
A Supplementary Material

This supplemental material introduces implementation details, additional comparison experiments,
complete proofs and checklist of our proposed model.

A.1 Implementation Details

Network Architecture: Inspired by [33], we utilize a pre-trained ResNet-50 [20] as the feature
extractor for object recognition tasks (i.e., Office-31 [22], Office-Caltech [18] and Office-Home
[46]). The penultimate fully-connected layer is replaced with a bottleneck layer and a classifier with
weight normalization. Batch normalization is employed to normalize the outputs of bottleneck layer.
For digit recognition task (i.e., Digits-Five [41]), we utilize a variant of the LeNet [27] as the feature
extractor and classifier.

Training Settings: Similar to [33], the pre-trained source models are optimized with smooth labels
rather than the one-hot encoded labels. It improves the robustness of the trained model by encourag-
ing semantic features to be clustered tightly. For the digit recognition task, the samples from each
domain are resized to 32×32, and we convert the gray samples to RGB format. The overall frame-
work is trained under an end-to-end manner via back-propagation. The stochastic gradient descent
with momentum value as 0.9 is employed as the network optimizer. The initial learning rates for
feature extractor and bottleneck layer are respectively set as 10−3 and 10−2, while the parameters
of classifier are frozen. It is exponentially decayed as the training process. We empirically set the
batch size as 64, and set hyper-parameters κ1 and κ2 as 0.7 and 10−2. For multi-source-free domain
adaptation task, the maximum number of training epoches is set to 15, where the pseudo label gen-
eration process occurs at the start of every epoch. All comparison experiments are conducted using
Titan XP GPUs with 12 GB memory. For a fair comparison, our proposed model and comparison
methods share the same random seed to run the experiments.

Table 4: Comparisons between our model and other competing methods on DomainNet [41] dataset,
where R denotes the rest of five domains except for the single target domain.

Methods Source Data R→ Cl R→ In R→ Pa R→ Qu R→ Re R→ Sk Avg.
Source only [27] 3 47.6 13.0 38.1 13.3 51.9 33.7 32.9

MDAN [60] 3 52.4 21.3 46.9 8.6 54.9 46.5 38.4
DCTN [55] 3 48.6 23.5 48.8 7.2 53.5 47.3 38.2
M3SDA [41] 3 58.6 26.0 52.3 6.3 62.7 49.5 42.6
MDDA [62] 3 59.4 23.8 53.2 12.5 61.8 48.6 43.2

LtC-MSDA [47] 3 63.1 28.7 56.1 16.3 66.1 53.8 47.4
Source model only 3 49.3 14.2 39.4 12.6 53.0 35.1 33.9

BAIT [57] 7 57.5 22.8 54.1 14.7 64.6 49.2 43.8
PrDA [25] 7 57.2 23.6 55.1 16.4 65.5 47.3 44.2
SHOT [33] 7 58.6 25.2 55.3 15.3 70.5 52.4 46.2
MA [30] 7 56.8 24.3 53.5 15.7 66.3 48.1 44.1

DECISION [1] 7 61.5 21.6 54.6 18.9 67.5 51.0 45.9
Ours-w/oEnt 7 60.9 18.7 52.6 18.6 67.7 49.4 44.7
Ours-w/oDiv 7 61.5 19.2 53.1 17.6 68.4 50.6 45.1
Ours-w/oCls 7 60.4 18.3 52.8 16.9 67.3 50.3 44.3
Ours-w/oCrc 7 62.8 21.1 53.5 18.4 70.8 51.2 46.3

Ours 7 63.6 20.7 54.3 19.3 71.2 51.6 46.8

A.2 Experiments on DomainNet Dataset

DomainNet [41] is by far the largest and most challenging multi-source domain adaptation dataset.
It is composed of around 0.6 million samples and six different domains including Quickdraw (Qu),
Clipart (Cl), Painting (Pa), Infograph (In), Sketch (Sk) and Real (Re). Each domain consists of the
shared 345 different categories of common objects. There is large distribution discrepancy between
any two different domains.

