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Abstract

Humans and animals have the ability to reason and make predictions about different
courses of action at many time scales. In reinforcement learning, option models
(Sutton, Precup & Singh, 1999; Precup, 2000) provide the framework for this
kind of temporally abstract prediction and reasoning. Natural intelligent agents
are also able to focus their attention on courses of action that are relevant or
feasible in a given situation, sometimes termed affordable actions. In this paper,
we define a notion of affordances for options, and develop temporally abstract
partial option models, that take into account the fact that an option might be
affordable only in certain situations. We analyze the trade-offs between estimation
and approximation error in planning and learning when using such models, and
identify some interesting special cases. Additionally, we empirically demonstrate
the ability to learn both affordances and partial option models online resulting in
improved sample efficiency and planning time in the Taxi domain.

1 Introduction

Intelligent agents flexibly reason about the applicability and effects of their actions over different
time scales, which in turn allows them to consider different courses of action. Yet modeling the entire
complexity of a realistic environment is quite difficult and requires a lot of data (Kakade et al., 2003).
Animals and people exhibit a powerful ability to control the modelling process by understanding
which actions deserve any consideration at all in a situation. By anticipating only certain aspects
of their effects over different time horizons may make models more predictable or easier to learn.
In this paper we develop the theoretical underpinnings of how such an ability could be defined and
studied in sequential decision making. We work in the context of model-based reinforcement learning
(MBRL) (Sutton and Barto, 2018) and temporal abstraction in the framework of options Sutton et al.
(1999). Theories of embodied cognition and perception suggest that humans are able to represent
the world knowledge in the form of internal models across different time scales (Pezzulo and Cisek,
2016). Option models provide a framework for RL agents to exhibit the same capability. Options
define a way of behaving, including a set of states in which an option can start, an internal policy that
is used to make decisions while the option is executing, and a stochastic, state-dependent termination
condition. Models of options predict the (discounted) reward that an option would receive over time
and the (discounted) probability distribution over the states attained at termination (Sutton et al.,
1999). Consequently, option models enable the extension of dynamic programming and many other
RL planning methods in order to achieve temporal abstraction, i.e. to be able to consider seamlessly
different time scales of decision-making.

Much of the work on learning and planning with options considers the case where they apply ev-
erywhere (Bacon et al., 2017; Harb et al., 2017; Harutyunyan et al., 2019b,a), with some notable
recent exceptions which generalize the notion of initiation sets in the context of function approxima-
tion (Khetarpal et al., 2020b). Having options that are partially defined is very important in order
to control the complexity of the planning and exploration process. However, the notion of partially
defined option models, which make predictions only from a subset of states is the focus of our paper.
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In natural intelligence, the ability to make predictions across different scales is linked with the ability
to understand the action possibilities (i.e. affordances) (Gibson, 1977) which arise at the interface of
an agent and an environment and are a key component of successful adaptive control (Fikes et al.,
1972; Korf, 1983; Drescher, 1991; Cisek and Kalaska, 2010). Recent work (Khetarpal et al., 2020a)
has described a way to implement affordances in RL agents, by formalizing a notion of intent over
state space, and then defining an affordance as the set of state-action pairs that achieve that intent to a
certain degree. One can then plan with partial, approximate models that map affordances to intents,
incurring a quantifiable amount of error at the benefit of faster learning and deliberation. In this paper,
we generalize the notion of intents and affordances to option models. As we will see in Sec. 3, this is
non-trivial and requires carefully inspecting the definition of option models. The resulting temporally
abstract models are partial, in the sense that they apply only in certain states and options.

Key Contributions. We present a framework defining temporally extended intents, affordances and
abstract partial option models (Sec. 3). We derive theoretical results quantifying the loss incurred
when using such models for planning, exposing trade-offs between single-step models and full option
models (Sec. 4). Our theoretical guarantees provide insights and decouple the role of affordances
from temporal abstraction. Empirically, we demonstrate end-to-end learning of affordances and
partial option models, showcasing significant improvement in final performance and sample efficiency
when used for planning in the Taxi domain (Sec. 5).

2 Background

In RL, a decision-making agent interacts with an environment through a sequence of actions, in
order to learn a way of behaving (aka policy) that maximizes its value, i.e. long-term expected
return (Sutton and Barto, 2018). This process is typically formalized as a Markov Decision Process
(MDP). A finite MDP is a tuple M = 〈S,A, r, P, γ〉, where S is a finite set of states, A is a finite
set of actions, r : S × A → [0, Rmax] is the reward function, P : S × A → Dist(S) is the
transition dynamics, mapping state-action pairs to a distribution over next states, and γ ∈ [0, 1)
is the discount factor. At each time step t, the agent observes a state st ∈ S and takes an action
at ∈ A drawn from its policy π : S → Dist(A) and, with probability P (st+1|st, at), enters the
next state st+1 ∈ S while receiving a numerical reward r(st, at). The value function of policy
π in state s is the expectation of the long-term return obtained by executing π from s, defined as:
V π(s) = E

[∑∞
t=0 γ

tr(St, At)
∣∣S0 = s,At ∼ π(·|St), St+1 ∼ P (·|St, At) ∀t

]
.

The goal of the agent is to find an optimal policy, π∗ = arg maxπ V
π. If the model of the MDP,

consisting of r and P , is given, the value iteration algorithm can be used to obtain the optimal
value function, V ∗, by computing the fixed-point of the Bellman equations (Bellmann, 1957):
V ∗(s) = maxa

(
r(s, a) + γ

∑
s′ P (s′|s, a)V ∗(s′)

)
,∀s. The optimal policy π∗ can be obtained by

acting greedily with respect to V ∗.

Semi-Markov Decision Process (SMDP). An SMDP (Puterman, 1994) is a generalization of MDPs,
in which the amount of time between two decision points is a random variable. The transition
model of the environment is therefore a joint distribution over the next decision state and the time,
conditioned on the current state and action. SMDPs obey Bellman equations similar to those for
MDPs.

