
Appendix
A Source codes

Source codes for reproducing our experimental results are available at https://github.com/
alinlab/oreo.

B Details on Atari experiments

B.1 Experimental setup

Environments and datasets. We utilize DQN Replay dataset5 [1] for expert demonstrations on
27 Atari environments [5]. To encourage the size of the dataset to be consistent across multiple
environments, we use the number of expert demonstrations N 2 {20, 50}. We provide the size
of a dataset for each environment in Table 4. We process input images to grayscale images of
84 ⇥ 84 ⇥ 1, by utilizing Dopamine library6 [9]. Following de Haan et al. [12], we consider
confounded Atari environments, where images are augmented with previous actions (see Figure 4).
We provide source codes for loading images from the dataset, preprocessing images, and augmenting
numbers to the images in Section A. For experiments with selected environments in Figure 7, we
randomly chose 8 confounded Atari environments, i.e., BankHeist, Enduro, KungFuMaster, Pong,
PrivateEye, RoadRunner, Seaquest, and UpNDown, due to the high computational cost of considering
all environments.

Evaluation. (a) For all experimental results without environment interaction, we train a policy for
1000 epochs without early stopping based on validation accuracy (see Figure 6a for how early stopping
is not effective in our setup), and report the final performance of the trained policy. Specifically,
we average the scores over 100 episodes evaluated on confounded environments for each random
seed. (b) For all experimental results with inverse reinforcement learning methods that require
environment interaction (i.e., GAIL [20] and DRIL [8]), we evaluate a policy over 10 episodes every
1M environment step during the training.

Table 4: Dataset size of each Atari environment.
Environment N Data

Alien 50 53165
Amidar 20 57155
Assault 50 58868
Asterix 20 68126

BankHeist 50 58516
BattleZone 50 83061

Boxing 50 47170
Breakout 50 63799

ChopperCommand 50 35262

Environment N Data

CrazyClimber 20 83557
DemonAttack 20 47727

Enduro 20 169767
Freeway 20 41020
Frostbite 50 24043
Gopher 20 44011
Hero 50 68903

Jamesbond 20 33659
Kangaroo 20 45898

Environment N Data

Krull 50 65701
KungFuMaster 20 57235

MsPacman 50 64305
Pong 20 41402

PrivateEye 20 54020
Qbert 50 59379

RoadRunner 50 60546
Seaquest 20 37682

UpNDown 50 74348

B.2 Implementation details

Implementation details for OREO.

• VQ-VAE training. We use the publicly available implementation of VQ-VAE7 modified to make
it work with images of size 84⇥ 84⇥ 1. Specifically, The encoder consists of four convolutional
layers, three with stride 2 and kernel size 4 ⇥ 4 and one with stride 1 and kernel size 3 ⇥ 3,
followed by 2 residual 3⇥ 3 blocks (implemented as ReLU, 3⇥ 3 Conv, ReLU, 1⇥ 1 conv), all
having 256 hidden units. The decoder similarly has 2 residual 3 ⇥ 3 blocks, followed by four
transposed convolution layers, one with stride 1 and kernel size 3 ⇥ 3, and three with stride 2

5https://research.google/tools/datasets/dqn-replay
6https://github.com/google/dopamine
7https://github.com/zalandoresearch/pytorch-vq-vae

15

https://github.com/alinlab/oreo
https://github.com/alinlab/oreo
https://research.google/tools/datasets/dqn-replay
https://github.com/google/dopamine
https://github.com/zalandoresearch/pytorch-vq-vae

and kernel size 4⇥ 4. For training, we train a VQ-VAE model for 1000 epochs with a batch size
of 1024. We use Adam optimizer with the learning rate of 3e-4. As for the hyperparameters of
VQ-VAE, we use a codebook size of K = 512, and a commitment cost of � = 0.25, following
the original implementation.

• Behavioral cloning with OREO. For efficient implementation of OREO, we first compute
quantized discrete codes of all images in datasets with pre-trained VQ-VAE, instead of processing
every image through VQ-VAE encoder during the training. Then we utilize stored discrete codes
for obtaining random masks for training a policy. We find that generating multiple random masks
for each image and aggregating the loss computed with each mask marginally improves the
performance, by providing more diverse features to the policy. In our experiments, we generate 5
random masks during training. We train a policy for 1000 epochs with the batch size of 1024,
and use Adam optimizer with the learning rate of 3e-4.

Implementation details for regularization and causality-based methods.

• Behavioral cloning. We train a BC policy by optimizing the objective in (1) using states and
actions from expert demonstrations. Note that other regularization baselines are based on BC.

• Dropout. Dropout [50] is a regularization technique that drops units of a feature map from
a convolutional encoder. Specifically, for all units of a feature map, Dropout samples binary
random variables from a Bernoulli distribution with probability 1� p, and apply the randomly
sampled masks throughout training. We use nn.Dropout from PyTorch8 library with p = 0.5.

• DropBlock. DropBlock [15] is a regularization technique that drops units in a contiguous region
of a feature map, i.e., blocks, with the default hyperparameters of p = 0.3 and the block size of 3.
We use the publicly available implementation of DropBlock9 for our experiments. Following this
original implementation, we linearly increase p from 0 to the target value during training.

• Cutout. Cutout [13] randomly masks out a square patch from images. We randomly sampled
the size of the patch from 10⇥ 10 to 30⇥ 30, by using RandomErasing from Kornia10 library.

