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Abstract

The problem of reducing processing time of large deep learning models is a fun-
damental challenge in many real-world applications. Early exit methods strive
towards this goal by attaching additional Internal Classifiers (ICs) to intermediate
layers of a neural network. ICs can quickly return predictions for easy examples
and, as a result, reduce the average inference time of the whole model. However,
if a particular IC does not decide to return an answer early, its predictions are
discarded, with its computations effectively being wasted. To solve this issue, we
introduce Zero Time Waste (ZTW), a novel approach in which each IC reuses
predictions returned by its predecessors by (1) adding direct connections between
ICs and (2) combining previous outputs in an ensemble-like manner. We conduct
extensive experiments across various datasets and architectures to demonstrate that
ZTW achieves a significantly better accuracy vs. inference time trade-off than
other recently proposed early exit methods.

1 Introduction

Deep learning models achieve tremendous successes across a multitude of tasks, yet their training
and inference often yield high computational costs and long processing times [11, 22]. For some
applications, however, efficiency remains a critical challenge, e.g. to deploy a reinforcement learning
(RL) system in production the policy inference must be done in real-time [7], while the robot
performances suffer from the delay between measuring a system state and acting upon it [34].
Similarly, long inference latency in autonomous cars could impact its ability to control the speed [13]
and lead to accidents [10, 17].

Typical approaches to reducing the processing complexity of neural networks in latency-critical
applications include compressing the model [24, 26, 46] or approximating its responses [21]. For
instance, Livne & Cohen [26] propose to compress a RL model by policy pruning, while Kouris
et al. [21] approximate the responses of LSTM-based modules in self-driving cars to accelerate their
inference time. While those methods improve processing efficiency, they still require samples to pass
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(a) Comparison of the proposed ZTW (bottom) with a conven-
tional early-exit model, SDN (top).

(b) Detailed scheme of the proposed ZTW
model architecture.

Figure 1: (a) In both approaches, internal classifiers (ICs) attached to the intermediate hidden layers
of the base network allow us to return predictions quickly for examples that are easy to process.
While SDN discards predictions of uncertain ICs (e.g. below a threshold of 75%), ZTW reuses
computations from all previous ICs, which prevents information loss and waste of computational
resources. (b) Backbone network fθ lends its hidden layer activations to ICs, which share inferred
information using cascade connections (red horizontal arrows in the middle row) and give predictions
pm. The inferred predictions are combined using ensembling (bottom row) giving qm.

through the entire model. In contrast, biological neural networks leverage simple heuristics to speed
up decision making, e.g. by shortening the processing path even in case of complex tasks [1, 9, 18].

This observation led a way to the inception of the so-called early exit methods, such as Shallow-Deep
Networks (SDN) [19] and Patience-based Early Exit (PBEE) [47], that attach simple classification
heads, called internal classifiers (ICs), to selected hidden layers of neural models to shorten the
processing time. If the prediction confidence of a given IC is sufficiently high, the response is
returned, otherwise, the example is passed to the subsequent classifier. Although these models
achieve promising results, they discard the response returned by early ICs in the evaluation of
the next IC, disregarding potentially valuable information, e.g. decision confidence, and wasting
computational effort already incurred.

Motivated by the above observation, we postulate to look at the problem of neural model processing
efficiency from the information recycling perspective and introduce a new family of zero waste
models. More specifically, we investigate how information available at different layers of neural
models can contribute to the decision process of the entire model. To that end, we propose Zero
Time Waste (ZTW), a method for an intelligent aggregation of the information from previous ICs.
A high-level view of our model is given in Figure 1. Our approach relies on combining ideas from
networks with skip connections [41], gradient boosting [3], and ensemble learning [8, 23]. Skip
connections between subsequent ICs (which we call cascade connections) allow us to explicitly pass
the information contained within low-level features to the deeper classifier, which forms a cascading
structure of ICs. In consequence, each IC improves on the prediction of previous ICs, as in gradient
boosting, instead of generating them from scratch. To give the opportunity for every IC to explicitly
reuse predictions of all previous ICs, we additionally build an ensemble of shallow ICs.