Options. Options (Sutton et al., 1999) provide a framework for temporal abstraction which builds on
SMDPs, but also leverages the fact that the agent acts in an underlying MDP. A Markovian option
o is composed of an intra-option policy πo, a termination condition βo : S → Dist(S), where
βo(s) is the probability of terminating the option upon entering s, and an initiation set Io ⊆ S.
Let Ω be the set of all options. In this document, we will use O ⊂ Ω to denote the set of options
available to the agent and O(s) = {o|s ∈ Io} denote the set of options available at state s. In
call-and-return option execution, when an agent is at a decision point, it examines its current state s,
chooses o ∈ O(s) according to a policy over options πΩ(s), then follows the internal policy πo, until
the option terminates according to βo. Termination yields a new decision point, where this process is
repeated.

Option Models. The model of an option o predicts its reward and transition dynamics following
a state s ∈ Io, as follows: r(s, o) .

= E[Rt+1 + γRt+2 + · · · + γk−1Rt+k|St = s,Ot = o], and
p(s′|s, o) .

=
∑∞
k=1 Pr(Sk = s′, Tk = 1, T0<i<k = 0|S0 = s,A0:k−1 ∼ πo, T0:k−1 ∼ βo) =
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Figure 1: Illustration: Intents and affordances in a simple navigation task. Intents include navigation
to a particular location to pick up or drop off a passenger. Affordances can indicate e.g. if a passenger
can be dropped off (in the case where the passenger is already in the taxi) or if an option to pickup
the passenger can succeed or fail (in the case when there is no passenger at the given location).
Experiments in this domain are included in Sec. 5.

∑∞
k=1 γ

kp(s′, k|s, o), where Ti is an indicator variable equal to 1 if the option terminates upon
entering state i, and 0 otherwise. p(s′, k|s, o) is the probability that option o terminates in s′ after
exactly k time-steps, given that it started at s. Bellman optimality equations can then be expressed in
terms of option models. The optimal state value function and state-option value function, V ∗Ω and
Q∗Ω, are defined as follows:

V ∗Ω(s) = max
o∈O(s)

Q∗Ω(s, o) and Q∗Ω(s, o) = r(s, o) +
∑
s′

p(s′|s, o) max
o′∈O(s′)

Q∗Ω(s′, o′).

Partial Models. MBRL methods build reward and transition models from data, which are then used
to plan, e.g. by using the Bellman equations. However, learning an accurate model can be quite
difficult, requiring a lot of data. Moreover, the model does not need to be accurate everywhere, as
long as it is accurate in relevant places, and/or it provides useful information for identifying good
actions. A useful approach is to build partial models (Talvitie and Singh, 2009), which only make
predictions for specific parts of the observation-action space. Partial models come in two flavors:
predicting only the outcome of a subset of state-action pairs, or making predictions only about certain
parts of the observation space. Option models can be interpreted as partial models, of the first type,
because they are defined only on states where the option applies.

Affordances. Gibson (1977) coined the term “affordances” to describe the fact that certain states
enable certain actions, in the context of embodied agents. For instance, a chair “affords” sitting
for humans, water “affords” swimming for fish, etc. As a result, affordances are a function of the
environment as well as the agent, and emerge out of their interaction. In the context of Object
Oriented-MDPs (Diuk et al., 2008), Abel et al. (2014, 2015) define affordances as propositional
functions on states, which assume the existence of objects and object class descriptions. We build on
a more general notion of affordances in MDPs (Khetarpal et al., 2020a), defined as a relation between
states and actions, where an action is affordable in a state if its desired outcome (i.e. intent) is likely
to be achieved.

3 Affordances for Temporal Abstractions

We seek to reduce both the planning complexity when using option models, and the sample complexity
of learning such models, by actively eliminating from consideration choices that are unlikely to
improve the planning outcome. In particular, we build temporally abstract partial models informed by
affordances. Previous work (Khetarpal et al., 2020a) has formalized affordances in RL by considering
the desired outcome of a primitive action, i.e. the intent associated with the action. We will now
generalize this notion to intents for options, which can be achieved over the duration of the option.
To make this idea concrete, consider the example of a taxicab, which needs to pick up passengers
from given locations and drop them off at a desired destination. As discussed in Dietterich (2000),
the use of abstraction, in both state space and time, can help solve this problem. In this context, an
option could be to navigate at a particular grid location and an intent would be to pick up a passenger,
or to drop off the passenger currently in the car at the desired destination. Such an intent limits the
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space of possible options under consideration to those that have desired consequences. These intents
capture long-term desired consequences of executing options.

Given the generalization of intents to temporal abstraction, the notion of affordance can still be
defined similarly to the primitive action case in Khetarpal et al. (2020a), by including state-option
pairs which achieve the intent to a certain degree. Indeed, primitive affordances will be a special case
of option affordances. Some examples of affordances for our illustration are depicted in Fig. 1. An
agent can then build partial models of only affordable options enabling it to not only “navigate in the
affordance landscape” (Pezzulo and Cisek, 2016), but also to better gauge action choices (Cisek and
Kalaska, 2010).

3.1 Trajectory Based Option Models

In order to justify the upcoming definitions, we will start with a slight re-writing of the option models
in terms of trajectories. A trajectory τ(t) is a random variable, denoting a state-action sequence
of length t ≥ 1, τ(t) = 〈S0, A0, . . . St−1, At−1, St〉. Overloading notation, let τ(s, t) denote a
trajectory of length t for which S0 = s. Further, let τ(s, t, s′) be a trajectory of length t with S0 = s
and St = s′ and τ(s, s′) a trajectory of any length t for which S0 = s and St = s′. The return is then
a deterministic function of a trajectory: G(τ) =

∑|τ |−1
k=0 γkr(Sk, Ak), where |τ | is the length of the

trajectory. The probability of observing a given trajectory 〈s, a0 . . . st〉, s ∈ Io, under option o is:

P (τ=〈s0,a0...st〉|o)=

(
t−1∏
k=0

πo(Ak=ak|Sk=sk)P (Sk+1=sk+1|Sk=sk,Ak=ak)(1−βo(sk+1))

)
βo(st)

1−βo(st)

where the last fraction is there just to capture correctly termination at t. To simplify notation, we
denote this by Po(τ(s, t)). We can define analogously the probability of a trajectory being generated
by o starting at state s ∈ Io and ending at a given state s′ after t steps by Po(τ(s, t, s′)). The
probability of a trajectory of any length τ(s, s′) under o is then: Po(τ(s, s′)) =

∑∞
t=1 Po(τ(s, t, s′))

Let T (s, t, s′) denote the set of all trajectories starting at s, ending at s′ and of length t and
T (s, s′) = ∪tT (s, t, s′). We can write the undiscounted transition model of an option o as:

P (s′|s, o) =
∑
τ(s,s′)∈T (s,s′) Po(τ(s, s′))

The discount on a trajectory τ will be denoted γ(τ). If the discount factor is fixed per time step, this
will simply be γ|τ |; all trajectories of the same length will have the same discount, which will allow
us to factor it out of products.

