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Abstract

Learning in a multi-target environment without prior knowledge about the targets
requires a large amount of samples and makes generalization difficult. To solve
this problem, it is important to be able to discriminate targets through semantic
understanding. In this paper, we propose goal-aware cross-entropy (GACE) loss,
that can be utilized in a self-supervised way using auto-labeled goal states alongside
reinforcement learning. Based on the loss, we then devise goal-discriminative
attention networks (GDAN) which utilize the goal-relevant information to focus on
the given instruction. We evaluate the proposed methods on visual navigation and
robot arm manipulation tasks with multi-target environments and show that GDAN
outperforms the state-of-the-art methods in terms of task success ratio, sample
efficiency, and generalization. Additionally, qualitative analyses demonstrate that
our proposed method can help the agent become aware of and focus on the given
instruction clearly, promoting goal-directed behavior.

1 Introduction

Reinforcement learning (RL) has been expanding to various fields including robotics, to solve
increasingly complex problems. For instance, RL has been gradually mastering skills such as robot
arm/hand manipulation on an object [2, 48, 36, 22] and navigation to a target destination [18, 39].
However, to benefit humans like the R2-D2 robot in the Star Wars, RL must extend to realistic settings
that require interaction with multiple objects or destinations, which is still challenging for RL.

For this reason, it is important for multi-target tasks to be considered. We use the term multi-target
tasks to refer to tasks that require the agent to interact with variable goals. In a multi-target task,
targets are possible goal candidates, which may be objects or key entities that play a decisive role in
determining the success or failure of the task execution. The goals may be selected among the targets
by the current multi-target task, specified with a cue or an instruction such as “Bring me a {spoon,
cup or specific object}” or “Go to the {kitchen, livingroom or specific destination}”. The states in
which the agent reaches the goal are called goal states.

Reinforcement learning allows learning multi-target or instruction-based tasks in an end-to-end
manner. Latest reinforcement learning studies on these tasks mainly focus on prior knowledge about
targets [27, 30, 8]. Other studies focus on learning representation on the environment [46] or about
the targets only implicitly [44]. These methods lead to insufficient understanding of the goal, and
sample-inefficiency and generalization problems arise.

For this matter, we propose a Goal-Aware Cross-Entropy (GACE) loss and Goal-Discriminative
Attention Networks (GDAN)2 for multi-target tasks in reinforcement learning. These methods, unlike
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(a) Architecture from Goal-Aware Cross-Entropy and GDAN (b) Attention in ActorCritic

Figure 1: Overview of the proposed architecture. (a) A goal-aware visual representation learning
method by LGACE from goal-aware cross-entropy loss. The loss updates the feature extractor and the
goal-discriminator. (b) In GDAN, the ActorCritic utilizes the information from the goal-discriminator
as the query for goal-directed actions. See the details in Section 3.3 and 3.4.

previous studies without prior knowledge, allow semantic understanding of goals including their
appearances and other characteristics. The agent automatically labels and collects goal states data
through trial-and-error in a self-supervised manner. Based on these self-collected data, we use GACE
loss as an auxiliary loss to train a goal-discriminator that learns goal representations. Lastly, the
GDAN extracts the information from the goal-discriminator as a goal-relevant query, with which an
attention is performed to infer goal-directed actions.

We additionally propose visual navigation and robot arm manipulation tasks as benchmarks for
multi-target task experiments. These tasks involve targets which are the multiple types of objects
randomly placed within the environments. In the benchmarks, we make these tasks visually complex
using randomized background textures, allowing us to evaluate generalization.

In summary, the contributions of this paper are as follows:

• We propose a Goal-Aware Cross-Entropy loss for learning auto-labeled goal states in a self-
supervised manner, solving instruction-based multi-target tasks in reinforcement learning.

• We additionally propose Goal-Discriminative Attention Networks that use the goal-relevant
query from the goal-discriminator to focus exclusively on important goal-related information.