• RandomShift. RandomShift [55] is a regularization technique that shifts images by randomly
sampled pixels. Specifically, it pads each side of an image by 4 pixels with boundary pixels and
performs random crop of size 84⇥ 84. We implemented RandomShift by following the publicly
available implementation11 from the authors.

• CCIL. CCIL (named after Causal Confusion in Imitation Learning; [12]) is an interventional
causal discovery method that first (i) learns disentangled representations from �-VAE [19] and (ii)
infers the causal graph during environment interaction. As publicly available implementation12

only contains source code that works on the low-dimensional MountainCar environment, we
faithfully reproduce the method and report the results. Specifically, we employ CoordConv13 [27]
for both the encoder and decoder architectures of �-VAE. We find that prediction accuracy of a
policy trained using a fixed �-VAE does not improve over chance level accuracy, possibly because
a reconstruction task is not sufficient for learning representations that capture the information
required for predicting actions. Hence, we additionally introduce an action prediction task when
training a �-VAE, which we find crucial for improving the accuracy over chance level accuracy.

• CRLR. As CRLR requires inputs to be binary values, we develop and compare to the categorical
version of CRLR that works on top of VQ-VAE discrete codes (see Appendix H).

Implementation details for inverse reinforcement learning methods. For all inverse reinforce-
ment learning (IRL) methods, we use the publicly available implementation (https://github.
com/xkianteb/dril) for reporting the results, with additional modification to original source code
to train and evaluate a policy on confounded Atari environments.

8https://pytorch.org
9https://github.com/miguelvr/dropblock

10https://github.com/kornia/kornia
11https://github.com/denisyarats/drq
12https://github.com/pimdh/causal-confusion
13https://github.com/walsvid/CoordConv

16

https://github.com/xkianteb/dril
https://github.com/xkianteb/dril
https://pytorch.org
https://github.com/miguelvr/dropblock
https://github.com/kornia/kornia
https://github.com/denisyarats/drq
https://github.com/pimdh/causal-confusion
https://github.com/walsvid/CoordConv

• GAIL. GAIL [20] is an IRL method that learns a discriminator network that distinguishes expert
states from states visited by the current policy, and utilizes the negative output of the discriminator
as a reward signal for learning RL agents during environment interaction.

• DRIL. DRIL [8] is an IRL method that learns an ensemble of behavioral cloning policies and
utilizes the disagreement (i.e., variance) between the predictions of ensemble policies as a cost
signal (the negative of reward signal) for learning RL agents during environment interaction.

C Comparative evaluation on original Atari environments

Table 5 shows the performance of various methods which do not use environment interaction, on
original Atari environments. We observe that OREO significantly improves behavioral cloning, also
outperforming baseline methods. In particular, OREO achieves the mean HNS of 114.9%, while
the second-best method, i.e., DropBlock, achieves 99.0%. This demonstrates that our object-aware
regularization scheme is also effective for addressing the causal confusion that naturally occurs in the
dataset (see Figure 1).

Table 5: Performance of policies trained on various original Atari environments without environment
interaction. OREO achieves the best score on 14 out of 27 environments, and the best median and
mean human-normalized score (HNS) over all environments. The results for each environment
report the mean of returns averaged over eight runs. CCIL† denotes the results without environment
interaction.

Environment BC Dropout DropBlock Cutout RandomShift CCIL† CRLR OREO

Alien 986.5 1117.2 1094.8 1104.4 863.5 1050.4 100.0 1222.2
Amidar 90.8 81.6 113.5 125.0 78.2 78.6 12.0 130.5
Assault 816.8 901.1 829.9 694.1 848.7 755.5 0.0 905.2
Asterix 249.0 176.6 252.2 195.0 99.1 314.1 592.5 212.5
BankHeist 399.0 476.6 471.2 442.5 354.8 606.1 0.0 448.4
BattleZone 10933.8 11621.2 12067.5 10641.2 8748.8 11191.2 5615.0 11703.8
Boxing 21.8 25.7 32.1 21.2 35.8 34.2 -43.0 39.9
Breakout 6.4 2.9 6.0 3.1 4.4 2.1 0.0 5.4
ChopperCommand 1163.0 1162.0 1161.8 1183.9 1026.2 1027.2 1070.2 1282.9
CrazyClimber 54142.2 54965.4 55854.0 47456.4 60465.9 39015.2 885.5 69380.1
DemonAttack 238.8 359.3 225.6 217.8 294.8 194.6 22.7 0.0
Enduro 226.2 304.6 359.1 132.9 282.2 182.8 0.8 514.4
Freeway 32.3 32.6 32.6 32.8 33.0 33.1 21.4 32.9
Frostbite 153.6 149.2 165.7 135.2 133.2 96.7 78.1 152.7
Gopher 1874.4 2220.4 2040.5 1588.2 1456.2 1301.9 0.0 2903.9
Hero 15100.4 15994.4 17058.6 15971.8 14867.2 17487.6 0.0 16370.3
Jamesbond 447.6 492.3 481.9 418.9 452.1 460.4 0.0 527.9
Kangaroo 3162.8 2860.4 3638.6 3242.6 2202.1 2938.1 0.0 3602.9
Krull 4447.9 4764.7 4526.5 4270.6 4611.6 4247.1 0.0 4633.6
KungFuMaster 12900.6 14994.5 14819.0 9956.9 11698.0 12876.9 0.0 16955.5
MsPacman 1921.9 2022.6 2151.7 1949.7 1046.3 1160.6 70.0 2263.8
Pong 3.7 10.0 11.6 7.8 0.8 -19.8 -21.0 12.5
PrivateEye 3035.4 3396.3 3057.6 3092.2 3578.9 1016.4 -1000.0 3162.6
Qbert 5925.4 6363.1 5904.3 6174.8 4100.1 5056.3 125.0 5763.4
RoadRunner 18010.1 20137.8 22522.5 12698.9 15615.4 18985.2 1528.6 27303.9
Seaquest 527.5 644.4 622.3 376.6 948.0 402.4 169.8 921.0
UpNDown 3782.1 3504.3 3886.4 3675.9 3500.4 3062.3 20.0 4186.8
Median HNS 46.7% 53.3% 47.7% 42.9% 47.3% 36.8% -1.5% 53.6%
Mean HNS 82.0% 91.5% 99.0% 75.0% 91.7% 85.4% -45.4% 114.9%