The reward model of an option is:

r(s, o, s′) =
∑∞
t=1

∑
τ(s,t,s′)∈T (s,t,s′) Po(τ(s, t, s′))G(τ(s, t, s′))

The expected discount for option o on a trajectory going from s to s′ is defined as:

γo(s, s
′) =

∑∞
t=1

∑
τ(s,t,s′)∈T (s,t,s′) Po(τ(s, t, s′))γt

Note that when the action is a primitive action, then γo(s, s′) =
∑
s′ P (s′|s, o)γ We can re-write the

optimal value function of an option as:

Q∗(s, o) =
∑
s′∈S

∞∑
t=1

∑
τ(s,t,s′)

P (τ(s, t, s′)|o)[G(τ(s, t, s′)) + γ(τ(s, t, s′)) max
o′

Q∗(s′, o′)]

Note that the order of the two outer sums can be reversed. This form is equivalent to the one in Sutton
et al. (1999), but will be more useful for our results.

3.2 Option Affordances

We will now define an intent through a desired probability distribution in the space of all possible
trajectories of an option. The goal will be to obtain a strict generalization of the results established
in Khetarpal et al. (2020a) for primitive actions, in the case where each action is an option and
β(s) = 1, ∀s.

Definition 1 (Temporally Extended Intent I→o ): A temporally extended intent of option o ∈ Ω,
I→o : S → Dist(T ) specifies for each state s, a probability distribution over the space of trajectories
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T , describing the intended result of executing o in s. The associated intent model will be denoted by
PI(τ |s, o) = I→o (s, τ). A temporally extended intent I→o is satisfied to a degree, ζs,o at state s ∈ S
and option o ∈ Ω if and only if:

d(PI(τ |s, o), Po(τ(s)))≤ ζs,o, (1)

where d is a metric between probability distributions2, and τ(s, o) denotes the trajectory starting in
state s and following the option o.

We note that primitive actions have a “degenerate" trajectory, consisting of only the next state. Hence,
the only reasonable choice there is to define intent based on the next-state distribution, as done
in Khetarpal et al. (2020a). However, options have a whole trajectory, and defining intents on the
trajectory distribution provides maximum flexibility. In practice, we expect that most useful intents
would be defined in relation with the endpoint of the option, e.g. specifying an intended distribution
over the state at the end of the option, or over the joint distribution of the state and duration. Further
discussion of special cases is included in the Appendix. Based on this notion of temporally extended
intents, affordances for options can be defined as follows:

Definition 2 (Option Affordances AFI→): Given a set of options O ⊆ Ω and set
of temporally extended intents I→ = ∪o∈OI→o , and ζI

→ ∈ [0, 1], we define the affor-
dances AFI→ associated with I→ as a relation AFI→ ⊆ S ×O, such that ∀(s, o) ∈
AFI→ , I→o is satisfied to at (s, o) to degree ζs,o ≤ ζI

→
.

Intuitively, we specify temporally extended intents such as “pick up passenger”, “drop a passenger at
destination”, etc. such that the intent is satisfied to a certain degree. Affordances can then be defined
as the subset of state-option pairs that can satisfy the intent to a that degree. Fig. 1 depicts a cartoon
illustration of intents and corresponding option affordances in the classic Taxi environment.

4 Theoretical Analysis

We now analyze the value loss (Sec. 4.1) and planning loss (Sec. 4.2) induced by temporally extended
intents I→ and corresponding temporally abstract affordances AFI→ .

Lemma 1. Given a finite set of optionO ⊂ Ω and a set of temporally extended intents I→ = ∪o∈OI→o
that are satisfied to degrees ζs,o, there exist constants (ζI

→

P , ζI
→

R ), such that:

maxs,o,t,s′
∑
τ(s,t,s′)∈T (s,t,s′)

∣∣∣Po(τ(s, t, s′))− PI(τ(s, t, s′)|s, o))
∣∣∣≤ ζI→P and (2)

maxs,o

∣∣∣r(s, o)− Eτ∼PI [G(τ |s, o)]
∣∣∣≤ ζI→R (3)

where ζI
→

P := maxs,o ζs,o, ζI
→

R := ζI
→

P ||G||∞, and G(τ) is the return on the trajectory τ .

The proof is in the Appendix A.1.1. We note that the error in the approximate probability distribution
is bounded by the degree of intent satisfaction for each option i.e ζs,o. If intents are far from
the true distribution P (i.e. much larger d in Def. 1) or misspecified, then the bounds above
are predominantly governed by the approximation error induced due to the intent specification.
Moreover, the approximate reward distribution is also a factor of the error in approximating probability
distribution.

4.1 Value Loss Bound

A set of temporally extended intents I→ define an intent-induced SMDPMI→ , in which the intents
can be used to approximate the option transition and reward models. The lemma above establishes
this approximation, which in turn allows us to compute the value loss incurred when planning in the
intent-induced SMDP.

Theorem 1 (Trajectory-Based Value-Loss Bound). Given a SMDPM corresponding to a finite set
of options O and a set of temporally extended intents I→ = ∪o∈OI→o defined on option trajectories
(Def. 1), the value loss between the optimal policy for the original SMDPM and the optimal policy

2In this work, we use d to be the total variation.
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π∗I→ for the induced SMDPMI→ is given by:∣∣∣∣∣∣V π∗I→ − V ∗∣∣∣∣∣∣
∞
≤ ζI

→

R(
1− γI

→
) +

2ROmax
∑∞
t=1 γ

t|S|ζI→P(
1− γI

→
)(

1− γO
) (4)

where ζI
→

P and ζI
→

R are defined in Lemma 1, ROmax = maxs,o r(s, o) is the maximum option reward,
γI
→

= maxs,o
∑
s′ γ

I
o (s, s′) and γO = maxs,o

∑
s′ γo(s, s

′) are the maximum expected discount
factor for the intents and options respectively.