• Our method achieves significantly better performances in terms of the success ratio, sample-
efficiency, and generalization on visual navigation and robot arm manipulation multi-target
tasks. In particular, compared with the baseline methods, our method excels in Sample
Efficiency Improvement metric by 17 times in visual navigation task and by 4.8 times in
manipulation task.

• We present two instruction-based benchmarks for goal-based multi-target environments, to
interact with multiple targets for realistic settings. These benchmarks are made publicly
available, along with the implementation of our proposed method.

2 Related work

Multi-target tasks in reinforcement learning There has been a sparsity of studies that aim to
solve multi-target tasks with reinforcement learning. Wu et al. [44] proposes instruction-based
indoor environments, as well as attention networks for multi-target learning to respond to the given
instruction. Deisenroth and Fox [11] uses a model-based policy search method for multiple targets,
instead of learning goal-relevant information. The aforementioned methods are for learning dynamics
model or learning targets indirectly for multiple target tasks. In our method, on the other hand, the
policy directly learns to distinguish goals without the dynamics model.
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The terms targets and goals have been used in diverse manners in the existing literature. There
are subgoal generation methods that generate intermediate goals such as imagined goal [31, 14] or
random goals [34] to help agents solve the tasks. Multi-goal RL [47, 35, 13, 10] aims to deal with
multiple tasks, learning to reach different goal states for each task. Scene-driven visual navigation
tasks [49, 12, 30] specify the goal by an image. However, these tasks require the agent only to
search for visually similar locations or objects, rather than gaining semantic understanding of goals
and promoting generalization. Instruction-based tasks [1, 40] focus on learning to follow detailed
instructions. These tasks have a different purpose from our tasks, where we focus on having
appropriate interactions with multiple targets depending on the instruction.

Representation learning in reinforcement learning To improve performance in RL, several recent
works have used a variety of representation learning methods. Among these methods, many make
use of auxiliary tasks taught via unsupervised learning techniques such as VAE [24, 19] for learning
dynamics [16, 45, 38] and contrastive learning method [7] for learning representations [26] of a
given environment. Nair et al. [32] uses goal states, specified as the last states of the trajectories,
to learn the difference between future state and goal state for redistributing model error in model-
based reinforcement learning. The aforementioned methods are for learning representations of the
environment rather than for learning those of key states for solving the task. In contrast, our method
directly learns goal-relevant state representations.

Jaderberg et al. [21] proposes various auxiliary tasks for representation learning in RL. One such
method is reward prediction, which learns the environment by predicting the reward of the future state
from three classes: {positive, 0, negative}. This method focuses on myopic reward prediction, and
not on ultimately learning the goal state to solve the task. Consequently, it is not a suitable method to
apply to multi-target environments, where the goal can be selected among a diverse range of objects.

Attention methods in reinforcement learning The attention method was initially introduced for
natural language processing [3] but is now being actively studied in various fields such as computer
vision [43]. There are also attention-based methods for reinforcement learning which use inputs from
different parts of the state [4, 9]. Other methods include the use of encoding information of sequential
frames up to the last step [29], as well as the application of self-attention [6]. Unlike these methods,
our approach explicitly extracts and focuses solely on goal-related information for solving a task.

3 Method

3.1 Preliminary

Reinforcement learning (RL) from Sutton and Barto [41] aims to maximize cumulative rewards by
trial-and-error in a Markov Decision Process (MDP). An MDP is defined by a tuple (S,A,R,P, γ),
where S is the set of states, A is the set of actions, R : S × A → R is the reward function,
P : S × A × S → R is the transition probability distribution, and γ ∈ (0,1] is the discount factor.
At each time step t, the agent observes state st ∈ S, selects an action at ∈ A according to its
policy π : S → A, and receives a reward rt and next state st+1. In finite-horizon MDPs, return
Rt = ΣT−t

k=0γ
krt+k is accumulated discounted rewards, where T is the maximum episode length.

State value function V (s) = E[Rt|st = s] is the expected return from state s.

Instruction-based multi-target reinforcement learning Universal value function approximators
[37] estimate state value function as V (s, x), for jointly learning the task from embedded state s and
goal information x. This is relevant to the notions of multi-target RL that we define as below.

