/||z° — 2*|2.

it will get trapped to a neighborhood around the solution and cannot converge exactly. In contrast,
DFinito will converge to the optimum. It is also observed that DFinito can outperform GD in all
three scenarios, and the superiority can be significant for certain condition numbers. While this
paper establishes that the DFinito under without-replacement sampling shares the same theoretical
gradient complexity as GD (see Table[T), the empirical results in Fig. [3]imply that DFinito under
without-replacement sampling may be endowed with a better (though unknown) theoretical gradient
complexity than GD. We will leave it as a future work.

Influence of various data heterogeneity on optimal cyclic sampling. According to Proposition 3]
the performance of DFinito with optimal cyclic sampling is highly influenced by the data heterogeneity.
In a highly data-heterogeneous scenario, the ratio p = O(1/n). In a data-homogeneous scenario,
however, it holds that p = O(1). In this experiment, we examine how DFinito with optimal cyclic
sampling converges with varying data heterogeneity. To this end, we construct an example in which
the data heterogeneity can be manipulated artificially and quantitatively. Consider a problem in
which each f;(z) = %(aTz)? and r(z) = 0. Moreover, we generate A = col{a]} € R"*4
according to the uniform Gaussian distribution. We choose n = 100 and d = 200 in the experiment,
generate py € R? with each element following distribution A(0, /n), and initialize 20 = py/+/c,
1 < i < cotherwise 2? = 0. Since #* = 0 and V f;(2*) = 0, we have z} = 0. It then holds that

129 — 2*]12 = 325, [122]1% = ||pol|? is unchanged across different ¢ € [n]. On the other hand, since

20 —2*)2. =35, ﬁw = O(£]lpol|?), we have p = O(c/n). Apparently, ratio p ranges from
O(1/n) to O(1) as c increases from 1 to n. For this reason, we can manipulate the data heterogeneity
by simply adjusting c. We also depict DFinito with random-reshuffling (8 runs’ average) as a baseline.
Figure []illustrates that the superiority of optimal cyclic sampling vanishes gradually as the data

heterogeneity decreases.

c=1 100 c=0.1n B c=0.5n
0
v <RR -<-RR N <-RR
102 Optimal Cyclic 102 Optimal Cyclic 102 Optimal Cyclic
-+-Adap: 1=0.5 ~+-Adap: 1=0.5 ~+-Adap: 1=0.5

Relative Error

-10 -10
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
#Gradients/n #Gradients/n #Gradients/n

Figure 4: Comparison between various sampling fashions of DFinito across different data-heterogeneous
scenarios. The relative error indicates (E)||VF(z)||?/||V F(x°)]|?.
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Comparison with empirically optimal step sizes. Complementary to Sec. we also run experi-
ments to compare variance reduction methods under uniform sampling (US) and random reshuffling
(RR) with empirically optimal step sizes by grid search, in which full gradient is computed once per
two epochs for SVRG. We run experiments for regularized logistic regression task with CIFAR-10
(k = 405), MNIST (x = 14.7) and COVTYPE (x = 5.5), where x = L/ is the condition number.
All algorithms are averaged through 8 independent runs. From Figure[3] it is observed that all three

100 CIFAR-10 100 MNIST 100 COVTYPE
- US-SVRG 4 US-SVRG - US-SVRG
—e— RR-SVRG 10-2 —e— RR-SVRG 102 ARz —e— RR-SVRG
= -4 US-SAGA -4 US-SAGA . ~A- US-SAGA
g —e— RR-SAGA g 10t —e— RR-SAGA g 104 —e— RR-SAGA
o g -4 US-DFinito o -4 US-DFinito o -4 US-DFinito
2 “.. |~ RR-DFinito R ° —e— RR-DFinito 2 100 “... |—e— RR-DFinito
o - & ®
& & &
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—10 S
.::_ 10 10-10 :
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Figure 5: Comparison of variance reduced methods under with/without-replacement sampling. The relative
error indicates (E) |z — z*||?/||z° — «*|°.

variance reduced algorithms achieve better performance under RR, and DFinito outperforms SAGA
and SVRG under both random reshuffling and uniform sampling. While this paper and all other
existing results listed in Table |I| (including [18]) establish that the variance reduced methods with
random reshuffling have worse theoretical gradient complexities than uniform-iid-sampling, the
empirical results in Fig. [5]imply that variance reduced methods with random reshuffling may be
endowed with a better (though unknown) theoretical gradient complexity than uniform-sampling. We
will leave it as a future work.

26



	Efficient Implementation of Prox-Finito
	Operator's Form
	Proof of Proposition 1
	Proof of Proposition 3

	Cyclic–Convex
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Theorem 1

	RR–Convex
	Non-expansiveness Lemma for RR
	Proof of Theorem 2

	Proof of Theorem 3
	Optimal Cyclic Order
	Adaptive importance reshuffling
	Best known guaranteed step sizes of variance reduction methods under without-replacement sampling
	Existence of highly heterogeneous instance
	More experiments