Proof is in Appendix A.2.1. Our result is a strict generalization of the results established for primitive
actions (Khetarpal et al., 2020a). Note that the value loss bound is better for temporally extended
options than for primitives, due to the dependence on the maximum expected option discount (See
Table 1). Note that in our bounds, ROmax and Rmax denote the maximum achievable reward for
options and primitive actions respectively. Further interesting corollaries are included in the Appendix.

Value Loss Bound
Actions Sub-probability Intent Trajectory based Intent
Primitive 2ζI γRmax(1−γ)2 -

Temporally Extended 2ζI
→ γROmax

(1−γ)2
ζI
→

R(
1−γI→

) +
2ROmax

∑∞
t=1 γ

t|S|ζI
→

P(
1−γI→

)(
1−γO

)
Table 1: Value Loss Analysis. The maximum value loss incurred when considering intents shows that
while both primitive (I) and temporally extended intents (I→) predominantly depend on the intent
approximation error ζ, temporally extended intents can result in gains contingent on the closeness of
the intent model and maximum expected discounting of options and intents.

4.2 Planning Loss Bound

In this section, we analyze the effect of incorporating affordances and use temporally extended
intents to build partial option models from data on the speed of planning. Similar results have
previously been established to spell out the role of the planning horizon (Jiang et al., 2015) and to
plan affordance-based partial models of primitive actions (Khetarpal et al., 2020a).

In practical scenarios, the agent may have limited information about the true model of the world.
Moreover, it might be infeasible and intractable to build a full model, especially in real-life applica-
tions. To address this, we consider the SMDPMI→ induced by models associated with temporally
extended intents and the associated affordances, and quantify the loss incurred when planning with
this model.
Theorem 2 (Trajectory-Based Planning-Loss Bound). Let I→ be a set of temporally extended intents
for a finite set of options O, and M̂AFI→ the corresponding approximate SMDP over affordable
state-option pairsAFI→ . Then, the loss incurred when using M̂AFI→ to compute a policy π∗M̂AFI→
and then using this policy in the original MDPM (also known as the certainty-equivalence planning
loss) can be bounded by:∣∣∣∣∣∣V ∗−V π∗M̂AFI→ ∣∣∣∣∣∣

∞
≤ 5ζI

→

R

(1−γI→)
+

2ROmax
(1−γI→)(1−γO)

(
2

∞∑
t=1

γt|S|ζI
→

P +

√
1

2n
log

2|AFI→ ||ΠI→ |
δ

)
with probability at least 1− δ, where ζI

→

P and ζI
→

R are defined in Lemma 1, ROmax = maxs,o r(s, o)
is the maximum option reward, γI

→
= maxs,o

∑
s′ γ

I
o (s, s′) and γO = maxs,o

∑
s′ γo(s, s

′) are
the maximum expected discount factor for the intents and options respectively.

The proof is in Appendix A.3.1. The planning loss result generalizes the result for primitive actions
provided in Khetarpal et al. (2020a). We note a similar effect of incorporating affordances in
partial models for temporally extended actions. The accuracy in approximation of the intent (via
(ζI
→

P , ζI
→

R )), the size of affordable state-option pairs |AFI→ |, and the SMDP policy class Π→I will
induce a trade-off between approximation of the intents and space of affordances. A key difference
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Planning Loss Bound
Actions Without Affordances Affordance-aware

Primitive 2Rmax
(1−γ)2 ×

(√
1

2n log 2|S||A||ΠS×A|
δ

)
2Rmax
(1−γ)2 ×

(
2γζI +

√
1

2n log 2|AFI ||ΠI |
δ

)

TEA 2ROmax
(1−γ)2

(√
1

2n log 2|S||O||ΠS×O|
δ

)
2ROmax
(1−γ)2

(
2γζI

→
+
√

1
2n log 2|AFI→ ||ΠI→ |

δ

)
Table 2: On the role of affordances in actions and options. We decouple the role of the temporal
extent of the options and the effects of incorporating affordances. Our analysis establishes improved
guarantees for planning with option models. Further gains are obtained when affordances are incorpo-
rated, though at the cost of increased approximation error due to intents through ζ. We note that for
simplicity, we present the bounds obtained when intents are defined on the distribution of an option’s
terminal state, a corollary of Theorem 2. The table highlights the trade-offs between estimation (via
the model learning depending on the data size n) and approximation (via the specification of intents).

in planning with the approximate partial option models M̂AFI→ is that the error can be controlled
through the maximum expected discount factor for both intent and option models which in turn
depends on the minimum expected duration of all affordable options.

Table 2 summarizes the effects of using temporally extended models and affordances. First, we note
that the planning with affordances introduces a trade-off between approximation and estimation in
both primitive and temporally extended actions. Concretely, the approximation error is induced due
to the specification of intents through ζI

→
, whereas the estimation error is induced due to learning of

the transition and has a dependence on the data size n and the size of the policy class ΠI→ .

5 Empirical Analysis

In this section, we study the impact of using affordances to learn partial option models which are then
used for planning, in order to corroborate the theoretical results established in Sec. 4. In Sec. 5.1, we
use a hand designed set of affordances to show that it can improve training stability as well as sample
efficiency when used to learn a single partial option model, conditioned on a state-option pair. Then, in
Sec. 5.2 we demonstrate the viability of learning the set of affordances at the same time as the partial
option model resulting in a set of affordances that were smaller than those that were hand designed.

Option Policies 
πo(a|s)

(s, o, s’, r)

Learning

A(Θ) Mɸ

Planning

Intents

π(o|s)

Asynchronous

🚕 Environment

A Affordances
Mɸ Option Model

Model transfer
Data transfer
Prior Knowledge

Rollouts

��

Evaluation

��

(fixed)
(fixed)

Figure 2: Experimental pipeline.

Environment. We consider the 5× 5 Taxi domain (Diet-
terich, 2000). The domain is a grid world with four des-
ignated pickup/drop locations, marked as R(ed), B(lue),
G(reen), and Y(ellow). See Fig. 1 for illustration. The
agent controls a taxi and faces an episodic problem: the
taxi starts in a randomly-chosen square and is given a goal
location at which a passenger must be dropped. The pas-
senger is at one of the three other locations. To complete
the task, the agent must drive the taxi to the passenger’s
location, pick them up, go to the destination, and drop the
passenger there. The action space consists of six primitive
actions: Up, Down, Left, Right, Pickup, and Drop. The
agent gets a reward of −1 per step, +20 for successfully
dropping the passenger at the goal and −10 for dropping
the passenger at the wrong location. There are a total
of 25 (grid positions) ×4 (goal destinations) ×5 (passen-
ger scenarios) = 500 states in this environment and the
observation is a one-hot vector.