Multi-target environments contain N targets, or goal candidates T = {z1, z2, ..., zN}. These
environments provide an instruction Iz that specifies which target the agent must interact with, or the
goal z ∈ T . The instruction is given randomly every episode, in the form such as “Get the Bonus” or
“Reach the Green Box” as in our benchmark tasks, in which cases the goals are Bonus and Green Box
respectively. Hence, the state value function in such task is V (s, Iz) = E[Rt|s̄t = (s, z)], where s̄t is
state conditioned on the goal z. The policy π is also conditioned on the instruction Iz as π(at|st, Iz)
where at is action at time t given state st and Iz .
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3.2 Auto-labeled goal states for self-supervised learning

Prior to describing the main method in Sec. 3.3 and 3.4, this section explains the automatic collection
of goal data for self-supervised learning. Suppose that the instruction Iz specifies the target z
as the goal and the episode ends when the goal is reached at time step t′. We refer to the state
st′ as a goal state, which we assume is highly correlated with the reward or the rewarding state.
Throughout the training, the reached goal label z and the corresponding goal state st′ are automatically
collected as a tuple (st′ , one_hot(z)), called storage data. Rather than being manually provided
the goal information, the agent actively gathers the data needed to learn the goals, relying only
on the instruction Iz given by the environment. This allows the agent to learn in an end-to-end,
self-supervised manner. The states for the failed episodes are also stored as a negative case with low
probability ϵN . We clarify that the storage data does not serve as the prior during the learning and is
instead used for training alongside the multi-target reinforcement learning task.

3.3 Goal-discriminator by goal-aware cross-entropy

Our proposed method adds an auxiliary task to the main reinforcement learning task as shown in
Figure 1a. A general reinforcement learning model consists of a feature extractor σ(·), which converts
state st to an encoding et, and an ActorCritic f(·) that outputs a policy π and value V :

et = σ(st) (1)
π(at|st, I), V (st, I) = f(et, I) (2)

where I is the instruction. The details of the ActorCritic f(·) and the resulting loss LRL depend on
the specific reinforcement learning algorithm that is chosen. In our visual navigation experiments, we
use asynchronous advantage actor-critic (A3C) [28] as the main algorithm, where the loss LRL is
defined as the following

Lp = ∇ log π(at|st, I)(Rt − V (st, I)) + β∇H(π(at|st, I)) (3)

Lv = (Rt − V (st, I))
2 (4)

LRL := LA3C = Lp + 0.5 · Lv (5)

where Lp and Lv respectively denote policy and value loss, Rt denotes the sum of decayed rewards
from time steps t to T , and H and β denote the entropy term and its coefficient respectively. See
Appendix D for algorithm details.

The vanilla base algorithm is inefficient and indirect at gaining an understanding of goals. Suppose
that we have a set of goal states Sz ⊂ S corresponding to each goal z. Intuitively, given an instruction
Iz that specifies z, the agent must learn the value function V (s, I) that discriminates the goals, such
that V (szgoal, I

z) > V (sjgoal, I
z) for szgoal ∈ Sz and sjgoal ∈ Sj , ∀z ̸= j.

To achieve this effect, we propose Goal-Aware Cross-Entropy (GACE) loss as our contribution, which
trains the goal-discriminator that facilitates semantic understanding of goals alongside the policy in
Figure 1a. The inference process is as follows. First, the storage data collected in Sec. 3.2 are sampled
as a batch of sgoal,i’s (with i as data index within the batch) and fed into the feature extractor σ(·)
for state encoding in Eq. 6. Next, the encoded input data esgoal,i

is fed into the goal-discriminator
d(·), a multi-layer perceptron (MLP), in Eq. 7. This yields a prediction ggoal,i, a vector that contains
probability distribution over possible goals that sgoal,i belongs to.

esgoal,i
= σ(sgoal,i) (6)

ggoal,i = d(esgoal,i
) (7)

From the output ggoal,i, we calculate the Goal-Aware Cross-Entropy loss LGACE as Eq. 8, where
M is the batch size, and zi is the automatic label corresponding to state sgoal,i.