Table 4 reports the comparison experiments and ablation studies of our proposed model on Domain-
Net [41] dataset. From the introduced performance in Table 4, we could notice that: 1) Our proposed
model performs better than prior state-of-the-art comparison methods, when there is no direct access
to source data. The source-specific transferable perception strategy effectively quantifies the contri-
butions of each source domain to facilitate the target adaptation performance. 2) The performance of
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Table 5: Qualitative analysis about confident anchor group on several benchmark datasets.
Avg. Office-31 [22] Office-Caltech [18] Office-Home [46] Digits-Five [41]

Ours-w/oCp 90.5 96.9 75.1 93.7
Ours-w/oCd 90.3 97.2 75.3 93.3

Ours 91.6 98.4 76.2 94.6

our model degrades 0.5%∼2.5% mean accuracy after removing one of designed components. The
ablation studies also illustrate that all components in our proposed CAiDA model play an essential
role in narrowing distribution discrepancy across domains for multi-source-free domain adaptation
task. 3) The confident-anchor-induced pseudo label generator could mine confident pseudo labels
for target data by incorporating with the source-specific transferable perception. It can be effectively
illustrated via the degradation performance of Ours-w/oCls and the comparison performance with
some representative multi-source domain adaptation methods [41, 47, 55, 60, 62].

A.3 Qualitative Analysis about Confident Anchor Group

This subsection investigates the effectiveness of our proposed confident anchor group to promote
pseudo label generation process, as shown in Table 5. We denote our proposed model without using
Cp and Cd as Ours-w/oCp and Ours-w/oCd, respectively. When compared with Ours, the perfor-
mances of Ours-w/oCp and Ours-w/oCd degrade about 0.9%∼1.5%. Such significant performance
degradation validates the effectiveness of our proposed CAiDA model to eliminate the noisy pseudo
label generation by performing the intersection operation between Cp and Cd.

A.4 Proof for Theorem 1.

Step 1. According to the condition of Assumption 3 and τ > 1− B/K, we have that for τ -anchor
point x,

max
i∈[n]

max
k∈[K]

hi
k(x) > 1−B/K ≥ 1− min

i∈[n]
min
l∈[K]

aill(x)/K.

Step 2. We assume that hj
r(x) attains the largest value of hi

k(x) for any i ∈ [n], k ∈ [K]. Then

hj
r(x) > 1− min

l∈[K]
ajll(x)/K,

which implies that for k ∈ [K] and k ̸= r,

hj
k(x) ≤ 1− hj

r(x) < min
l∈[K]

ajll(x)/K ≤ ajkk(x)/K.

Step 3. First, we note that

PY |X(k|x) ≥ 1

K
=⇒ hj

k(x) ≥
ajkk(x)

K
.

Hence, if we assume the Bayesian label is true label, then for k ∈ [K] and k ̸= r,

hj
k(x) <

ajkk(x)

K
=⇒ x has label r.

Combining Step 2 with Step 3, we complete the proof.
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A.5 Proof for Theorem 2.

Step 1. We claim that if dTV(PXY , QXY ) < σ, then dTV(PX , QX) < σ.

Given any g : X → R with |g| ≤ 1. We set f(x, y) = g(x), for any (x, y) ∈ X × Y , then it is easy
to check that

|
∫

fdPXY −
∫

fdQXY | = |
∫

gdPX −
∫

gdQX |.

Hence, dTV(PX , QX) ≤ dTV(PXY , QXY ) < σ.

Step 2. We claim that if dTV(P
t
XY , P

j
XY ) < σ, then∫

∥Φ(y1)−Φ(y2)∥ℓ1dP t
Y |X(y1|x)dP j

Y |X(y2|x)dP t
X(x) < σ.

First, given any g : X × Y → R with |g| ≤ 1, then

|
∫

gdP t
XY −

∫
gdP j

XY | = |
∫

gdP t
Y |XdP t

X −
∫

gdP j
Y |XdP j

X |

≥ |
∫

gdP t
Y |XdP t

X −
∫

gdP j
Y |XdP t

X |

− |
∫

gdP j
Y |XdP t

X −
∫

gdP j
Y |XdP j

X |

≥ |
∫

gdP t
Y |XdP t

X −
∫

gdP j
Y |XdP t

X | − σ.