Option set O. We consider a fixed set of taxi-centric options, defined as follows: Go to a grid
position (25 options); Drop passenger at grid position (25 options); Pickup passenger from grid
position (25 options). The options are pre-trained via value iteration and fixed for all our experiments.
In total there are 75× 500 = 37500 state-option pairs.
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(a) Data collection and model learn-
ing with affordances.

(b) Planning with affordances. (c) Data collection, model learning
and planning with affordances.

Figure 3: The impact of affordance sets on success rate at different parts of the learning
pipeline. (a) The use of affordances improves model learning even in the absence of any affor-
dances during planning (blue dotted). (b) The use of affordances did not impact planning because
the underlying quality of the model is the same. (c) When using affordances both during model
learning and planning (blue dashed), the best performance is obtained. Curves are smoothed over 4
independent seeds using ggplot’s stat_smooth using a span of 0.1 and confidence interval of 95%.

Experimental pipeline. 3 We use pre-trained options, o= 〈Io = S, πo(a|s), βo(s)〉, to collect
transition data (st, o, T, st+T , r =

∑T
i=t ri) where option o was initiated at state st and ended in

state st+T after T steps, accumulating a reward of r. We execute options until termination or for Tmax

steps, whichever comes first. We learn linear models to predict the next state distribution P̂φ1
(s′|s, o),

option duration, L̂φ2(s, o) and reward r̂φ3(s, o), where φ denote parameter vectors. Affordances can
be incorporated in model learning by selecting only affordable options during the data collection and
to mask the loss of unaffordable state-option transitions:∑

(s,o,T,s′,r)∈D A(s, o, s′, I→)
[
− log P̂φ1

(s′|o, s) + (L̂φ2
(o, s)− T )2 + (r̂φ3

(s, o)− r)2
]

(5)

where A(s, o, s′, I) is 1 if (s, o, s′) is affordable according to the intent I and 0 otherwise. We use
the learned models, M̂ , in value iteration to obtain a policy over options πO(o|st). Affordances
can be incorporated into planning by only considering state-option pairs in the affordance set (See
Algorithm 1 in the Appendix). We report the success rate, i.e., the proportion of episodes in which
the agent successfully drops the passenger at the correct location. Data collection, learning, and
evaluation happen asynchronously and simultaneously (Fig 2) using the Launchpad framework (Yang
et al., 2021).

5.1 Intents and affordances are most useful in model learning when the affordance sets are
more relevant.

In this section we investigate the utility of using affordances on different aspects of the pipeline by
considering a fixed set of affordances used either during model learning or planning. We first define
three intent sets, I→, and their corresponding affordances:

1. Everything: All options are affordable at every state resulting in 37,500 state-option pairs
in this affordance set.

2. Pickup+Drop: We build this set of affordances heuristically, by eliminating all options that
simply go to a grid position, resulting in 25,000 state-option pairs .

3. Pickup+Drop@Goal: We create this affordance set of 4,000 state-option pairs that termi-
nate at the four destination positions only.

When learning the partial model, using the most restrictive and relevant affordance set
(Pickup+Drop@Goal) to collect data and mask the loss (*→ Everything) significantly improves
the sample efficiency (Fig. 3(a)). The difference between Everything and Pickup+Drop was in-
significant suggesting that the order of magnitude decrease in the number of state-option pairs in the
affordance set is important (See also Sec 5.2 for more analysis of the affordance set size). Additionally,
using any affordance set enables the use of a higher learning rate for learning the model without
divergence (Fig. B1). On the other hand, given the same option model, using affordance sets only
during planning (Everything→*) does not create any improvement in the success rate (Fig. 3(b)) or
decrease in the planning iterations (Fig. 4): the quality of the model dictates the success rate.

3We will provide the source code for our empirical analysis here.
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Finally, using the most restrictive affordance set for both model learning and planning
(Pickup+Drop@Goal→Pickup+Drop@Goal) can result in further improvements in the sample effi-
ciency (Fig. 3(c)) as well as accelerated planning time (Fig. 4)) demonstrating a combined benefit of
using affordances in more aspects of the pipeline.

5.2 Relevant affordances can be learned online and result in improved sample efficiency.

Figure 4: Improvements in planning iterations
when using affordances. When using affordances
during model learning and in both model learning
and planning, we get sustained decrease in plan-
ning iterations compared to not using them or only
using them during planning.

In this section, we demonstrate the ability to
learn affordances at the same time as learning
the partial option model. To do this, we train a
classifier, Aθ(s, o, s′, I) ∈ [0, 1] corresponding
to intent I ∈ I→, which predicts if a state-
option pair is affordable. Pickup+Drop@Goal
is defined by 8 intents: four that are com-
pleted when the agent has a passenger in the
vehicle at the destinations; and four that are
completed when the agent has dropped the
passenger at the destinations. We convert
Aθ(s, o, s

′, I) into an indicator for Eq. 5, by
ensuring that at least one of the intents in
the intent set is affordable, A(s, o, s′, I→) =
1[(maxI∈I→(A(s, o, s′, I))> k] at some
threshold value, k. When k = 0, all state and
options are affordable. The affordance classifier
is learned at the same time as the option model,
M̂ , using the standard cross entropy objective:
−
∑
I∈I→ c(s, o, s′, I) log A(s, o, s′, I) where c(s, o, s′, I) is the intent completion function

indicating if intent I was completed during the transition.

The threshold, k, controls the size of the affordance set (Fig. 5(a)) with larger k’s resulting in smaller
affordance sets. The learned affordance set for Pickup+Drop@Goal is 2,000 state-option pairs
which smaller than what we heuristically defined (4,000 state-option pairs). Smaller affordance sets
result in improved sample efficiency (Fig. 5(b)). We highlight that this is not necessarily obvious
since the learned affordance sets could remove potentially useful state-options pairs and k would be
used to control how restrictive the sets are. These results show that affordances can be learned online
for a defined set of intents and result in good performance. In particular, there are sample efficiency
gains by using more restricted affordance sets.