LGACE = −
M−1∑
i=0

one_hot(zi) · log(ggoal,i) (8)

We complete the training procedure by optimizing the overall loss Ltotal as the weighted sum of
the two losses in Eq. 9. We focus on improving the policy for performing the main task and assign
weight η to LGACE for performing goal-aware representation learning for the feature extractor σ(·).
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We note that the goal-discriminator d(·) is updated according to LGACE only during training, not
during inference, excluding the ActorCritic.

Ltotal = LRL + ηLGACE (9)

The explained procedure forms a visual representation learning method, where the GACE loss makes
the goal-discriminator become goal-aware without external supervision. Such goal-awareness is
advantageous for sample-efficiency in multi-target environments, as well as generalization, as it
makes the agent robust in a noisy environment. Such effects are demonstrated in our quantitative
results and qualitative analyses.

3.4 Goal-discriminative attention networks

The goal-discriminator discussed so far can influence the policy inference. However, in order to
effectively utilize the discriminator to enhance the performance and efficiency of the agent, we propose
Goal-Discriminative Attention Networks (GDAN). Overall, the goal-aware attention described in
Figure 1b involves a goal-relevant query qzt from within the goal-discriminator d(·), and the key kt
and value vt from encoded state in the ActorCritic f(·).
During the inference, the state encoding vector et is passed through the first linear layer of the goal-
discriminator, which yields the query vector qzt that implicitly represents the goal-relevant information.
Meanwhile, the vector et is inferenced through a gated-attention [44] with instruction I for grounding.
The gated-attention vector is passed through LSTM (Long Short-Term Memory) [20] and splits in
half into key kt and value vt. Suppose the vectors qzt , kt, and vt are dq-, dk-, and dv-dimensional,
respectively. The query and key are linearly projected to dv-dimensional space using learnable
parameters Wq of dimensions dv × dq and Wk of dimensions dv × dk, respectively. The activation
function ϕ, which is tanh in our case, is applied to the resulting vectors to yield a goal-aware attention
vector uz

t in Eq. 10. The attention vector uz
t contains the goal-relevant information in st. Lastly,

Hadamard product is performed between uz
t and vt in Eq. 11, yielding the attention-dependent state

representation vector ht used for calculating the policy and value. The vector ht is concatenated with
gated-attention vector from a state encoding vector et in ActorCritic f(·).

uz
t = ϕ(Wqq

z
t +Wkkt) (10)

ht = vt ⊙ uz
t (11)

We underscore two points about the proposed networks. First, while the goal-discriminative feature
extractor σ(·) trained by GACE loss may be sufficient, by constructing attention networks, the
implicit goal-relevant information from the goal-discriminator directly affects the ActorCritic f(·) that
determines the policy and value. Second, the query vectors are from a part of the goal-discriminator,
which allows the ActorCritic to actively query the input for goal-relevant information rather than
having to filter out large amounts of unnecessary information. These two design choices enable the
agent to selectively allocate attention for goal-directed actions (Figure 5c), making full use of the
GACE loss method. Details of our architecture are covered in Appendix B.

4 Experiments

Experimental setup The experiments are conducted to evaluate the success ratio, sample-efficiency,
and generalization of our method, as well as compare our work to competitive baseline methods in
multi-target environments. We develop and conduct experiments on (1) visual navigation tasks based
on ViZDoom [23, 18], and (2) robot arm manipulation tasks based on MuJoCo [42]. These multi-
target tasks involve N targets which are placed at positions p1, p2, · · · , pN , and provide the index of
one target as the goal z ∈ {1, 2, · · · , N}. At time step t, the agent receives state st normalized to
range [0,1]. The agent receives a positive reward rsuccess if it gets sufficiently close to the goal (i.e.
∥xt − pz∥ ≤ ϵ) where xt is the agent position at time t. On the other hand, the agent is penalized by
rnongoal if it reaches a non-goal object, or rtimeout if it times out at t ≥ T . Lastly, the agent receives
a time step penalty rstep, which is empirically found to accelerate training. Reaching either a goal or
non-goal object terminates the episode. All experiments are repeated five times.