Now we set g(x, y) = sgn
(
P t
Y |X(y|x)− P j

Y |X(y|x)
)
, then

σ + |
∫

gdP t
XY −

∫
gdP j

XY | ≥
∫

d|P t
Y |X − P j

Y |X |dP
t
X

≥ 2

∫
∥Φ(y1)−Φ(y2)∥ℓ1dP t

Y |X(y1|x)dP j
Y |X(y2|x)dP t

X(x).

Above inequality has used P t
Y |X = 1 or 0. Hence,∫

∥Φ(y1)−Φ(y2)∥ℓ1dP t
Y |X(y1|x)dP j

Y |X(y2|x)dP t
X(x) < σ.

Step 3. We claim that that if dTV(P
t
XY , P

j
XY ) < σ, then∫ ∣∣∥Φ(y1)− hj(x)∥ℓ1 − ∥Φ(y2)− hj(x)∥ℓ1

∣∣dP t
Y |X(y1|x)dP j

Y |X(y2|x)dP t
X(x) < σ.

That is because∫ ∣∣∥Φ(y1)− hj(x)∥ℓ1 − ∥Φ(y2)− hj(x)∥ℓ1
∣∣dP t

Y |X(y1|x)dP j
Y |X(y2|x)dP t

X(x)

≤
∫
∥Φ(y1)−Φ(y2)∥ℓ1dP t

Y |X(y1|x)dP j
Y |X(y2|x)dP t

X(x) < σ.

Step 4. We claim that if dTV(P
t
XY , P

j
XY ) < σ, then∫

∥Φ(y)− hj(x)∥ℓ1dP t
Y |X(y|x)dP t

X(x) < 2σ + ϵ.

That is because∫
∥Φ(y)− hj(x)∥ℓ1dP t

Y |X(y|x)dP t
X(x)

≤
∫ ∣∣∥Φ(y1)− hj(x)∥ℓ1 − ∥Φ(y2)− hj(x)∥ℓ1

∣∣dP t
Y |X(y1|x)dP j

Y |X(y2|x)dP t
X(x)

+

∫
∥Φ(y2)− hj(x)∥ℓ1dP j

Y |X(y2|x)d|P t
X(x)− P j

X(x)|

+

∫
∥Φ(y2)− hj(x)∥ℓ1dP j

Y |X(y2|x)dP j
X(x) < 2σ + ϵ.
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Step 5. According to the finite classes PAC theory, we know if dTV(P
t
XY , P

j
XY ) < σ, then with

probability at least 1− δ > 0,

1

m

m∑
i=1

∥f(xi)− hj(xi)∥ℓ1 < 2σ + ϵ+ 2
√
log(2n/δ)/2m,

where f is the true label function of P t
XY .

Step 6. We still assume that dTV(P
t
XY , P

j
XY ) < σ. If at least (1 − η)m samples, such that

∥hj(x)− f(x)∥ℓ1 > t1 > 0, then

(1− η)t1 < 2σ + ϵ+ 2

√
log(2n/δ)

2m
.

If we assume

(1− η)t1 ≥ 2σ + ϵ+ 2

√
log(2n/δ)

2m
.

Then, we know at least ηm samples such that ∥hj(x) − f(x)∥ℓ1 ≤ t1, which implies that there
exists c ∈ [K] such that

hj
c(x)− max

k∈[K]−{c}
hj
k(x) ≥ τ,

if we set τ = 1− t1.

Hence, assume that dTV(P
t
XY , P

j
XY ) < σ, if (1 − η)(1 − τ) ≥ 2σ + ϵ + 2

√
log(2n/δ)

2m , with the
probability at least 1− δ, we have at least ηm samples are the t-anchor points.

Step 7. With probability at least 1 − (1 − P(N σ
P t

XY
))n, there exists j ∈ [n] such that

dTV(P
t
XY , P

j
XY ) < σ.

Step 8. Combining Steps 6 and 7, we complete the proof.
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A.6 Proof for Theorem 3

We denote the distribution generated by all τ -anchor points as P τ
X = P t

X|X∈Aτ
, where the set Aτ

consists of all τ -anchor points over space X .