Our results here demonstrate empirically that learning a partial option model requires much fewer
samples as opposed to learning a full model. We also corroborate this with theoretical guarantees
on sample and computational complexity of obtaining an ε-estimation of the optimal option value
function, given only access to a generative model (See Appendix Sec. C).

(a) (b)

Figure 5: The impact of learning the affordance set for Pickup+Drop@Goal on (a) size of the
affordance set and (b) success in the downstream task. There is a one-to-one correspondence
between the threshold, k, the affordance set size and the success rate on the taxi task. The learned
affordance set for Pickup+Drop@Goal is smaller than the heuristic used in Fig. 3(c).
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6 Related Work

Affordances are viewed as the action opportunities (Gibson, 1977; Chemero, 2003), emerging out of
the agent-environment interaction (Heft, 1989), and have been typically studied in AI as possibilities
associated with an object (Slocum et al., 2000; Fitzpatrick et al., 2003; Lopes et al., 2007; Montesano
et al., 2008; Cruz et al., 2016, 2018; Fulda et al., 2017; Song et al., 2015; Abel et al., 2014).
Affordances have also been formalized in RL without the assumption of objects (Khetarpal et al.,
2020a). Our work presents the general case of temporal abstraction (Sutton et al., 1999).

The process model of behavior and cognition (Pezzulo and Cisek, 2016) in the space of affordances
is expressed at multiple levels of abstraction. During interactive behavior, action representations at
different levels of abstraction can indeed be mapped to findings about the way in which the human
brain adaptively selects among predictions of outcomes at different time scales (Cisek and Kalaska,
2010; Pezzulo and Cisek, 2016).

In RL, the generalization of one-step action models to option models (Sutton et al., 1999) enables
an agent to predict and reason at multiple time scales. Precup et al. (1998) established dynamic
programming results for option models which enjoy similar theoretical guarantees as primitive action
models. Abel et al. (2019) proposed expected-length models of options. Our theoretical results can
also be extended to expected-length option models.

Building agents that can represent and use predictive knowledge requires efficient solutions to
cope with the combinatorial explosion of possibilities, especially in large environments. Partial
models (Talvitie and Singh, 2009) provide an elegant solution to this problem, as they only model
part of the observation. Existing methods focus on predictions for only some of the observations (Oh
et al., 2017; Amos et al., 2018; Guo et al., 2018; Gregor et al., 2019; Zhao et al., 2021), but they still
model the effects of all actions and focus on single-step dynamics (Watters et al., 2019). Recent work
by Xu et al. (2020) proposed a deep RL approach to learn partial models with goals akin to intents,
which is complementary to our work.

7 Conclusions and Limitations

We presented notions of intents and affordances that can be used together with options. They allow
us to define temporally abstract partial models, which extend option models to be conditioned on
affordances. Our theoretical analysis suggests that modelling temporally extended dynamics for only
relevant parts of the environment-agent interface provides two-fold benefits: 1) faster planning across
different timescales (Sec. 4), and 2) improved sampled efficiency (Appendix Sec. C). However, these
benefits can come at the cost of some increase in approximation bias, but this tradeoff can still be
favourable. For example, in the low-data regime, intermediate-size affordances (much smaller than
the entire state-option space) could really improve the speed of planning. Picking intents judiciously
can also induce sample complexity gains, if the approximation error due to the intent is manageable.
Our empirical illustration shows that our approach can produce significant benefits.

Limitations & Future Work. Our analysis assumes that the intents and options are fixed apriori.
To learn intents, we envisage an iterative algorithm which alternates between learning intents and
affordances, such that intents can be refined over time and the mis-specifications can also be self-
corrected (Talvitie, 2017). Our analysis is complimentary to any method for providing or discovering
intents. Another important future direction is to build partial option models and leverage their
predictions in large scale problems (Vinyals et al., 2019). Besides, it would be useful to relate our
work to cognitive science models of intentional options, which can reason about the space of future
affordances (Pezzulo and Cisek, 2016). Aligned with future affordances, a promising research avenue
is to study the emergence of new affordances at the boundary of the agent-environment interaction in
the presence of non-stationarity (Chandak et al., 2020).
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Appendix
Temporally Abstract Partial Models

A Proofs

A.1 Lemmas and Remarks

A.1.1 Proof of Lemma 1

Proof. (Approximate Probability Distributions) From Def. 1, ∀I→o ∈ I→, I→o is satisfied to a degree,
ζs,o at state s ∈ S and option o ∈ O if and only if:

d(PI(τ |s, o), Po(τ(s)))≤ ζs,o,

where d is a metric between probability distributions. Let ζI
→

P = maxs,o ζs,o. The result follows
immediately.

(Approximate Reward Distributions) Let ζI
→

R =
∣∣∣∣G∣∣∣∣∞ζI→P . We now consider the maximum error

in approximation of rewards due to intent specification as follows:

maxs,o

∣∣∣r(s, o)− Eτ∼PI [G(τ |s, o)]
∣∣∣

= max
s,o

∣∣∣∑
s′

r(s, o, s′)−
∑
s′

∑
τ

∞∑
t=1

PI(τ(s, t, s′)|s, o))G(τ(s, t, s′))
∣∣∣

= max
s,o

∣∣∣∑
s′

∑
τ

∞∑
t=1

Po(τ(s, t, s′)|s, o))G(τ(s, t, s′))−

∑
s′

∑
τ

∞∑
t=1

PI(τ(s, t, s′)|s, o))G(τ(s, t, s′))
∣∣∣

= max
s,o

∣∣∣∑
s′

∞∑
t=1

(∑
τ

Po(τ(s, t, s′)|s, o))− PI(τ(s, t, s′)|s, o))
)
G(τ(s, t, s′))

∣∣∣
≤
∣∣∣∣∣∣G∣∣∣∣∣∣

∞
ζI
→

P = ζI
→

R

A.1.2 Remarks

Remark 1. Given a finite SMDPM, a finite set of optionsO, the maximum achievable optimal value
function

∣∣∣∣∣∣V ∗∣∣∣∣∣∣
∞

is upper bounded by ROmax
(1−γO)

where γO = maxs,o
∑
s′ γo(s, s

′), and ROmax =

maxs,o R(s, o).