17

D CCIL with environment interaction

In this section, we compare CCIL with environment interaction, which employs targeted intervention
during environment interaction. Specifically, CCIL infers a causal mask over disentangled latent
variables from �-VAE, by utilizing the returns from environments. As shown in Figure 9, the perfor-
mance of CCIL improves during environment interaction of 100 episodes, but OREO still exhibits
superior performance to CCIL on most confounded Atari environments. This again demonstrates the
difficulty of learning disentangled representations from high-dimensional images [28].

Figure 9: We compare OREO to CCIL with environment interaction, on 6 confounded Atari environ-
ments. CCIL† denotes the results without environment interaction. The solid line and shaded regions
represent the mean and standard deviation, respectively, across eight runs. OREO still outperforms
CCIL in most cases, although environment interaction slightly improves the performance of CCIL†.

E Applying OREO to inverse reinforcement learning

We investigate the possibility of applying OREO to other IL methods. While there could be various
approaches to utilize the proposed approach for utilizing our regularization scheme for IL, we consider
a straightforward application of OREO to a state-of-the-art IL method, i.e., DRIL [8]. Specifically,
we apply OREO to the components of DRIL which involves behavioral cloning, i.e., initializing a BC
policy and computing rewards with an ensemble of BC policies. In Figure 10, we observe that DRIL
+ OREO improves the sample-efficiency of DRIL since OREO enables us to learn high-quality BC
policies that also result in high-quality reward signals which boosts sample-efficiency. We remark
that these results show that IRL methods can also suffer from the causal confusion problem, and a
proper regularization scheme can improve the performance by addressing the confusion problem.

(a) CrazyClimber (b) Pong

Figure 10: We apply OREO to the inverse reinforcement learning method (i.e., DRIL [8]) and
observe that OREO improves the sample-efficiency of DRIL on confounded CrazyClimber and
Pong environments. The solid line and shaded regions represent the mean and standard deviation,
respectively, across four runs.

18

F OREO with a sequence of observations

A natural extension of OREO is to apply our regularization scheme to address the causal confusion
problem from a sequence of observations [4, 54]. By extracting semantic objects with the same
discrete code from consecutive images and dropping the codes from all images, OREO can regularize
the policy consistently over multiple images. In this section, we investigate the effectiveness of OREO
on such setup by providing additional experimental results on confounded environments where inputs
are four stacked observations. Specifically, we mask the features that correspond to the same discrete
codes from each observation, and utilize the aggregated masked features for policy learning. In Table
6, we observe that OREO significantly improves the performance of BC, which shows that OREO
can also be effective on this setup by regularizing the policy consistently over multiple frames.

Table 6: Performance of policies trained with four stacked observations on 8 confounded Atari
environments. The results for each environment report the mean and standard deviation of returns
over four runs.

Environment BC Dropout DropBlock OREO

BankHeist 448.6± 17.8 477.6± 36.4 466.2± 17.5 538.8± 13.9
Enduro 167.8± 31.7 253.1± 21.1 172.6± 18.4 426.0± 18.1
KungFuMaster 13523.5± 831.7 15041.0± 1011.8 14859.2± 1242.6 18375.2± 1055.3
Pong 4.8± 0.9 8.2± 0.2 9.5± 0.4 12.2± 0.4
PrivateEye 2349.4± 253.1 2173.8± 168.3 2611.4± 476.8 2580.7± 484.2
RoadRunner 15189.5± 1829.0 16574.0± 2799.3 16901.0± 1790.1 18726.2± 876.5
Seaquest 353.4± 11.8 351.4± 28.6 315.3± 17.7 393.2± 19.7
UpNDown 4075.5± 165.6 4306.6± 216.9 4448.9± 450.5 5193.7± 513.5

Median HNS 56.6% 65.1% 59.3% 76.7%
Mean HNS 62.3% 71.0% 68.8% 87.4%

G Comparison with DropBottleneck

In this section, we compare OREO with DropBottleneck (DB; [22]), which is a dropout-based method
that drops features from input variable X redundant for predicting target variable Y . While this
method was successfully applied to remove the dynamics-irrelevant information such as noises by
setting input variable X and target variable Y to two consecutive states, we remark that removing
task-irrelevant information cannot be an effective recipe for addressing the causal confusion problem.
This is because the causal confusion comes from the difficulty of identifying the true cause of expert
actions when both confounders and the causes are strongly correlated with expert actions, i.e., they
are both task-relevant information. To support this, we provide experimental results where we jointly
optimize DB objective when training a BC policy, i.e., setting the target variable Y to expert actions
(denoted as DB (Y=action)) in Table 7. In addition, following the original setup in [22], we also
provide experimental results where input and target variables are consecutive two states (denoted as
DB (Y=state)) in Table 8. We observe that DB (Y=action) shows comparable performance to OREO
in some environments (e.g., CrazyClimber), but OREO still significantly outperforms the suggested
baseline in most environments (e.g., Alien, KungFuMaster, and Pong). DB (Y=state) performs no
better than BC in most environments except for CrazyClimber. These results show that removing
dynamics-irrelevant information might not be enough for addressing the causal confusion problem.

