
A Auxiliary lemmas

Throughout the paper, we assume the ‘stack of rewards model’ from chapter 4.6 of [60].

Lemma 1 Let θ̂t = Σt
∑t−1
i=1 xiri where Σt = (λI +

∑t−1
i=1 xix

>
i)−1 for some fixed λ ≥ 0. Assume

(xi, ri) are i.i.d. with E[x1r1] and E[x1x
>
1] well-defined, and the latter invertible. Then

θ̂t → (E[x1x
>
1])−1 E[x1r1] a.s. (9)

Proof 2 Rewriting θ̂t+1 = (λt I + 1
t

∑t
i=1 xix

>
i)−1 1

t

∑t
i=1 xiri,

λ
t I + 1

t

∑t
i=1 xix

>
i → E[x1x

>
1]

and 1
t

∑t
i=1 xiri → E[x1r1] a.s. by the strong law of large numbers. Since A 7→ A−1 is continuous

on the space of invertible matrices, the result follows by the continuous mapping theorem.

Lemma 2 Consider the setup from Part II of the proof of Proposition 2. Define

θ̂n,t = Σn,t

t−1∑
i=1

wn,txn,iri , Σn,t = (λI +

t−1∑
i=1

wn,ixn,ix
>
n,i)
−1 ,

with λ ≥ 0 fixed, and θ?n = (E[wn,axn,ax
>
n,a])−1 E[wn,axn,ara], a ∼ Unif(A). Then θ̂n,t → θ?n in

probability, if lim supT−1 E[R2s
T]→ 0.

Proof 3 Since xn,t = 0 unless at = a?t by construction, θ̂n,t+1 is equal to(
λ

t
I +

1

t

t∑
i=1

|A|∑
j=1

1{a?i = ai = a(j)}wn,ixn,ix>n,i
)−1

1

t

t∑
i=1

|A|∑
j=1

1{a?i = ai = a(j)}wn,ixn,iri .

Define S?t(j) :=
∑t−1
i=1 1{a?i = a(j)}wn,i for each a(j) ∈ A, and take, for example, the term

|A|∑
j=1

S?t(j)

t− 1

1

S?t(j)

t−1∑
i=1

1{a?i = ai = a(j)}wn,ixn,iri .

Since a?t
i.i.d.∼ Unif(A) by construction,

S?
t(j)

t−1 → |A|
−1 a.s. by the strong law of large numbers, and

St(j) →∞ a.s. by the second Borel-Cantelli lemma. Furthermore, defining St(j) :=
∑t−1
i=1 1{a?i =

ai = a(j)}wn,i, S?t(j) − St(j) ≥ 0 is the number of ‘a(j) mistakes’, and is associated with positive
regret when the inequality is strict. Observe that we must have t−1(S?t(j) − St(j))→ 0 in probability,
as otherwise there would be c, ε > 0 such that lim supP(t−1(S?t(j) − St(j)) > ε) > c, implying

lim supT−1 E[R2s
T] ≥ lim supT−1 E[RN

T] ≥ ∆ lim supE
[
S?
T (j)−ST (j)

T

]
> ∆cε > 0 ,

which contradicts the assumption lim supT−1 E[R2s
T]→ 0 (recall ∆ = mini r̄i > 0).

Finally, t−1(S?t(j) − St(j))→ 0 implies St(j)

S?
t(j)
→ 1 and St(j) →∞ in probability, and therefore

S?t(j)

t− 1

|A|∑
j=1

St(j)

S?t(j)

1

St(j)

t−1∑
i=1

1{a?i = ai = a(j)}wn,ixn,iri → Ea∼Unif(A)[wn,axn,ara] ,

in probability by the law of large numbers, the continuous mapping theorem, and |A| <∞. Since an
analogous argument can be made for the covariance term, and A 7→ A−1 is continuous on the space
of invertible matrices, θ̂n,t → θ?n in probability by the continuous mapping theorem, as desired.

B Experimental details

The experiments were implemented in Python [93], using the following packages: abseil-py, h5py,
HuggingFace Transformers [97], JAX [13], Jupyter [55], matplotlib [45], numpy [39], Pandas [74, 96],

15

https://github.com/abseil/abseil-py
https://www.h5py.org/

PyTorch [75], scikit-learn [76], scipy [94], seaborn [95], tqdm. The bandit experiments in Section 3
were run in an embarrassingly parallel fashion on an internal academic CPU cluster running CentOS
and Python 3.8.3. The MoE experiments in Section 4 were run on a single desktop GPU (Nvidia
GeForce GTX 1080). While each experiment took under five minutes (most under two), we evaluated
hundreds of thousands of different parameter configurations (including random seeds in the count)
over the course of this work. Due to internal scheduling via slurm and the parallel execution, we
cannot determine the overall total CPU hours consumed for the experiments in this work.