Details of sample efficiency metrics We introduce Sample Requirement Ratio (SRR) and Sample
Efficiency Improvement (SEI) metrics to measure the sample efficiency of each algorithm. For the
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(a) Visual navigation task in ViZDoom (b) Robot manipulation task

Figure 2: Two kinds of multi-target tasks in our experiments. The object positions and background
are randomly shuffled in (a) egocentric visual navigation tasks and (b) robot arm manipulation tasks.

given task, we select a reference algorithm A and its reference success ratio X%. Suppose this
algorithm reaches the success ratio X% within nA updates. We measure the SRR metric of another
algorithm B as SRRB = nB/nA, where B reaches X% within nB updates. Also, SEI metric of B
is measured as SEIB = (nA − nB)/nB . Lower SRR, higher SEI indicate higher sample efficiency.

4.1 Visual navigation task with discrete action

We conduct experiments on egocentric 3D navigation tasks based on ViZDoom (Figure 2a). The
RGB-D state is provided as an input to the agent, and three different actions (MoveForward, TurnLeft,
TurnRight) are allowed. One item from each of the four different classes of objects – each class (e.g.
Bonus) containing two different items (e.g. HealthBonus and ArmorBonus) – is placed within the
map, with one class randomly selected as the goal by the instruction for each episode like “Get the
Bonus”. In every episode, the agent is initially positioned at the center of the map. The rewards are
set as rsuccess = 10, rnongoal = −1, rtimeout = −0.1, rstep = −0.01. Full details of the environment
are provided in the Appendix C.

Details of each task To evaluate the performance of our method on tasks of varying difficulties,
we set up four configurations. The V1 setting consists of a closed fixed rectangular room with walls
at the map boundaries, and object positions are randomized across the room. V2 is identical to V1,
except that the textures for the background, such as ceiling, walls, and floor, are randomly sampled
from a pool of textures every episode. 40 textures are used for the seen environment, while 10 are
used for the unseen environment which is not used for training to evaluate generalization. Hence the
tasks allow 403 and 103 different state variations in seen and unseen environments respectively. V3 is
more complicated, with larger map size, shuffled object positions, and additional walls within the map
boundaries to form a maze-like environment. “Shuffled positions” indicates that the object positions
are chosen as a random permutation of a predetermined set of positions. Lastly, V4 is equivalent to
V3 with the addition of randomized background textures for the seen and unseen environments.V2
and V4 allow us to evaluate the agent’s generalization to visually complex, unseen environments. V1
and V3 can be regarded as the upper bound of performance on V2 and V4 respectively.

Baselines for comparison As the base algorithm, we use A3C, an on-policy RL algorithm, with the
model architecture that uses gated-attention [5, 33] with LSTM. This baseline is proposed in [44]3

for multi-target learning on navigation. Other competitive general RL methods are added onto the
base multi-target learning algorithm, due to the rarity of appropriate multi-target RL algorithms for
comparison. A3C+VAE [16, 38] learns VAE features for all time steps, unlike our methods which learn
only for goal states. A3C+RAD applies augmentation – the random crop method, known to be the most
effective in [25] – to input states in order to improve sample efficiency and generalization. A3C+GACE
and A3C+GACE&GDAN are our methods applied to the A3C as covered in Sec. 3.3 and 3.4.

Results Performance is measured as the success ratio of the agent across 500 episodes in all tasks.
As shown in Figure 4, most baselines successfully learn the V1 task, albeit at different ratios. In V4,

3The cited paper also introduces multi-target tasks, but those are unavailable due to license issuee.
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(a) V1 (b) V2 Seen (c) V2 Unseen

(d) V3 (e) V4 Seen (f) V4 Unseen

Figure 3: Visual navigation learning curves. The solid lines show the average success ratio over the
repeated experiments, and the shades indicate bounds given as mean ± standard deviation of success
ratio. Orange and red lines are our methods, GACE loss and GACE&GDAN, respectively.