Table 7: The results for each environment report the mean and standard deviation of returns over four
(DB with expert action) or eight (others) runs. As for the scale of compression term � in DB, we
choose a better hyperparameter from an array of [0.001, 0.0001].

Environments BC Dropout DropBlock DB (Y=action) OREO
Alien 954.1± 83.9 1003.8± 53.6 926.4± 70.5 994.5± 85.6 1056.2 ± 61.6
CrazyClimber 45372.9± 5508.9 39501.6± 6499.3 38345.6± 7190.8 60996.8 ± 7943.5 55523.4± 7722.2
KungFuMaster 15074.8± 275.5 14452.1± 865.4 15753.0± 1265.2 15139.5± 867.4 18065.6 ± 1411.5
Pong 3.2± 0.7 10.2± 1.3 11.5± 1.3 8.2± 0.4 14.2 ± 0.4

19

Table 8: The results for each environment report the mean and standard deviation of returns over four
(DB with consecutive state) or eight (others) runs. As for the scale of compression term � in DB, we
choose a better hyperparameter from an array of [0.001, 0.0001].

Environments BC Dropout DropBlock DB (Y=state) OREO
Alien 954.1± 83.9 1003.8± 53.6 926.4± 70.5 896.4± 10.7 1056.2 ± 61.6
CrazyClimber 45372.9± 5508.9 39501.6± 6499.3 38345.6± 7190.8 60111.5 ± 5597.8 55523.4± 7722.2
KungFuMaster 15074.8± 275.5 14452.1± 865.4 15753.0± 1265.2 15014.3± 1056.2 18065.6 ± 1411.5
Pong 3.2± 0.7 10.2± 1.3 11.5± 1.3 3.5± 2.1 14.2 ± 0.4

H A categorical version of CRLR

In this section, we provide a categorical version of Causally Regularized Logistic Regression (CRLR
[47]) method. We first formulate the problem setup and briefly introduce some background on CRLR.
Given the training data D =

�
x(i), y(i)

 N

i=1
, where x 2 Rd represents the features and y represents

labels, the causal classification task targets to jointly identify the causal contribution � 2 Rd for all
features and learn a classifier f(·) based on �. As we have no prior knowledge of the causal structure,
a reasonable way to adapt causal inference into the classification task is to regard each feature xj

as a treated variable, and all the remaining features x�j = x \ xj as confounding variables, i.e.,
confounders. To safely estimate the causal contribution of a given feature xj , one has to remove the
confounding bias induced by the different distributions of confounders x�j between the treated and
control groups. CRLR finds optimal sample weights to balance the distribution of the treated and
control group for any treated variable, under an assumption of binary features. To this end, CRLR
learns those sample weights by minimizing a causal regularizer as follows:

min
{w(i)}

X

j

������

P
i02Ij,0

w(i0)x(i0)
�jP

i02Ij,0
w(i0)

�
P

i12Ij,1
w(i1)x(i1)

�jP
i12Ij,1

w(i1)

������

2

2

,

where w(i) is the sample weight for x(i), and Ij,c denotes
n
i | x(i)

j = c
o

. The original version
of CRLR is built upon the binary features, however, it can be naturally extended to a categor-
ical version, by computing the confounder balancing term for any pair of categorical variables.
We convert given categorical features x = [x1, · · · , xd] to one-hot encoded binary features x,
i.e., x = [x1, · · · ,xd] where xi is an one-hot encoded version of each feature xi. We denote
x�j = [x1, · · · ,xj�1, 0,xj+1, · · · ,xd] as confounding variables of these one-hot features. Then, a
categorical version of the causal regularizer is computed as follows:

min
{w(i)}

X

j

X

c1<c2
2{c2[K] | |Ij,c|>0}

������

P
i12Ij,c1

w(i1)x(i1)
�jP

i12Ij,c1
w(i1)

�
P

i22Ij,c2
w(i2)x(i2)

�jP
i22Ij,c2

w(i2)

������

2

2

,

where c1, c2 are categorical variables from the set [K] := {1, · · · ,K}. To apply CRLR on high-
dimensional images, we adapt this categorical version on top of VQ-VAE discrete codes. The imple-
mentation details of the VQ-VAE are same as OREO (see Appendix B.2). Given a state-action pair�
s(i), a(i)

�
, a VQ-VAE encoder g represents the state into code indices q(i) := (q(i, 1), · · · , q(i, L))

(see Section 3.1). The one-hot encoded version of the code indices q are denoted as q, similarly to
above. Then, a policy ⇡ and sample weights

�
w(i)

are jointly trained by minimizing a weighted

behavioral cloning objective and the proposed regularizer:

LCRLR =
X

i

�w(i) log ⇡
⇣
a(i)|q(i)

⌘

+ �
X

j

X

c1<c2
2{c2[K] | |Ij,c|>0}

������

P
i12Ij,c1

w(i1)q(i1)
�jP

i12Ij,c1
w(i1)

�
P

i22Ij,c2
w(i2)q(i2)

�jP
i22Ij,c2

w(i2)

������

2

2

,

where � is a loss weight for the regularizer. We update ⇡ and
�
w(i)

iteratively until the objective

converges, using the gradient descent optimizer.