Besides the UCB and Greedy results reported in the main text, some of the experiments we ran
also included policy gradient (PG) where at each step t, the agent takes a single gradient step
along ∇Ex Ea∼π(x) ra = Ex Ea∼π(x) ra∇ log πa(x) where the policy is parametrised by logistic
regression, i.e., log πa(x) = 〈θ, xa〉− log

∑
a′ exp{〈θ, xa′〉}, and the expectations are approximated

with the last observed tuple (xt, at, rt). PG typically performs much worse than UCB and Greedy
in our experiments which is most likely the result of not using a replay buffer, or any of the other
standard ways of improving PG performance. We eventually decided not include the PG results in
the main paper as they are not covered by the theoretical investigation in Section 3.1.

For the bandit experiments, the arm pools {An}n, and feature subsets s < d, were divided to
minimize overlaps between the individual nominators. The corresponding code can be found in the
methods get_random_pools and get_random_features within run.py of the supplied code:

• Pool allocation: Arms are randomly permuted and divided into N pools of size b|A|/Nc
(floor). Any remaining arms are divided one by one to the first |A|−Nb|A|/Nc nominators.
• Feature allocation: Features are randomly permuted and divided into N sets of size
s′ = min{s, bd/Nc}. If s′ < s, the s − s′ remaining features are chosen uniformly at
random without replacement from the d− s′ features not already selected.

To adjust for the varying dimensionality, the regularizer λ was multiplied by the input dimension for
UCB and Greedy algorithms, throughout. The λ values reported below are prior to this scaling.

B.1 Synthetic bandit experiments (Figure 3)

Hyperparameter sweep: We used the single-stage setup, no misspecification (d = s), 100 arms,
d = 20 features, and 0.1 reward standard deviation, to select hyperparameters from the grid in Table 1,
based on the average regret at T = 1000 rounds estimated using 30 different random seeds.

Table 1: Hyperparameter grid for the synthetic dataset. Bold font shows the selected hyperparameters.
algorithm parameter values

UCB regularizer λ [10−4, 10−3,10−2, 10−1, 100, 101, 102]
exploration bonus α [10−4, 10−3,10−2, 10−1, 100, 101, 102]

Greedy regularizer λ [10−4, 10−3,10−2, 10−1, 100, 101, 102]

PG learning rate [10−4, 10−3, 10−2, 10−1,100, 101, 102]

With the hyperparameters fixed, we ran 30 independent experiments for each configuration of the UCB,
Greedy, and PG algorithms in the single-stage case, and ‘UCB+UCB’, ‘UCB+PG’, ‘UCB+Greedy’,
‘PG+PG’, and ‘Greedy+Greedy’ in the two-stage one. Other settings we varied are in Table 2. The
‘misspecification’ ρ was translated into the nominator feature dimension via s = bd/ρc. For the
nominator count N , the configurations with N > |A| were not evaluated.

Table 2: Evaluated configurations for the synthetic dataset.
parameter values

arm count |A| [10, 100, 10000]
feature count d [5, 10, 20, 40, 80]
nominator count N [2, 5, 10, 20]
reward std. deviation [0.01, 0.1, 1.0]
misspecification ρ [0.2, 0.4, 0.6, 0.8, 1.0]

16

https://github.com/tqdm/tqdm
https://slurm.schedmd.com/documentation.html

B.2 Amazon bandit experiments (Figure 4)

The features were standardized by computing the mean and standard deviation over all dimensions.

Hyperparameter sweep: We used the single-stage setup, s = 50 features, 100 arms, to select
hyperparameters from the grid in Table 3, based on the average regret at T = 5000 rounds estimates
using 30 different random seeds.

Table 3: Hyperparameter grid for the Amazon dataset. Bold font shows the selected hyperparameters.
algorithm parameter values

UCB regularizer λ [10−4, 10−3, 10−2, 10−1,100, 101, 102]
exploration bonus α [10−4,10−3, 10−2, 10−1, 100, 101, 102]

Greedy regularizer λ [10−4, 10−3, 10−2, 10−1,100, 101, 102]

PG learning rate [10−4, 10−3, 10−2, 10−1, 100,101, 102]

With the hyperparameters fixed, we again ran 30 independent experiments for the same set of
algorithms as in Appendix B.1, but now with fixed d = 400 as described in Section 3.1. Since d is
fixed, we vary the nominator feature dimension s directly. Other variables are described in Table 4.