Proof. To upper bound the optimal value function, we consider
∣∣∣∣∣∣Q∗∣∣∣∣∣∣

∞
= maxs,o Q

∗(s, o) =

maxs max
o

Q∗(s, o)︸ ︷︷ ︸
V ∗

. Then, ∀ s, o ∈ S,O :

Q∗(s, o) =
∑
s′

∞∑
t=1

∑
τ(s,t,s′)

P (τ(s, t, s′)|o)[G(τ(s, t, s′) + γ(τ(s, t, s′)) max
o′

Q∗(s′, o′)]

=R(s, o) +
∑
s′

∞∑
t=1

∑
τ(s,t,s′)

P (τ(s, t, s′)|o)γ(τ(s, t, s′)) max
o′

Q∗(s′, o′)
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Taking the max norm on both sides,

max
s,o

Q∗(s, o) =
∣∣∣∣∣∣R(s, o) +

∑
s′

∞∑
t=1

∑
τ(s,t,s′)

P (τ(s, t, s′)|o)γ(τ(s, t, s′)) max
o′

Q∗(s′, o′)
∣∣∣∣∣∣
∞

≤max
s,o

R(s, o) + max
s,o

∑
s′

∞∑
t=1

∑
τ(s,t,s′)

P (τ(s, t, s′)|o)γ(τ(s, t, s′))

︸ ︷︷ ︸∑
s′ γo(s,s′)

max
o′

Q∗(s′, o′)

≤ROmax +
∣∣∣∣∣∣Q∗∣∣∣∣∣∣

∞
max
s,o

∑
s′

γo(s, s
′)

=⇒
∣∣∣∣∣∣Q∗∣∣∣∣∣∣

∞
≤ROmax

(
1−max

s,o

∑
s′

γo(s, s
′)

)−1

=⇒
∣∣∣∣∣∣V ∗∣∣∣∣∣∣

∞
≤ROmax

(
1−max

s,o

∑
s′

γo(s, s
′)

)−1

=ROmax
(
1− γO

)−1
.

Remark 2. Given a finite SMDPM, a finite set of options O, with D as the minimum expected
duration for which all options execute, γ to be the maximum expected option discount factor, the
maximum achievable optimal value function Vmax is upper bounded by ROmax

(1−γD)
=

ROmax
(1−γO)

, where
ROmax is the maximum achievable reward by an option, and D = mins,o logγ

∑
s′ p(s

′|s, o).

Proof. Consider the maximum achievable optimal value function in the SMDPM to be Vmax.
Vmax = ||V ∗O||∞.

Then, ∀ s ∈ S:

V ∗O(s) = max
o∈O

[
R(s, o) +

∑
s′

p(s′|s, o)V ∗O(s′)
]

≤max
o∈O

[
R(s, o) +

∑
s′

p(s′|s, o) max
s′′∈S

V ∗O(s′′)
]

= max
o∈O

[
R(s, o) + γo(s) max

s′′∈S
V ∗O(s′′)

]
, substituting γo(s) =

∑
s′

p(s′|s, o)

= max
o∈O

[
R(s, o) + γo(s)||V ∗O||∞

]
≤max

o∈O
R(s, o)︸ ︷︷ ︸

≤ROmax

+ max
s,o∈S,O

γo(s)︸ ︷︷ ︸
≤γmax

||V ∗O||∞

≤ROmax + γmax||V ∗O||∞, where ROmax = max
s,o

R(s, o)

=⇒ ||V ∗O||∞ ≤
ROmax

(1− γmax)
.

Note consider the following definition of D:

D = min
s,o

logγ
∑
s′

p(s′|s, o) = min
s,o

logγ γo(s)

= logγ max
s,o

γo(s)︸ ︷︷ ︸
γmax

, since γ < 1, logγ is a monotonically decreasing function

= logγ γmax

=⇒ γmax = γD =⇒ γD = γO

Therefore, Vmax ≤ ROmax
(1−γO)

.
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A.2 Proofs - Value Loss Analysis

Note: For convenience, throughout our proofs we will be using I instead of I→ to denote a set of
temporally extended intents. Similarly, we will use I instead of I→o to denote a temporally extended
intent for an option o.

A.2.1 Proof of Theorem 1

Proof. Formally, the value loss is defined as

∣∣∣∣∣∣V π∗IM − V ∗M∣∣∣∣∣∣∞ = max
s∈S

∣∣∣V π∗IM (s)− V ∗M(s)
∣∣∣

We now consider the RHS and expand as follows:

max
s∈S

∣∣∣V π∗IM (s)− V ∗M(s)
∣∣∣≤max

s∈S

∣∣∣V ∗M(s)− V ∗MI (s)
∣∣∣︸ ︷︷ ︸

Term 1

+ max
s∈S

∣∣∣V π∗IM (s)− V ∗MI (s)
∣∣∣︸ ︷︷ ︸

Term 2

Bounding Term 1.

maxs∈S

∣∣∣V ∗M(s)− V ∗MI (s)
∣∣∣= max

s∈S
max
o∈O

∣∣∣Q∗(s, o)−Q∗I(s, o)∣∣∣
Expanding the action-value loss from the RHS above, we get:

Q∗(s, o)−Q∗I(s, o) =

=
∑
s′

∞∑
t=1

∑
τ(s,t,s′)

P (τ(s, t, s′)|o)[G(τ(s, t, s′) + γ(τ(s, t, s′)) max
o′

Q∗(s′, o′)]

−
∑
s′

∞∑
t=1

∑
τ(s,t,s′)

PI(τ(s, t, s′)|o)[G(τ(s, t, s′) + γ(τ(s, t, s′)) max
o′

Q∗I(s
′, o′)]

=
∑
s′

∞∑
t=1

∑
τ(s,t,s′)

(P (τ(s, t, s′)|o)− PI(τ(s, t, s′)|o)G(τ(s, t, s′)

+
∑
s′

∞∑
t=1

∑
τ(s,t,s′)

γ(τ(s, t, s′))
(
P (τ(s, t, s′)|o) max

o′
Q∗(s′, o′)− PI(τ(s, t, s′)|o) max

o′
Q∗I(s

′, o′)
)

= (R(s, o)−RI(s, o)) +
∑
s′

∞∑
t=1

∑
τ(s,t,s′)