We evaluate our approach on standard classification benchmarks, such as CIFAR-100 and ImageNet,
as well as on the more latency-critical applications, such as reinforcement-learned models for
interacting with sequential environments. To the best of our knowledge, we are the first to show that
early exit methods can be used for cutting computational waste in a reinforcement learning setting.

Results show that ZTW is able to save much more computation while preserving accuracy than
current state-of-the-art early exit methods. In order to better understand where the improvements
come from, we introduce Hindsight Improvability, a metric for measuring how efficiently the model
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reuses information from the past. We provide ablation studies and additional analysis of the proposed
method in the Appendix.

To summarize, the contributions of our work are the following:

• We introduce a family of zero waste models that quantify neural network efficiency with the
Hindsight Improvability metrics.

• We propose an instance of zero waste models dubbed Zero Time Waste (ZTW) method
which uses cascade connections and ensembling to reuse the responses of previous ICs for
the final decision.

• We show how the state-of-the-art performance of ZTW in the supervised learning scenario
generalizes to reinforcement learning.

2 Related Work

The drive towards reducing computational waste in deep learning literature has so far focused on
reducing the inference time. Numerous approaches for accelerating deep learning models focus on
building more efficient architectures [15], reducing the number of parameters [12] or distilling knowl-
edge to smaller networks [14]. Thus, they decrease inference time by reducing the overall complexity
of the model instead of using the conditional computation framework of adapting computational
effort to each example. As such we find them orthogonal to the main ideas of our work, e.g. we show
that applying our method to architectures designed for efficiency, such as MobileNet [15], leads to
even further acceleration. Hence, we focus here on methods that adaptively set the inference time for
each example.

Conditional Computation Conditional computation was first proposed for deep neural networks
in Bengio et al. [2] and Davis & Arel [5], and since then many sophisticated methods have been
proposed in this field, including dynamic routing [27], cascading with multiple networks [40] and
skipping intermediate layers [41] or channels [42]. In this work, we focus on the family of early exit
approaches, as they usually do not require special assumptions about the underlying architecture of
the network and the training paradigm, and because of that can be easily applied to many commonly
used architectures. In BranchyNet [38] a loss function consisting of a weighted sum of individual
head losses is utilized in training, and entropy of the head prediction is used for the early exit criterion.
Berestizshevsky & Guy [4] propose to use confidence (maximum of the softmax output) instead. A
broader overview of early exit methods is available in Scardapane et al. [32].

Several works proposed specialized architectures for conditional computation which allow for multi-
scale feature processing [16, 44, 43], and developed techniques to train them more efficiently by
passing information through the network [29, 25]. However, in this paper, we consider the case of
increasing inference speed of a pre-trained network based on an architecture which was not built with
conditional computation or even efficiency in mind. We argue that this is a practical use case, as this
approach can be used to a wider array of models. As such, we do not compare with these methods
directly.

Shallow-Deep Networks (SDN) [19] is a conceptually simple yet effective method, where the
comparison of confidence with a fixed threshold is used as the exit criterion. The authors attach
internal classifiers to layers selected based on the number of compute operations needed to reach
them. The answer of each head is independent of the answers of the previous heads, although in a
separate experiment the authors analyze the measure of disagreement between the predictions of final
and intermediate heads.

Zhou et al. [47] propose Patience-based Early Exit (PBEE) method, which terminates inference after
t consecutive unchanged answers, and show that it outperforms SDN on a range of NLP tasks. The
idea of checking for agreement in preceding ICs is connected to our approach of reusing information
from the past. However, we find that applying PBEE in our setting does not always work better than
SDN. Additionally, in the experiments from the original work, PBEE was trained simultaneously
along with the base network, thus making it impossible to preserve the original pre-trained model.