Table 4: Evaluated configurations for the Amazon dataset.
parameter values

arm count |A| [10, 100, 1000]
nominator count N [2, 5, 10, 20]
nominator feature dim s [5, 10, 20, 40, 80, 150, 250, 400]

B.3 Mixture-of-Experts offline experiments (Section 4)

Hyperparameter sweep: We ran a separate sweep for the MoE and the random pool models using
100 arms, N = 10 experts, and ck = 500 training examples per arm. We swept over optimizer type
(‘RMSProp’ [42], ‘Adam’ [54]), learning rate ([0.001, 0.01]), and likelihood variance σ2 ([0.01, 1.0]).
The selection was made based on average performance over three distinct random seeds. The 0.01
learning rate was best for both models. ‘RMSProp’ and σ2 = 1 were the best for the random
pool model, whereas ‘Adam’ and σ2 = 0.01 worked better for the MoE, except for the embedding
dimension de = 50 where σ2 = 1 had to be used to prevent massive overfitting.

Evaluation: We varied the number of training examples per arm ck ∈ {100, 500, 750}, number of
dimensions of the BERT embedding revealed to the nominators s ∈ {10, 25, 50, 100}, the dimension
of the learned item embeddings de ∈ {5, 10, 50}, and the number of experts N ∈ {5, 10, 20}. We
used 50000 optimization steps, batch size of 4096 to adjust for the scarcity of positive labels, and no
early stopping. Three random seeds were used to estimate the reported mean and standard errors.

C Additional results

C.1 Synthetic bandit experiments (Figure 3)

The interpretation of all axes and the legend is analogous to that in Figure 3, except the relative regret
(divided by that of the uniformly guessing agent) is reported as in Figure 4.

C.2 Amazon bandit experiments (Figure 4)

17

0.0

0.2

0.4

0.6

0.8

10
ar

m
s

d = 5 d = 10 d = 20 d = 40 d = 80

0.0

0.2

0.4

0.6

0.8

1.0

10
0

ar
m

s

1 2 3 4 5

d/s

0.0

0.2

0.4

0.6

0.8

1.0

10
00

0
ar

m
s

1 2 3 4 5

d/s
1 2 3 4 5

d/s
1 2 3 4 5

d/s
1 2 3 4 5

d/s

G+G U+U U+PG U+G PG+PG G U PG

Figure 6: Relative regret for two nominators on the synthetic dataset.

0.0

0.2

0.4

0.6

0.8

10
ar

m
s

d = 5 d = 10 d = 20 d = 40 d = 80

0.0

0.2

0.4

0.6

0.8

1.0

10
0

ar
m

s

1 2 3 4 5

d/s

0.0

0.2

0.4

0.6

0.8

1.0

10
00

0
ar

m
s

1 2 3 4 5

d/s
1 2 3 4 5

d/s
1 2 3 4 5

d/s
1 2 3 4 5

d/s

G+G U+U U+PG U+G PG+PG G U PG

Figure 7: Relative regret for five nominators on the synthetic dataset.

18

0.0

0.2

0.4

0.6

0.8

10
ar

m
s

d = 5 d = 10 d = 20 d = 40 d = 80

0.0

0.2

0.4

0.6

0.8

1.0

10
0

ar
m

s

1 2 3 4 5

d/s

0.0

0.2

0.4

0.6

0.8

1.0

10
00

0
ar

m
s

1 2 3 4 5

d/s
1 2 3 4 5

d/s
1 2 3 4 5

d/s
1 2 3 4 5

d/s

G+G U+U U+PG U+G PG+PG G U PG

Figure 8: Relative regret for ten nominators on the synthetic dataset.

0.00

0.25

0.50

0.75

10
0

ar
m

s

2 nominators 5 nominators 10 nominators 20 nominators

0 20 40 60 80

d/s

0.00

0.25

0.50

0.75

1.00

10
00

ar
m

s

0 20 40 60 80

d/s
0 20 40 60 80

d/s
0 20 40 60 80

d/s

G+G U+U U+PG U+G PG+PG G U PG

Figure 9: Relative regret on the Amazon dataset.

19