20

I
Ex

te
nd

ed
ex

pe
ri

m
en

ta
lr

es
ul

ts
on

co
nf

ou
nd

ed
A

ta
ri

en
vi

ro
nm

en
ts

Ta
bl

e
9:

Pe
rf

or
m

an
ce

of
po

lic
ie

s
tra

in
ed

on
va

rio
us

co
nf

ou
nd

ed
A

ta
ri

en
vi

ro
nm

en
ts

w
ith

ou
te

nv
iro

nm
en

ti
nt

er
ac

tio
n.

O
R

EO
ac

hi
ev

es
th

e
be

st
sc

or
e

on
15

ou
to

f2
7

en
vi

ro
nm

en
ts

,a
nd

th
e

be
st

m
ed

ia
n

an
d

m
ea

n
hu

m
an

-n
or

m
al

iz
ed

sc
or

e
(H

N
S)

ov
er

al
le

nv
iro

nm
en

ts
.T

he
re

su
lts

fo
re

ac
h

en
vi

ro
nm

en
tr

ep
or

tt
he

m
ea

n
an

d
st

an
da

rd
de

vi
at

io
n

of
re

tu
rn

s
ov

er
ei

gh
tr

un
s.

C
C

IL
†

de
no

te
s

th
e

re
su

lts
w

ith
ou

te
nv

iro
nm

en
ti

nt
er

ac
tio

n.
En

vi
ro

nm
en

t
B

C
D

ro
po

ut
D

ro
pB

lo
ck

C
ut

ou
t

R
an

do
m

Sh
ift

C
C

IL
†

C
R

LR
O

R
EO

A
lie

n
95

4.
1±

83
.9

10
03

.8
±

53
.6

92
6.

4±
70

.5
97

3.
3±

50
.1

80
6.

5±
78

.1
82

0.
0±

51
.3

82
.5
±

30
.3

10
56

.2
±

61
.6

A
m

id
ar

95
.8
±

8.
9

89
.4
±

16
.4

11
0.

1±
20

.9
11

8.
7±

14
.0

98
.0
±

14
.5

74
.9
±

6.
0

12
.0
±

0.
0

10
5.

7±
7.

2
A

ss
au

lt
79

3.
8±

32
.6

82
0.

4±
20

.8
81

5.
0±

20
.3

68
7.

6±
10

.3
82

8.
9±

17
.9

68
3.

3±
20

.1
0.

0±
0.

0
84

0.
9±

27
.8

A
st

er
ix

29
2.

2±
16

8.
4

31
3.

8±
11

5.
3

34
5.

4±
20

7.
7

21
2.

4±
83

.2
13

5.
5±

85
.4

64
3.

2±
8.

8
65

0.
0±

0.
0

18
0.

8±
65

.2
B

an
kH

ei
st

44
2.

1±
20

.7
48

5.
7±

19
.7

50
8.

4±
14

.2
48

6.
1±

14
.2

36
7.

2±
17

.7
65

3.
5±

31
.3

0.
0±

0.
0

49
3.

9±
17

.6
B

at
tle

Zo
ne

11
92

1.
2±

80
2.

4
12

45
7.

5±
42

7.
7

12
02

5.
0±

14
25

.9
11

10
7.

5±
80

9.
2

91
80

.0
±

59
2.

3
63

70
.0
±

12
27

.5
14

68
.8
±

15
12

.6
12

70
0.

0±
11

62
.5

B
ox

in
g

18
.8
±

3.
7

20
.3
±

2.
9

32
.2
±

6.
4

20
.5
±

3.
8

38
.3
±

5.
2

34
.8
±

3.
4

-4
3.

0±
0.

0
36

.4
±

5.
0

B
re

ak
ou

t
5.

7±
0.

5
5.

4±
0.

8
4.

8±
1.

9
1.

0±
1.

7
2.

0±
1.

9
0.

5±
0.

3
0.

0±
0.

0
4.

2±
1.

6
C

ho
pp

er
C

om
m

an
d

87
4.

2±
82

.7
92

1.
4±

90
.1

91
9.

4±
87

.1
10

16
.1
±

16
9.

0
93

6.
4±

12
5.

6
76

0.
6±

58
.7

10
77

.2
±

9.
1

97
7.

4±
15

0.
2

C
ra

zy
C

lim
be

r
45

37
2.

9±
55

08
.9

39
50

1.
6±

64
99

.3
38

34
5.

6±
71

90
.8

44
52

3.
2±

84
65

.5
41

92
4.

0±
72

37
.5

22
61

6.
8±

32
82

.4
11

2.
5±

92
.7

55
52

3.
4±

77
22

.2
D

em
on

A
tta

ck
15

7.
2±

12
.5

18
0.

5±
21

.5
16

7.
8±

12
.2

17
3.

1±
11

.3
24

1.
8±

32
.7

17
1.

3±
17

.3
0.

0±
0.

0
22

4.
5±

45
.4

En
du

ro
24

1.
4±

28
.4

25
0.

4±
38

.0
34

1.
8±

38
.8

11
9.