Ensembles Ensembling is typically used to improve the accuracy of machine learning models [6].
Lakshminarayanan et al. [23] showed that it also greatly improves calibration of deep neural networks.
There were several attempts to create an ensemble from different layers of a network. Scardapane et
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al. [31] adaptively exploit outputs of all internal classifiers, albeit not in a conditional computation
context. Phuong & Lampert [29] used averaged answers of heads up to the current head for anytime-
prediction, where the computational budget is unknown. Besides the method being much more basic,
their setup is notably different from ours, as it assumes the same computational budget for all samples
no matter how difficult the example is. Finally, none of the ensemble methods mentioned above were
designed to work with pre-trained models.

3 Zero Time Waste

Our goal is to reduce computational costs of neural networks by minimizing redundant operations and
information loss. To achieve it, we use the conditional computation setting, in which we dynamically
select the route of an input example in a neural network. By controlling the computational route, we
can decide how the information is stored and utilized within the model for each particular example.
Intuitively, difficult examples require more resources to process, but using the same amount of
compute for easy examples is wasteful. Below we describe our Zero Time Waste method in detail.

In order to adapt already trained models to conditional computation setting, we attach and train early
exit classifier heads on top of several selected layers, without changing the parameters of the base
network. During inference, the whole model exits through one of them when the response is likely
enough, thus saving computational resources.

Formally, we consider a multi-class classification problem, where x ∈ RD denotes an input example
and y ∈ {1, . . . ,K} is its target class. Let fθ : RD → RK be a pre-trained neural network with logit
output designed for solving the above classification task. The weights θ will not be modified.

Model overview Following typical early exit frameworks, we add M shallow Internal Classifiers,
IC1, . . . , ICM , on intermediate layers of fθ. Namely, let gφm

, for m ∈ {1, . . . ,M}, be the m-th IC
network returning K logits, which is attached to hidden layer fθm of the base network fθ. The index
m is independent of fθ layer numbering. In general, M is lower than the overall number of fθ hidden
layers since we do not add ICs after every layer (see more details in Appendix A.1).

Although using ICs to return an answer early can reduce overall computation time [19], in a standard
setting each IC makes its decision independently, ignoring the responses returned by previous ICs.
As we show in Section 4.2, early layers often give correct answers for examples that are misclassified
by later classifiers, and hence discarding their information leads to waste and performance drops.
To address this issue, we need mechanisms that collect the information from the first (m− 1) ICs
to inform the decision of ICm. For this purpose, we introduce two complementary techniques:
cascade connections and ensembling, and show how they help reduce information waste and, in turn,
accelerate the model.

Cascade connections directly transfer the already inferred information between consecutive ICs
instead of re-computing it again. Thus, they improve the performance of initial ICs that lack enough
predictive power to classify correctly based on low-level features. Ensembling of individual ICs
improves performance as the number of members increases, thus showing greatest improvements in
the deeper part of the network. This is visualized in Figure 1 where cascade connections are used
first to pass already inferred information to later ICs, while ensembling is utilized to conclude the IC
prediction. The details on these two techniques are presented in the following paragraphs.

Cascade connections Inspired by the gradient boosting algorithm and literature on cascading
classifiers [39], we allow each IC to improve on the predictions of previous ICs instead of inferring
them from scratch. The idea of cascade connections is implemented by adding skip connections that
combine the output of the base model hidden layer fθm with the logits of ICm−1 and pass it to ICm.
The prediction is realized by the softmax function applied to gφm (the m-th IC network):

pm = softmax(gφm(fθm(x), gφm−1 ◦ fθm−1(x))), for m > 1, (1)