A3C+VAE (green) initially shows the steepest curve, probably because it reaches the object located
near the initial agent position before the learning commences properly. A3C+RAD (blue) shows the
steepest learning curve in V1, but fails to learn in visually complex environments such as V2 and
V4. In V3, A3C+GACE (orange) and A3C+GACE&GDAN (red) achieve 52.6% and 78.2% respectively.
We attribute such discrepancy to A3C+GACE&GDAN’s more direct and efficient usage of goal-related
information from the goal-discriminator. Especially, A3C+GACE&GDAN achieves as high as 86.6% and
54.9% in V2 seen and V4 seen respectively. Furthermore, in V2 unseen and V4 unseen tasks, the
agents trained with our methods generalize well to unseen environments. Thus, our methods achieve
the state-of-the-art sample-efficiency and performance in all tasks. The full details are covered in the
Appendix B.

The SRR and SEI measurements of the models are shown in Table 1. For measuring sample efficiency,
we select A3C as the reference algorithm and 56.55% as the reference success ratio in V1 task. This is
the highest performance of A3C within 2M updates. Our methods show the highest sample efficiency
compared to the baselines.

4.2 Robot manipulation task with continuous action

To evaluate our method in the continuous-action domain, we conduct experiments on the UR5 robot
arm manipulation tasks with 6 degrees of freedom, based on MuJoCo (Figure 2b). The environment
comprises a robot arm and three or five objects of different colors (red, green, blue, etc). The state is
an RGB image provided from the fixed third-person perspective camera view that captures both the
robot and the objects in Figure 2b. The rewards are rsuccess = 1, rnongoal = −0.3, rtimeout = −0.1,
rstep = −0.01.

Details of each task Our method is evaluated on three different vision-based tasks. In the R1 task,
the object positions are shuffled among three preset positions on grey background, and one of the
three objects is randomly specified as the goal by the instruction like “Reach the Green Box”. The
robot arm must reach the goal object within the time limit T steps while avoiding other objects. R2
task complicates the R1 task by replacing the grey background with random checkered patterns. The
agent’s performance is measured on the seen environment, in which the agent is trained, as well as the
unseen environment. The seen and unseen environments each uses a different set of 5 colors of the
checkered background. R3 task is a more complex variant of R1 setting, where five target classes are
available, three of which are randomly sampled by the environment and randomly positioned among
the three preset locations as in R1. The full details of these tasks are outlined in the Appendix C.
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Table 1: Success ratio (SR) and sample efficiency metrics in visual navigation task V1. SRR (lower
the better) and SEI (higher the better) are measured with A3C performance as a reference. “Number
of Updates” indicates the number of updates required to reach the reference performance.

Algorithm SR of
V1 (%)

Number of
Updates SRR (%) SEI (%)

A3C

56.55

2M 100 -
+VAE 810,086 40.50 146.89
+RAD 703,574 35.18 184.26
+GACE (ours) 163,602 8.18 1122.48
+GACE & GDAN (ours) 110,930 5.55 1702.94

Table 2: Success ratio (SR) in robot arm manipulation tasks.

Algorithm SR of
R1 (%)

SR of R2
Seen (%)

SR of R2
Unseen (%)

SR of
R3 (%)

SAC 63.1 ± 6.9 60.5 ± 5.7 53.4 ± 6.9 61.7 ± 5.4
+AE 67.2 ± 5.0 72.8 ± 5.9 59.4 ± 5.5 62.3 ± 5.1
+CURL 67.9 ± 7.3 74.5 ± 9.2 36.6 ± 3.4 64.7 ± 4.0
+GACE 84.7 ± 10.0 75.0 ± 8.9 63.0 ± 9.0 79.3± 8.9
+GACE&GDAN 89.3± 4.2 78.2± 8.7 73.3± 5.8 79.6± 8.4

Baselines for comparison As a baseline method, we use a deterministic variant of Soft Actor-Critic
(Pixel-SAC [17]), an off-policy algorithm commonly used in robotic control tasks. As a baseline, we
evaluate SAC+AE [45], which uses β-VAE [19] for encoding and decoding states. Another baseline is
SAC+CURL which performs data augmentation (cropping) and contrastive learning between the same
images. These baseline methods are all competitive methods in the continuous-action domain. We
use SAC as a base algorithm to apply our methods SAC+GACE and SAC+GACE&GDAN. Note that the
ActorCritic is as depicted in Figure 1b, without the LSTM.