6±
6.

2
31

6.
4±

34
.9

14
3.

1±
6.

4
3.

9±
9.

0
52

2.
8±

29
.1

Fr
ee

w
ay

32
.3
±

0.
1

32
.4
±

0.
2

32
.7
±

0.
1

32
.5
±

0.
2

33
.0
±

0.
1

33
.1
±

0.
1

21
.4
±

0.
1

32
.7
±

0.
2

Fr
os

tb
ite

11
6.

3±
21

.1
12

4.
5±

26
.7

12
8.

2±
35

.6
13

9.
4±

19
.5

12
1.

6±
16

.4
53

.3
±

30
.7

80
.0
±

0.
0

12
9.

9±
12

.8
G

op
he

r
17

13
.9
±

18
2.

5
18

19
.1
±

95
.6

18
18

.2
±

15
0.

3
14

81
.0
±

11
8.

3
19

95
.0
±

18
9.

1
14

04
.5
±

15
4.

8
0.

0±
0.

0
25

15
.0
±

15
7.

7
H

er
o

11
92

3.
1±

59
9.

9
14

10
9.

7±
89

4.
1

14
71

1.
4±

11
19

.9
14

89
6.

6±
89

0.
9

12
81

6.
0±

98
8.

2
65

67
.8
±

94
3.

1
34

6.
2±

91
6.

1
15

21
9.

8±
87

3.
8

Ja
m

es
bo

nd
41

9.
0±

31
.8

45
1.

0±
14

.0
47

3.
8±

44
.5

38
1.

8±
22

.4
42

8.
4±

13
.8

38
7.

2±
12

.3
0.

0±
0.

0
50

2.
8±

39
.3

K
an

ga
ro

o
27

81
.5
±

33
8.

9
29

12
.9
±

26
6.

5
32

17
.1
±

19
1.

7
28

24
.0
±

20
0.

8
19

23
.9
±

26
8.

5
16

70
.5
±

15
3.

4
12

2.
8±

21
5.

4
37

00
.2
±

12
6.

0
K

ru
ll

36
34

.3
±

70
.6

38
92

.1
±

61
.1

38
32

.1
±

28
1.

0
36

56
.4
±

10
0.

6
37

88
.7
±

21
6.

3
30

90
.8
±

11
2.

0
0.

1±
0.

1
40

51
.6
±

21
1.

4
K

un
gF

uM
as

te
r

15
07

4.
8±

27
5.

5
14

45
2.

1±
86

5.
4

15
75

3.
0±

12
65

.2
11

40
5.

6±
72

9.
2

13
38

9.
9±

62
4.

3
13

39
4.

9±
12

61
.9

0.
0±

0.
0

18
06

5.
6±

14
11

.5
M

sP
ac

m
an

14
32

.9
±

27
4.

0
17

33
.1
±

27
3.

2
14

46
.4
±

28
8.

1
17

11
.0
±

18
4.

6
12

23
.5
±

25
9.

2
10

84
.2
±

19
9.

1
10

5.
3±

60
.5

18
98

.4
±

22
9.

8
Po

ng
3.

2±
0.

7
10

.2
±

1.
3

11
.5
±

1.
3

6.
8±

1.
2

-0
.1
±

2.
2

-2
.7
±

1.
1

-2
1.

0±
0.

0
14

.2
±

0.
4

Pr
iv

at
eE

ye
26

81
.8
±

27
0.

2
25

99
.1
±

39
3.

0
27

20
.6
±

42
7.

4
26

70
.6
±

35
9.

1
39

69
.2
±

45
2.

1
30

5.
3±

24
7.

5
-1

00
0.

0±
0.

0
31

24
.9
±

34
9.

6
Q

be
rt

54
38

.4
±

85
5.

3
64

69
.0
±

76
0.

3
61

40
.3
±

61
6.

5
57

48
.6
±

65
5.

5
39

21
.4
±

54
0.

4
51

38
.0
±

43
7.

9
12

5.
0±

0.
0

69
66

.4
±

44
3.

5
R

oa
dR

un
ne

r
18

38
1.

5±
15

19
.9

21
47

0.
9±

22
74

.4
22

26
5.

4±
31

68
.3

12
41

7.
1±

13
07

.8
16

21
0.

0±
11

93
.1

11
83

4.
1±

19
36

.3
10

22
.9
±

26
2.

0
24

64
4.

2±
22

35
.1

Se
aq

ue
st

45
4.

4±
53

.5
47

1.
3±

43
.4

48
6.

8±
40

.6
33

0.
1±

37
.9

10
16

.8
±

10
0.

5
27

1.
2±

11
.5

17
2.

5±
19

.8
75

3.
1±

63
.6

U
pN

D
ow

n
42

21
.1
±

21
4.

5
41

47
.1
±

42
6.

2
47

89
.2
±

20
1.

0
41

59
.6
±

58
5.

5
38

80
.2
±

31
6.

7
26

31
.1
±

22
4.

0
20

.0
±

0.
0

45
77

.9
±

30
7.

6

M
ed

ia
n

H
N

S
44

.1
%

47
.4

%
49

.8
%

42
.0

%
47

.6
%

36
.2

%
-1

.5
%

51
.2

%
M

ea
n

H
N

S
73

.2
%

79
.0

%
91

.7
%

69
.5

%
88

.1
%

71
.7

%
-4

5.
9%

10
5.