where g ◦ f(x) = g(f(x)) denotes the composition of functions. Formally, pm = pm(x;φm), where
φm are trainable parameters of ICm, but we drop these parameters in notation for brevity. IC1 uses
only the information coming from the layer fθ1 which does not need to be the first hidden layer of fθ.
Figure 1 shows the skip connections as red horizontal arrows.
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Each ICm is trained in parallel (with respect to φm) to optimize the prediction of all output classes
using an appropriate loss function L(pm), e.g. cross-entropy for classification. However, during
the backward step it is crucial to stop the gradient of a loss function from passing to the previous
classifier. Allowing the gradients of loss L(pm) to affect φj for j ∈ 1, ..,m− 1 leads to a significant
performance degradation of earlier layers due to increased focus on the features important for ICm,
as we show in Appendix C.3.

Ensembling Ensembling in machine learning models reliably increases the performance of a
model while improving robustness and uncertainty estimation [8, 23]. The main drawback of this
approach is its wastefulness, as it requires to train multiple models and use them to process the same
examples. However, in our setup we can adopt this idea to combine predictions which were already
pre-computed in previous ICs, with near-zero additional computational cost.

To obtain a reliable zero-waste system, we build ensembles that combine outputs from groups
of ICs to provide the final answer of the m-th classifier. Since the classifiers we are using vary
significantly in predictive strength (later ICs achieve better performance than early ICs) and their
predictions are correlated, the standard approach to deep model ensembling does not work in our
case. Thus, we introduce weighted geometric mean with class balancing, which allows us to reliably
find a combination of pre-computed responses that maximizes the expected result.

Let p1, p2, . . . , pm be the outputs of m consecutive IC predictions (after cascade connections stage)
for a given x (Figure 1). We define the probability of the i-th class in the m-th ensemble to be:

qim(x) =
1

Zm
bim
∏
j≤m

(
pij(x)

)wj
m , (2)

where bim > 0 and wjm > 0, for j = 1, . . . ,m, are trainable parameters, and Zm is a normalization
factor, such that

∑
i q
i
m(x) = 1. Observe that wjm can be interpreted as our prior belief in predictions

of ICj , i.e. large weight wjm indicates less confidence in the predictions of ICj . On the other hand, bim
represents the prior of i-th class for ICm. The m indices in wm and bm are needed as the weights are
trained independently for each subset {ICj : j ≤ m}. Although there are viable potential approaches
to setting these parameters by hand, we verified that optimizing them directly by minimizing the
cross-entropy loss on the training dataset works best.

Out of additive and geometric ensemble settings we found the latter to be preferable. In this
formulation, a low class confidence of a single IC would significantly reduce the probability of that
class in the whole ensemble. In consequence, in order for the confidence of the given class to be high,
we require all ICs to be confident in that class. Thus, in geometric ensembling, an incorrect although
confident IC answer has less chance of ending calculations prematurely. In the additive setting, the
negative impact of a single confident but incorrect IC is much higher, as we show in Appendix C.2.
Hence our choice of geometric ensembling.

Direct calculation of the product in (2) might lead to numerical instabilities whenever the probabilities
are close to zero. To avoid this problem we note that

bim
∏
j≤m

(
pij(x)

)wj
m = bim exp

(∑
j≤m

wjm ln pij(x)

)
,

and that log-probabilities ln pij can be obtained by running the numerically stable log softmax function
on the logits gφm of the classifier.

Both cascade connections and ensembling have different impact on the model. Cascade connections
primarily boost the accuracy of early ICs. Ensembling, on the other hand, improves primarily the
performance of later ICs, which combine the information from many previous classifiers.

This is not surprising, given that the power of the ensemble increases with the number of members,
provided they are at least weak in the sense of boosting theory [33]. As such, the two techniques in-
troduced above are complementary, which we also show empirically via ablation studies in Appendix
C. The whole training procedure is presented in Algorithm 1.