Step 1. If assume that m = +∞, then according to Theorem 2, we have: with the probability at
least 1− (1−P(N σ

P t
XY

))n, if (1− η′)(1− τ) ≥ 2σ + ϵ, then

P (Aτ ) ≥ η′,

which implies that if we set (1 − η′)(1 − τ) = 2σ + ϵ, then with the probability at least 1 − (1 −
P(N σ

P t
XY

))n,

P (Aτ ) ≥ 1− 2σ + ϵ

1− τ
.

Step 2. We consider
dTV(P

t
X , P τ

X)

Note that
dTV(P

t
X , P τ

X) = sup
A
|P t

X(A)− P τ
X(A)|,

where A is any measurable set.

Then, with the probability at least 1− (1−P(N σ
P t

XY
))n, we have

dTV(P
t
X , P τ

X) = sup
A
|P t

X(A)− P τ
X(A)|

= sup
A
|P t

X(A)− P t
X(A ∩Aτ )/P

t
X(Aτ )|

≤ P t
X(Ac

τ )/P
t
X(Aτ ) ≤

2σ + ϵ

1− τ − 2σ − ϵ
.,

Step 3. It is easy to check that∣∣Lt(h)−
∫

ℓ(h(x),Φ(y))dP t
Y |X(y|x)dP τ

X(x)
∣∣ ≤MdTV(P

t
X , P τ

X).

Step 4. Note that H has finite Natarajan dimension (we set the dimension is d). By Natarajan
dimension theory, we know that with the probability at least 1− δ:

∣∣L̂τ
s (h)−

∫
ℓ(h(x),Φ(y))dP t

Y |X(y|x)dP τ
X(x)

∣∣ ≤ 2M

√
8d log m̃+ 16d log(K + 1) + 2 log(2/δ)

m̃
,

where m̃ = |Aτ ∩ T |.
Step 5. Combining Steps 3 and 4, we have that with the probability at least 1− δ:

∣∣L̂τ
s (h)− Lt(h)

∣∣ ≤ 2M

√
8d log m̃+ 16d log(K + 1) + 2 log(2/δ)

m̃
+MdTV(P

t
X , P τ

X).

Step 6. Combining Steps 5 and 2, we have that with the probability at least 1−δ−(1−P(N σ
P t

XY
))n:

∣∣L̂τ
s (h)− Lt(h)

∣∣ ≤ 2M

√
8d log m̃+ 16d log(K + 1) + 2 log(2/δ)

m̃
+M

2σ + ϵ

1− τ − 2σ − ϵ
.

Step 7. According to the results of Step 6 and Theorem 2, we know that for any b ∈ (0, 1), there
exist a constant C(b,K) such that with the probability at least 1− 2δ − 2(1−P(N σ

P t
XY

))n:

∣∣L̂τ
s (h)− Lt(h)

∣∣ ≤MC(b,K)

√
log(2/δ)

η1−bm1−b
+M

2σ + ϵ

1− τ − 2σ − ϵ
.
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Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See the limitations in Section

4. To make sure our problem is solvable from the mathematical perspective, some
mild assumptions are necessary. Though we have some assumptions for our theory,
those assumptions are commonly used in other important fields, such as meta learning,
domain generalization and noisy learning. In addition, as we have mentioned, our
assumptions are much weaker than previous existing works.

(c) Did you discuss any potential negative societal impacts of your work? [N/A] One of
the aims of our problem is to address the privacy preservation issues. Our work is
positive for society. We do not think our work has negative societal impacts.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Section

4.
(b) Did you include complete proofs of all theoretical results? [Yes] See the supplemen-

tary material.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main ex-
perimental results (either in the supplemental material or as a URL)? [Yes] We have
introduced detailed instructions to reproduce the main experimental results in our pa-
per and supplemental material, and will release the code after this paper has been
accepted.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Section 5 and the supplementary material A.1.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] See the supplementary material A.1.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See the supplementary material.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] See Section 6.
(b) Did you mention the license of the assets? [Yes] See Section 6.
(c) Did you include any new assets either in supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data

you’re using/curating? [Yes] See Section 6.
(e) Did you discuss whether the data you are using/curating contains personally identifi-

able information or offensive content? [Yes] See Section 6.
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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