Results The results for robot manipulation tasks are shown in Table 2 and Figure 7 (in Appendix B).
Performance is measured as the success ratio of the agent for 100 episodes. SAC shows higher difficulty
in learning R2 tasks, which are more visually complicated than R1 task. Unexpectedly, SAC+AE
and SAC+CURL has improved performance in R2 seen. We speculate that the two algorithms that
perform representation learning are more suitable for the task with diversity. Especially, SAC+CURL
consistently achieves competitive performances in all environments except for R2 unseen task.
However, it does not seem capable of learning with complex unseen backgrounds, showing huge
deterioration in performance for R2 unseen. SAC+GACE consistently shows strong performance in all
environments, as well as high generalization capability for R2 unseen task. Finally, SAC+GACE&GDAN
attains state-of-the-art performance in all environments including the unseen task for generalization.
In particular, we observe the smallest performance discrepancy between R2 seen and unseen tasks.
This shows that it can learn robustly in a complex background acting as a noise. Furthermore, our
methods show the highest performance in R3 task, adapting well to a more diverse set of possible
target objects. This supports that the GACE mechanism addresses the scalability issue well.

The SRR and SEI measurements of these methods are shown in Table 3. We select SAC as the
reference algorithm and 63.1% as the reference success ratio in R1 task. SAC+GACE shows the
state-of-the-art sample efficiency compared to all baseline models, meaning that it learns faster than
SAC+GACE&GDAN for relatively easy tasks.

Comparison with single-target task We conduct an ablation study, where effectively single-target
policies are trained on a variant of R1 task with the instruction fixed to a single target as a goal. We
train these policies for 120K updates, such that the total number of updates (360K) is roughly equal
to the number of updates for training the multi-target baseline models. The average performance of
these policies is 47±11%, which is noticeably lower than the performance of multi-target SAC agent
(63.1±6.9%). Continuing the training, the single-target policies converge to 87.5±2.4% success ratio
in 333,688 updates, serving as a competitive baseline. However, training individual single-target
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Table 3: Sample efficiency metrics for R1 task. SR indicates the reference performance in R1 task.

Algorithm SR (%) Number of
Updates SRR (%) SEI (%)

SAC

63.1

314,797 100 -
+AE 230,339 73.17 36.67
+CURL 142,480 45.26 120.94
+GACE (ours) 53,774 17.08 485.41
+GACE&GDAN (ours) 63,140 20.06 398.57

(a) Goal discriminator accuracy (b) Learning curve in V1 task

Figure 4: Additional experiments to analyze the effectiveness of GACE loss. The accuracy of the
goal-discriminator (a) and learning curve of the agent (b) are measured with the goal-discriminator
weights unfrozen (red), frozen at 10K (purple) and 20K (blue) updates.

policies for multi-target tasks poses a scalability problem. It not only requires memory for weights
that is directly proportional to the number of targets, but also uses a large amount of samples to learn
the targets separately. In contrast, the multi-target agent can efficiently learn a joint representation,
improving memory and sample efficiency as well as allowing generalizable learning of many targets.

4.3 Analyses

Effectiveness of goal-aware cross-entropy loss Additional experiments are conducted in the V1
task to investigate how our method influences the agent’s learning. To vary the extent to which
the GACE loss may affect learning, the goal-discriminator weights are frozen after 10K and 20K
updates such that the GACE loss LGACE does not contribute to learning afterwards. We note that
in Figure 4a, although the GACE loss (frozen weights) does not further contribute to learning, the
discriminator accuracy improves only by updating the policy. This indicates that throughout the
training, the agent gradually develops a feature extractor σ(·) that can discriminate targets. Our
method makes it possible for the feature extractor to directly learn to discriminate.

