Appendix: Luna: Linear Unified Nested Attention

A Experimental Details

A.1 Long-Context Sequence Modelling

For all tasks except Retrieval, we closely follow the model configurations in Tay et al. (2021) such as data preprocessing, data split, model architecture, batch size etc. To guarantee convergence, we train models for the Retrieval task with 20k steps instead of the 5k steps prescribed inTay et al. (2021). The hyperparameters of models in these tasks are listed in Table 7. We mainly tune three hyperparameters: learning rate, dropout and attention dropout. For the other main hyperparameters such as batch size, number of layers and number of warmup steps, we follow the guidance of Tay et al. (2021).

Table 7: Hyperparameters of models in LRA tasks. LR and Attn-Dropout denote the learning, batch size and attention dropout.

Tasks	LR	Dropout	Attn-Dropout
ListOps	1e-4	0.1	0.1
Text	5e-5	0.3	0.3
Retrieval	5e-5	0.1	0.1
Image	5e-3	0.1	0.3
Pathfinder	1e-3	0.2	0.1

A.2 Neural Machine Translation

Our experiments on WMT 2014 English-German are based on the Transformer-base model (Vaswani et al., 2017), with implementation from the FairSeq package (Ott et al., 2019). This dataset contains 4.5M parallel sentence pairs for training. We following the standard setting (Vaswani et al., 2017), using Newstest2013 as the validation set and Newstest2014 as the test set. The dataset is pre-processed following (Ma, 2020), using the scripts from FairSeq package⁴. Specifically, we use word embedding with 512 dimension and 6-layer encoder/decoder with 8 multi-head attention and 2048 feed-forward dimensions. We apply 0.1 label smoothing (Szegedy et al., 2016), and perform totally 500,000 updates to train each model. For Adam, we use start learning rate 0.0005, set $\beta = (0.9, 0.98)$, and apply the decoupled weight decay technique (AdamW) (Loshchilov and Hutter, 2019). For all the models trained with APOLLO, we set the learning rate is 0.1, $\beta = 0.9$ and $\epsilon = 1e^{-4}$. For learning rate scheduling, we applied linear warm up the learning rate for both Adam, and APOLLO - 4000 updates for Adam and 1000 updates and APOLLO. After learning rate warming up, we applied the inverse square root decay (Vaswani et al., 2017) to Adam. For APOLLO, following Ma (2020), we decayed the learning rate at the 300,000 and 450,000 updates by decay rate 0.1. Gradient clips with 1.0 are applied to all the optimization methods, and the dropout ratio are set to 0.1. Weight decay rates are $1e^{-4}$ for Adam methods and $1e^{-8}$ for APOLLO. The decoding beam size is set to 5, and the checkpoints of the last 10 epochs are averaged before evaluation. For each experiment, we conducted distributed training across eight NVIDIA Tesla V100 GPUs with maximum batch size as 8192 tokens per GPU (totally 8192×8 tokens per batch).

A.3 Masked Language Modeling for Large-Scale Pretraining and Finetuing

We pre-trained all the models on 64 Tesla V100 GPUs with the standard masked-language-modeling (MLM) objective and two pre-training corpus: (i)BERT version with BookCorpus (Zhu et al., 2015) and English Wikipedia (totally 16GB); (ii) RoBERTa version with BookCorpus, English Wikipedia, CC-News (Nagel, 2016), OpenWebText (Gokaslan and Cohen, 2019) and Stories (Trinh and Le, 2018) (totally 160GB). We use the standard Adam optimizer with a linear decay learning rate scheduler. Table 8 describes the hyperparameters for pre-training of Luna-128 model. For finetuning stage, we closely follow the training configuration used in released Roberta finetuning script for different tasks and main hyperparameters are listed in Table 9.

⁴https://github.com/pytorch/fairseq

Hyperparameter	LUNA (16GB)	LUNA (160GB)	
Number of Layers	12	12	
Hidden size	768	768	
FFN inner hidden size	3072	3072	
Attention heads	12	12	
Attention head size	64	64	
Dropout	0.1	0.1	
Attention Dropout	0.1	0.1	
Warmup Steps	15k	24k	
Peak Learning Rate	6e-4	6e-4	
Batch Size	2k	8k	
Weight Decay	0.01	0.01	
Max Steps	250K	500k	
Learning Rate Decay	Linear	Linear	
Adam ϵ	1e-6	1e-6	
Adam β_1	0.9	0.9	
Adam β_2	0.98	0.98	
Gradient Clipping	1.0	1.0	
Project Length	128	128	

Table 8: Hyperparameters for pre-training LUNA-128 on two public corpus.

Hyperparameter	GLUE	RACE	CSQA
Learning Rate	1e-5	1e-5	1e-5
Batch Size	32	64	64
Weight Decay	0.1	0.01	0.01
Max Epochs	20	20	20
Learning Rate Decay	Linear	Fixed	Polynomial Decay
Warmup Steps	6%	150	150
Dropout	0.1	0.1	0.2
Attention Dropout	0.1	0.1	0.0
Activation Dropout	0.1	0.0	0.1

Table 9: Hyperparameters for finetuning Luna on GLUE, RACE and CSQA.