6%

21

J
Ex

te
nd

ed
ex

pe
ri

m
en

ta
lr

es
ul

ts
on

or
ig

in
al

A
ta

ri
en

vi
ro

nm
en

ts

Ta
bl

e
10

:P
er

fo
rm

an
ce

of
po

lic
ie

s
tra

in
ed

on
va

rio
us

or
ig

in
al

A
ta

ri
en

vi
ro

nm
en

ts
w

ith
ou

te
nv

iro
nm

en
ti

nt
er

ac
tio

n.
O

R
EO

ac
hi

ev
es

th
e

be
st

sc
or

e
on

14
ou

to
f2

7
en

vi
ro

nm
en

ts
,a

nd
th

e
be

st
m

ed
ia

n
an

d
m

ea
n

hu
m

an
-n

or
m

al
iz

ed
sc

or
e

(H
N

S)
ov

er
al

le
nv

iro
nm

en
ts

.T
he

re
su

lts
fo

re
ac

h
en

vi
ro

nm
en

tr
ep

or
tt

he
m

ea
n

an
d

st
an

da
rd

de
vi

at
io

n
of

re
tu

rn
s

ov
er

ei
gh

tr
un

s.
C

C
IL

†
de

no
te

s
th

e
re

su
lts

w
ith

ou
te

nv
iro

nm
en

ti
nt

er
ac

tio
n.

En
vi

ro
nm

en
t

B
C

D
ro

po
ut

D
ro

pB
lo

ck
C

ut
ou

t
R

an
do

m
Sh

ift
C

C
IL

†
C

R
LR

O
R

EO

A
lie

n
98

6.
5±

54
.4

11
17

.2
±

58
.8

10
94

.8
±

73
.7

11
04

.4
±

13
9.

5
86

3.
5±

68
.0

10
50

.4
±

62
.4

10
0.

0±
0.

0
12

22
.2
±

95
.4

A
m

id
ar

90
.8
±

7.
7

81
.6
±

8.
2

11
3.

5±
12

.9
12

5.
0±

7.
7

78
.2
±

9.
2

78
.6
±

3.
1

12
.0
±

0.
0

13
0.

5±
16

.8
A

ss
au

lt
81

6.
8±

25
.0

90
1.

1±
22

.6
82

9.
9±

23
.7

69
4.

1±
9.

5
84

8.
7±

17
.0

75
5.

5±
9.

9
0.

0±
0.

0
90

5.
2±

24
.2

A
st

er
ix

24
9.

0±
14

2.
5

17
6.

6±
91

.4
25

2.
2±

13
9.

9
19

5.
0±

28
.5

99
.1
±

56
.6

31
4.

1±
7.

9
59

2.
5±

14
8.

4
21

2.
5±

10
8.

5
B

an
kH

ei
st

39
9.

0±
22

.9
47

6.
6±

24
.6

47
1.

2±
17

.8
44

2.
5±

20
.6

35
4.

8±
18

.1
60

6.
1±

31
.7

0.
0±

0.
0

44
8.

4±
13

.4
B

at
tle

Zo
ne

10
93

3.
8±

64
2.

0
11

62
1.

2±
71

4.
0

12
06

7.
5±

12
69

.0
10

64
1.

2±
32

8.
5

87
48

.8
±

74
5.

8
11

19
1.

2±
70

9.
5

56
15

.0
±

44
82

.6
11

70
3.

8±
86

2.
6

B
ox

in
g

21
.8
±

4.
6

25
.7
±

4.
1

32
.1
±

5.
0

21
.2
±

3.
4

35
.8
±

4.
3

34
.2
±

2.
9

-4
3.

0±
0.

0
39

.9
±

2.
2

B
re

ak
ou

t
6.

4±
0.

5
2.

9±
2.

5
6.

0±
0.

9
3.

1±
2.

4
4.

4±
2.

4
2.

1±
2.

0
0.

0±
0.

0
5.

4±
1.

0
C

ho
pp

er
C

om
m

an
d

11
63

.0
±

12
9.

7
11

62
.0
±

51
.9

11
61

.8
±

64
.2

11
83

.9
±

56
.4

10
26

.2
±

83
.0

10
27

.2
±

78
.2

10
70

.2
±

10
.9

12
82

.9
±

81
.1

C
ra

zy
C

lim
be

r
54

14
2.

2±
10

14
3.

4
54

96
5.

4±
63

05
.6

55
85

4.
0±

70
56

.0
47

45
6.

4±
81

29
.0

60
46

5.
9±

90
50

.9
39

01
5.

2±
22

66
.3

88
5.

5±
86

4.
8

69
38

0.
1±

89
07

.6
D

em
on

A
tta

ck
23

8.
8±

21
.6

35
9.

3±
47

.3
22

5.
6±

26
.1

21
7.

8±
20

.1
29

4.
8±

42
.3

19
4.

6±
9.

3
22

.7
±

41
.1

0.
0±

0.
0

En
du

ro
22

6.
2±

24
.6

30
4.

6±
31

.4
35

9.
1±

38
.0

13
2.

9±
4.

7
28

2.
2±

27
.4

18
2.

8±
6.

2
0.

8±
1.

2
51

4.
4±

38
.1

Fr
ee

w
ay

32
.3
±

0.
3

32
.6
±

0.
2

32
.6
±

0.
3

32
.8
±

0.
2

33
.0
±

0.
3

33
.1
±

0.
2

21
.4
±

0.
1

32
.9
±

0.
1

Fr
os

tb
ite

15
3.