Conditional inference Once a ZTW model is trained, the following question appears: how to
use the constructed system at test time? More precisely, we need to dynamically find the shortest
processing path for a given input example. For this purpose, we use one of the standard confidence
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Algorithm 1 Zero Time Waste
Input: pre-trained model fθ, cross-entropy loss function L, training set T .
Initialize M shallow models gφm

at selected layers fθm .
For m = 1, . . . ,M do in parallel . Cascade connection ICs

Set pm according to (1).
minimize E(x,y)∈T [L(pm(x), y)] wrt. φm by gradient descent

For m = 1, . . . ,M do . Geometric Ensembling
Initialize wm, bm and define qm(x) according to (2).
minimize E(x,y)∈T [L(qm(x), y)] wrt. wm, bm by gradient descent

scores given by the probability of the most confident class. If the m-th classifier is confident enough
about its prediction, i.e. if

max
i
qim > τ , for a fixed τ > 0, (3)

where i is the class index, then we terminate the computation and return the response given by this
IC. If this condition is not satisfied, we continue processing x and go to the next IC.

Threshold τ in (3) is a manually selected value, which controls the acceleration-performance trade-off
of the model. A lower threshold leads to a significant speed-up at the cost of a possible drop in
accuracy. Observe that for τ > 1, we recover the original model fθ, since none of the ICs is confident
enough to answer earlier. In practice, to select its appropriate value, we advise using a held-out set to
evaluate a range of possible values of τ .

4 Experiments

In this section we examine the performance of Zero Time Waste and analyze its impact on waste
reduction in comparison to two recently proposed early-exit methods: (1) Shallow-Deep Networks
(SDN) [19] and (2) Patience-Based Early Exit (PBEE) [47]. In contrast to SDN and PBEE, which
train ICs independently, ZTW reuses information from past classifiers to improve the performance.
SDN and ZTW use maximum class probability as the confidence estimator, while PBEE checks the
number of classifiers in sequence that gave the same prediction. For example, for PBEE τ = 2 means
that if the answer of the current IC is the same as the answers of the 2 preceding ICs, we can return
that answer, otherwise we continue the computation.

In our experiments, we measure how much computation we can save by re-using responses of ICs
while keeping good performance, hence obeying the zero waste paradigm. To evaluate the efficiency
of the model, we compute the average number of floating-point operations required to perform the
forward pass for a single sample. We use it as a hardware-agnostic measure of inference cost and
refer to it simply as the "inference time" in all subsequent references. For the evaluation in supervised
learning, we use three datasets: CIFAR-10, CIFAR-100, and Tiny ImageNet, and four commonly
used architectures: ResNet-56 [11], MobileNet [15], WideResNet [45], and VGG-16BN [37] as base
networks. We check all combinations of methods, datasets, and architectures, giving 3 · 3 · 4 = 36
models in total, and we additionally evaluate a single architecture on the ImageNet dataset to show
that the approach is scalable. Additionally, we examine how Zero Time Waste performs at reducing
waste in a reinforcement learning setting of Atari 2600 environments. To the best of our knowledge,
we are the first to apply early exit methods to reinforcement learning.

Appendix A.1 describes the details about the network architecture, hyperparameters, and training
process. Appendix B contains extended plots and tables, and results of an additional transfer learning
experiment. In Appendix C we provide ablation studies, focusing in particular on analyzing how
each of the proposed improvements affects the performance, and empirically justifying some of the
design choices (e.g. geometric ensembles vs. additive ensembles). We provide the source code for
our experiments at https://github.com/gmum/Zero-Time-Waste.

4.1 Time Savings in Supervised Learning

We check what percentage of computation of the base network can be saved by reusing the information
from previous layers in a supervised learning setting. To do this, we evaluate how each method
behaves at a particular fraction of the computational power (measured in floating point operations) of
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Table 1: Results on four different architectures and three datasets: Cifar-10, Cifar-100 and Tiny
ImageNet. Test accuracy (in percentages) for time budgets: 25%, 50%, 75%, 100% of the base
network, and Max without any time limits. The first column shows the test accuracy of the base
network. The results represent a mean of three runs and standard deviations are provided in Appendix
B. We bold results within two standard deviations of the best model.