In addition, the learning curves in Figure 4b corroborate that such development of the feature extractor
is accelerated by the GACE loss. Even when the agent is trained with the GACE only temporarily (as
with GACE 10K and 20K), the learning curve is steeper than that with vanilla A3C. Furthermore, the
unfrozen GACE (red line) shows a steeper learning curve than GACE 20K, which is again steeper
than GACE 10K. Consequently, it can be seen that representation learning of feature extractor updated
by GACE loss has positive influence on policy performance than learning solely with policy updates.

Simple ActorCritic f(·) We perform an ablation study about attention model that simply con-
catenates et from feature extractor σ(·) with qzt from ActorCritic f(·) in Figure 1b to verify the
effectiveness of the attention method. We conduct the experiment in R1 task. As a result, a success
ratio of 81.5 ± 10.0 % is obtained, which is lower than that of GACE loss and GACE&GDAN. We
speculate that since not every state corresponds to the goal – such goal states are quite sparse – the
additional information of the goal-discriminator acts as a noise, hindering the efficient learning of the
policy. This supports that, in contrast to such naive use of goal-discriminator features, our proposed
attention method can effectively process goal-related information and is robust against noise.
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(a) A3C Results

(b) GACE Results

(c) GACE & GDAN Results

Figure 5: Visualization of saliency maps in V2 unseen
(goal and non-goal in yellow and green circles respec-
tively). (a) The agent is overly sensitive to edges in the
background. (b) All goals and non-goals are detected
successfully. (c) The agent shows sensitive reactions
only to the goal.

Analysis using saliency maps To ascer-
tain that an agent trained with GACE and
GACE&GDAN indeed becomes goal-aware,
we use saliency maps [15] to visualize the
operation of three agents within the V2 un-
seen task, as shown in Figure 5. The blue
shades indicate the regions that the agent
significantly attends to for policy inference,
and the red shades indicate those regions
for the value estimation. The overlapping
blue and red regions appear purple. The
three agents are trained with A3C, GACE,
and GACE&GDAN, respectively, for 4M up-
dates.

Figure 5a shows the operation of the A3C
agent. It shows overly high sensitivity to
edges in the background, approaching the
walls rather than searching for the goal. Also,
in the rightmost image in (a), although it does
attend to the goal object located on the right
side, a TurnLeft action is performed. This
suggests that the agent cannot discern be-
tween objects because it lacks understand-
ing of targets. Figure 5b corresponds to the
GACE agent, showing high sensitivity to all targets and intermittent edges. As its attention to targets
demonstrates, the ability to distinguish the goal is far superior to that of the A3C agent. Finally,
Figure 5c shows that the GACE&GDAN agent exhibits high sensitivity to all goals while hardly
responding to irrelevant edges. In addition, upon noticing the goal, the agent allocates attention
only to the goal, rather than unnecessarily focusing on the non-goals. These results support that our
method indeed promotes goal-directed behavior that is visually explainable.

5 Conclusion

We propose GACE loss and GDAN for learning goal states in a self-supervised manner using a reward
signal and instruction, promoting a goal-focused behavior. Our methods achieve state-of-the-art
sample-efficiency and generalization in two multi-target environments compared to previous methods
that learn all states. We believe that the disparity between the performance improvements in the two
benchmark suites is due to the degree of similarity between the goal states and the others.

The limitation of our method is that it may not be well-applied in tasks where instructions do not
specify a target (e.g. “Walk forward as far as possible”) or tasks with little correlation between states
and rewards based on success signal. Also, our methods assume that the total number of target object
classes is known beforehand. Our method can be abused depending on the goal specified by a user.
Nonetheless, this paper brings to light the possible methods of prioritizing data for efficient training,
especially in multi-target environment.
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