6±
20

.6
14

9.
2±

15
.1

16
5.

7±
19

.7
13

5.
2±

20
.1

13
3.

2±
33

.1
96

.7
±

13
.3

78
.1
±

3.
4

15
2.

7±
23

.8
G

op
he

r
18

74
.4
±

18
5.

8
22

20
.4
±

15
6.

2
20

40
.5
±

14
0.

2
15

88
.2
±

10
6.

1
14

56
.2
±

11
4.

2
13

01
.9
±

21
9.

5
0.

0±
0.

0
29

03
.9
±

14
6.

6
H

er
o

15
10

0.
4±

77
4.

6
15

99
4.

4±
73

7.
5

17
05

8.
6±

41
9.

4
15

97
1.

8±
23

9.
4

14
86

7.
2±

90
4.

5
17

48
7.

6±
81

3.
5

0.
0±

0.
0

16
37

0.
3±

50
1.

4
Ja

m
es

bo
nd

44
7.

6±
33

.2
49

2.
3±

30
.4

48
1.

9±
24

.6
41

8.
9±

15
.2

45
2.

1±
15

.6
46

0.
4±

12
.5

0.
0±

0.
0

52
7.

9±
20

.7
K

an
ga

ro
o

31
62

.8
±

20
9.

3
28

60
.4
±

17
5.

1
36

38
.6
±

31
2.

6
32

42
.6
±

12
4.

2
22

02
.1
±

31
3.

5
29

38
.1
±

39
1.

6
0.

0±
0.

0
36

02
.9
±

18
9.

6
K

ru
ll

44
47

.9
±

91
.5

47
64

.7
±

11
2.

3
45

26
.5
±

11
3.

7
42

70
.6
±

13
0.

6
46

11
.6
±

14
4.

9
42

47
.1
±

14
0.

0
0.

0±
0.

0
46

33
.6
±

11
4.

9
K

un
gF

uM
as

te
r

12
90

0.
6±

88
4.

3
14

99
4.

5±
11

00
.4

14
81

9.
0±

80
6.

0
99

56
.9
±

80
3.

3
11

69
8.

0±
13

30
.0

12
87

6.
9±

91
2.

2
0.

0±
0.

0
16

95
5.

5±
11

44
.2

M
sP

ac
m

an
19

21
.9
±

17
4.

1
20

22
.6
±

20
2.

8
21

51
.7
±

17
8.

5
19

49
.7
±

17
6.

1
10

46
.3
±

22
0.

0
11

60
.6
±

14
4.

1
70

.0
±

0.
0

22
63

.8
±

16
5.

3
Po

ng
3.

7±
1.

6
10

.0
±

0.
8

11
.6
±

0.
6

7.
8±

1.
2

0.
8±

2.
1

-1
9.

8±
0.

4
-2

1.
0±

0.
0

12
.5
±

0.
7

Pr
iv

at
eE

ye
30

35
.4
±

48
2.

8
33

96
.3
±

20
5.

9
30

57
.6
±

44
7.

0
30

92
.2
±

30
5.

9
35

78
.9
±

22
2.

9
10

16
.4
±

28
6.

8
-1

00
0.

0±
0.

0
31

62
.6
±

28
2.

3
Q

be
rt

59
25

.4
±

69
3.

9
63

63
.1
±

53
9.

9
59

04
.3
±

91
1.

5
61

74
.8
±

58
5.

8
41

00
.1
±

67
2.

1
50

56
.3
±

45
6.

9
12

5.
0±

0.
0

57
63

.4
±

49
3.

4
R

oa
dR

un
ne

r
18

01
0.

1±
73

1.
1

20
13

7.
8±

15
90

.2
22

52
2.

5±
17

49
.1

12
69

8.
9±

12
72

.2
15

61
5.

4±
71

2.
1

18
98

5.
2±

21
05

.5
15

28
.6
±

49
6.

5
27

30
3.

9±
23

26
.7

Se
aq

ue
st

52
7.

5±
61

.2
64

4.
4±

10
4.

2
62

2.
3±

79
.3

37
6.

6±
35

.0
94

8.
0±

95
.5

40
2.

4±
29

.3
16

9.
8±

54
.6

92
1.

0±
64

.9
U

pN
D

ow
n

37
82

.1
±

24
5.

7
35

04
.3
±

19
7.

1
38

86
.4
±

25
7.

1
36

75
.9
±

25
5.

0
35

00
.4
±

24
6.

8
30

62
.3
±

11
0.

3
20

.0
±

0.
0

41
86

.8
±

31
2.

0

M
ed

ia
n

H
N

S
46

.7
%

53
.3

%
47

.7
%

42
.9

%
47

.3
%

36
.8

%
-1

.5
%

53
.6

%
M

ea
n

H
N

S
82

.0
%

91
.5

%
99

.0
%

75
.0

%
91

.7
%

85
.4

%
-4

5.
4%

11
4.

9%

22

	Introduction
	Related work
	Method
	Preliminaries
	OREO: Object-aware regularization for behavioral cloning

	Experiments
	Discussion
	Source codes
	Details on Atari experiments
	Experimental setup
	Implementation details

	Comparative evaluation on original Atari environments
	CCIL with environment interaction
	Applying OREO to inverse reinforcement learning
	OREO with a sequence of observations
	Comparison with DropBottleneck
	A categorical version of CRLR
	Extended experimental results on confounded Atari environments
	Extended experimental results on original Atari environments