ResNet-56

Data Algo 25% 50% 75% 100% Max

C10
(92.0)

SDN 77.7 87.3 91.1 92.0 92.1
PBEE 69.8 81.8 87.5 91.0 92.1
ZTW 80.3 88.7 91.5 92.1 92.1

C100
(68.4)

SDN 47.1 57.2 64.7 69.0 69.7
PBEE 45.2 53.5 60.1 67.0 69.0
ZTW 51.3 62.1 68.4 70.7 70.9

T-IM
(53.9)

SDN 31.2 41.2 49.9 54.5 54.7
PBEE 29.0 37.6 48.2 53.4 54.3
ZTW 35.2 46.2 53.7 56.3 56.4

MobileNet

Data Algo 25% 50% 75% 100% Max

C10
(90.6)

SDN 86.1 90.5 90.8 90.7 90.9
PBEE 76.3 85.9 89.7 90.9 91.1
ZTW 86.7 90.9 91.4 91.4 91.5

C100
(65.1)

SDN 54.3 63.5 66.8 67.8 67.9
PBEE 47.1 61.6 61.6 67.0 68.0
ZTW 54.5 65.2 68.4 69.0 69.1

T-IM
(59.3)

SDN 35.6 47.1 55.3 58.9 59.7
PBEE 26.7 38.4 50.3 55.6 59.7
ZTW 37.3 49.5 56.7 59.7 60.2

WideResNet

Data Algo 25% 50% 75% 100% Max

C10
(94.4)

SDN 83.8 91.7 94.1 94.4 94.4
PBEE 78.0 84.0 90.3 93.8 94.4
ZTW 86.7 92.9 94.5 94.7 94.7

C100
(75.1)

SDN 55.9 65.1 71.6 75.0 75.4
PBEE 46.7 57.2 66.0 73.2 75.4
ZTW 59.5 69.1 74.5 76.2 76.4

T-IM
(59.6)

SDN 36.8 46.0 54.6 59.4 59.7
PBEE 29.9 37.8 52.7 58.5 59.7
ZTW 40.0 50.1 57.5 60.2 60.3

VGG

Data Algo 25% 50% 75% 100% Max

C10
(93.0)

SDN 86.0 92.1 93.0 93.0 93.0
PBEE 75.0 86.0 91.0 92.9 93.1
ZTW 87.1 92.5 93.2 93.2 93.2

C100
(70.4)

SDN 58.5 67.2 70.6 71.4 71.5
PBEE 51.2 65.3 65.3 70.9 72.0
ZTW 60.2 69.3 72.6 73.5 73.6

T-IM
(59.0)

SDN 40.0 50.5 57.4 59.6 59.7
PBEE 31.0 45.2 55.2 60.1 60.2
ZTW 41.4 52.3 59.3 60.1 60.5

the base network. We select the highest threshold τ such that the average inference time is smaller
than, for example, 25% of the original time. Then we calculate accuracy for that threshold. Table 1
contains summary of this analysis, averaged over three seeds, with further details (plots for all
thresholds, standard deviations) shown in Appendix B.1.

Looking at the results, we highlight the fact that methods which do not reuse information between
ICs do not always achieve the goal of reducing computational waste. For example, SDN and PBEE
cannot maintain the accuracy of the base network for MobileNet on Tiny ImageNet when using
the same computational power, scoring respectively 0.4 and 3.7 percentage points lower than the
baseline. Adding ICs to the network and then discarding their predictions when they are not confident
enough to return the final answer introduces computational overhead without any gains. By reusing
the information from previous ICs ZTW overcomes this issue and maintains the accuracy of the base
network for all considered settings. In particular cases, such as ResNet-56 on Tiny ImageNet or
MobileNet on Cifar-100, Zero Time Waste even significantly outperforms the core network.

Similar observation can be made for other inference time limits as well. ZTW consistently maintains
high accuracy using less computational resources than the other approaches, for all combinations
of datasets and architectures. Although PBEE reuses information from previous layers to decide
whether to stop computation or not, this is not sufficient to reduce the waste in the network. While
PBEE outperforms SDN when given higher inference time limits, it often fails for smaller limits
(25%, 50%). We hypothesize that this is result of the fact that PBEE has smaller flexibility with
respect to τ . While for SDN and ZTW values of τ are continuous, for PBEE they represent a discrete
number of ICs that must sequentially agree before returning an answer.
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Figure 2: Hindsight Improvability. For each IC (horizontal axis) we look at examples it misclassified
and we check how many of them were classified correctly by any of the previous ICs. The lower the
number, the better the IC is at reusing previous information.

Finally, we check whether our observations scale up to larger datasets by running experiments on
ImageNet using a pre-trained ResNet-50 from the torchvision package3. The results presented in
Table 2 show that Zero Time Waste is able to gain significant improvements over the two tested
baselines even in this more challenging setting. Additional details of this experiments are presented
in Appendix B.2.

Table 2: ImageNet results (test accuracy in percent-
age points) show that zero-waste approach scales
up to larger datasets.

Algo 25% 50% 75% 100%

SDN 33.8 53.8 69.7 75.8
PBEE 28.3 28.3 62.9 73.3
ZTW 34.9 54.9 70.6 76.3

Given the performance of ZTW, the results show
that paying attention to the minimization of com-
putational waste leads to tangible, practical im-
provements of the inference time of the network.
Therefore, we devote next section to explaining
where the empirical gains come from and how
to measure information loss in the models.

4.2 Information Loss in Early Exit Models

Since ICs in a given model are heavily corre-
lated, it is not immediately obvious why reusing
past predictions should improve performance.
Later ICs operate on high-level features for which class separation is much easier than for early ICs,
and hence get better accuracy. Thus, we ask a question — is there something that early ICs know
that the later ICs do not?

For that purpose, we introduce a metric to evaluate how much a given IC could improve performance
by reusing information from all previous ICs. We measure it by checking how many examples
incorrectly classified by ICm were classified correctly by any of the previous ICs. An IC which
reuses predictions from the past perfectly would achieve a low score on this metric since it would
remember all the correct answers of the previous ICs. On the other hand, an IC in a model which
trains each classifier independently would have a higher score on this metric, since it does not use
past information at all. We call this metric Hindsight Improvability (HI) since it measures how many
mistakes we would be able to avoid if we used information from the past efficiently.

Let Cm denote the set of examples correctly classified by ICm, with its complement Cm being the set
of examples classified incorrectly. To measure the Hindsight Improvability of ICm we calculate:

HIm =

∣∣Cm ∩ (
⋃
n<m Cn)

∣∣∣∣Cm∣∣
Figure 2 compares the values of HI for a method with independent ICs (SDN in this case) and
ZTW which explicitly recycles computations. In the case of VGG16 trained with independent ICs,
over 60% of the mistakes could be avoided if we properly used information from the past, which

3https://pytorch.org/vision/stable/index.html
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Figure 3: Inference time vs. average return of the ZTW policy in an RL setting on Q*bert and Pong
Atari 2600 environments. The plot was generated by using different values of the confidence threshold
τ hyperparameter. Since the RL environments are stochastic, we plot the return with a standard
deviation calculated on 10 runs. ZTW saves a significant amount of computation while preserving
the original performance, showcasing that waste can be minimized also in the reinforcement learning
domain.

would translate to improvement from 71.5% to 82.9% accuracy. Similarily, for ResNet-56 trained on
TinyImageNet, the number of errors could be cut by around 57%.

ZTW consistently outperforms the baseline, with the largest differences visible at the later ICs, which
can in principle gain the most from reusing previous predictions. Thus, Zero Time Waste is able to
efficiently recycle information from the past. At the same time, there is still a room for significant
improvements, which shows that future zero waste approaches could offer additional enhancements.

4.3 Time Savings in Reinforcement Learning

Although supervised learning is an important testbed for deep learning, it does not properly reflect
the challenges encountered in the real world. In order to examine the impact of waste-minimization
methods in a setting that reflects the sequential nature of interacting with the world, we evaluate it in
a Reinforcement Learning (RL) setting. In particular, we use the environments from the suite of Atari
2600 games [28].

Similarly as in the supervised setting, we start with a pre-trained network, which in this case represents
a policy trained with the Proximal Policy Optimization (PPO) algorithm [36]. We attach the ICs
to the network and train it by distilling the knowledge from the core network to the ICs. We use
a behavioral cloning approach, where the states are sampled from the policy defined by the ICs and
the labels are provided by the expert model. Since actions in Atari 2600 are discrete, we can then use
the same confidence threshold-based approach to early exit inference as in the case of classification.
More details about the training process are provided in the Appendix A.2.

In order to investigate the relationship between computation waste reduction and performance, we
evaluate Zero Time Waste for different values of confidence threshold τ . By setting a very high τ
value, we retrieve the performance of the original model (none of the ICs respond) and by slowly
decreasing its value we can reduce the computational cost (ICs begin to return answers earlier).
In Figure 3 we check values of τ in the interval [0.1, 1.0] to show how ZTW is able to control
the acceleration-performance balance for Q*Bert and Pong, two popular Atari 2600 environments.
By setting lower τ thresholds for Q*Bert we can save around 45% of computations without score
degradation. Similarly, for Pong we can get 60% reduction with minor impact on performance (note
that average human score is 9.3 points). This shows that even the small four-layered convolutional
architecture commonly used for Atari [28] introduces a noticeable waste of computation which can be
mitigated within a zero-waste paradigm. We highlight this fact as the field of reinforcement learning
has largely focused on efficiency in terms of number of samples and training time, while paying less
attention to the issue of efficient inference.
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Figure 4: Examples of bird images which were incorrectly classified as airplanes by ZTW. The early
ICs are misled by the low-level features (blue sky, sharp edges, grayscale silhouette) and return
a prediction before the later ICs can detect more subtle high-level features.

4.4 Impact & Limitations

Our framework is the cornerstone of an environmental-aware computation where information recy-
cling within a model is cautiously studied to avoid wasting resources. The focus on computational
efficiency, however, introduces a natural trade-off between model accuracy and its computational
cost. Although in most cases we can carefully adjust the appropriate method hyperparameters to
avoid a significant accuracy drop, some testing samples remain surprisingly challenging for ZTW,
which indicates a need for further investigation of the accuracy vs. computation cost trade-off offered
by our method.

Figure 4 contains examples of images for which low-level features in a given image consistently point
at a wrong class, while high-level features would allow us to deduce the correct class. Images of birds
which contain sharp lines and grayscale silhouettes are interpreted as airplanes by early ICs which
operate on low-level features. If the confidence of these classifiers gets high enough, the answer might
be returned before later classifiers can correct this decision. We highlight the problem of dealing
with examples which are seemingly easy but turn out difficult as an important future direction for
conditional computation methods.

5 Conclusion

In this work, we show that discarding predictions of the previous ICs in early exit models leads to
waste of computation resources and a significant loss of information. This result is supported by the
introduced Hindsight Improvability metric, as well as empirical result for reducing computations
in existing networks. The proposed Zero Time Waste method attempts to solve these issues by
incorporating outputs from the past heads by using cascade connections and geometric ensembling.
We show that ZTW outperforms other approaches on multiple standard datasets and architectures
for supervised learning, as well as in Atari 2600 reinforcement learning suite. At the same time we
postulate that focusing on reducing the computational waste in a safe and stable way is an important
direction for future research in deep learning.
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