γ(τ(s, t, s′))
(
P (τ(s, t, s′)|o) max

o′
Q∗(s′, o′)

− PI(τ(s, t, s′)|o) max
o′

Q∗(s′, o′) + PI(τ(s, t, s′)|o) max
o′

Q∗(s′, o′)− PI(τ(s, t, s′)|o) max
o′

Q∗I(s
′, o′)

)
= (R(s, o)−RI(s, o)) +

∑
s′

∞∑
t=1

∑
τ(s,t,s′)

γ(τ(s, t, s′))(P (τ(s, t, s′)|o)− PI(τ(s, t, s′)|o)) max
o′

Q∗(s′, o′)

+
∑
s′

∞∑
t=1

∑
τ(s,t,s′)

γ(τ(s, t, s′))PI(τ(s, t, s′)|o)) max
o′

(Q∗(s′, o′)−Q∗I(s′, o′))
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Taking the max norm and applying triangle inequality, we get:

∣∣∣∣∣∣Q∗ −Q∗I ∣∣∣∣∣∣∞ = max
s,o

[
(R(s, o)−RI(s, o))+∑

s′

∞∑
t=1

∑
τ(s,t,s′)

γ(τ(s, t, s′))(P (τ(s, t, s′)|o)− PI(τ(s, t, s′)|o)) max
o′

Q∗(s′, o′)

+
∑
s′

∞∑
t=1

∑
τ(s,t,s′)

γ(τ(s, t, s′))PI(τ(s, t, s′)|o)) max
o′

(Q∗(s′, o′)−Q∗I(s′, o′))
]

≤
∣∣∣∣R−RI ∣∣∣∣∞ + max

s,o

∑
s′

∞∑
t=1

∑
τ(s,t,s′)

γ(τ(s, t, s′))
(
P (τ(s, t, s′)|o)− PI(τ(s, t, s′)|o)

)
||Q∗||∞

+ max
s,o

∑
s′

∞∑
t=1

∑
τ(s,t,s′)

γ(τ(s, t, s′))PI(τ(s, t, s′)|o))

︸ ︷︷ ︸∑
s′ γ

I
o(s,s′)

∣∣∣∣∣∣Q∗ −Q∗I ∣∣∣∣∣∣∞
≤
∣∣∣∣R−RI ∣∣∣∣∞ + max

s,o

∑
s′

∞∑
t=1

∑
τ(s,t,s′)

γ(τ(s, t, s′))
(
P (τ(s, t, s′)|o)− PI(τ(s, t, s′)|o)

)∣∣∣∣∣∣Q∗∣∣∣∣∣∣
∞

+ max
s,o

∑
s′

γIo (s, s′)
∣∣∣∣∣∣Q∗ −Q∗I ∣∣∣∣∣∣∞

Rearranging, we get:

∣∣∣∣∣∣Q∗ −Q∗I ∣∣∣∣∣∣∞ ≤ (1−max
s,o

∑
s′

γIo (s, s′)
)−1[∣∣∣∣R−RI ∣∣∣∣∞+

max
s,o

∑
s′

∞∑
t=1

∑
τ(s,t,s′)

γ(τ(s, t, s′))
(
P (τ(s, t, s′)|o)− PI(τ(s, t, s′)|o))

)∣∣∣∣Q∗∣∣∣∣∞]

Since V ∗(s) = maxo Q
∗(s, o), we can rewrite the above as following:

∣∣∣∣∣∣V ∗M − V ∗MI ∣∣∣∣∣∣∞ ≤ (1−max
s,o

∑
s′

γIo (s, s′)
)−1[∣∣∣∣R−RI ∣∣∣∣∞+

+ max
s,o

∑
s′

∞∑
t=1

∑
τ(s,t,s′)

γ(τ(s, t, s′))
(
P (τ(s, t, s′)|o)− PI(τ(s, t, s′)|o))

)∣∣∣∣V ∗∣∣∣∣∞]
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Bounding Term 2. We now consider the term 2 and bound the policy evaluation error i.e.
maxs∈S

∣∣∣V π∗IM (s)− V π
∗
I
MI (s)

∣∣∣
V
π∗I
M (s)− V π

∗
I
MI (s) =

=
∑
s′

∞∑
t=1

∑
τ(s,t,s′)

P (τ(s, t, s′)|π∗I(s))[G(τ(s, t, s′)) + γ(τ(s, t, s′))V
π∗I
M (s′)]

−
∑
s′

∞∑
t=1

∑
τ(s,t,s′)

PI(τ(s, t, s′)|π∗I(s))[G(τ(s, t, s′)) + γ(τ(s, t, s′))V
π∗I
MI (s′)]

=
∑
s′

∞∑
t=1

∑
τ(s,t,s′)

(
P (τ(s, t, s′)|π∗I(s))− PI(τ(s, t, s′)|π∗I(s)

)
G(τ(s, t, s′))

+
∑
s′

∞∑
t=1

∑
τ(s,t,s′)

γ(τ(s, t, s′))
(
P (τ(s, t, s′)|π∗I(s))V

π∗I
M (s′)− PI(τ(s, t, s′)|π∗I(s))V

π∗I
MI (s′)

)

= (R(s, π∗I(s))−RI(s, π∗I(s))) +
∑
s′

∞∑
t=1

∑
τ(s,t,s′)

γ(τ(s, t, s′))
(
P (τ(s, t, s′)|π∗I(s))V

π∗I
M (s′)

− PI(τ(s, t, s′)|π∗I(s))V
π∗I
M (s′) + PI(τ(s, t, s′)|π∗I(s))V

π∗I
M (s′)− PI(τ(s, t, s′)|π∗I(s))V

π∗I
MI (s′)

)
= (R(s, π∗I(s))−RI(s, π∗I(s))) +

∑
s′

∞∑
t=1

∑
τ(s,t,s′)

γ(τ(s, t, s′))(P (τ(s, t, s′)|π∗I(s))− PI(τ(s, t, s′)|π∗I(s)))V
π∗I
M (s′)

+
∑
s′

∞∑
t=1

∑
τ(s,t,s′)

γ(τ(s, t, s′))PI(τ(s, t, s′)|π∗I(s)))
(
V
π∗I
M (s′)− V π

∗
I
MI (s′)

)

Taking the max over all states, and applying triangle inequality we get:

max
s∈S

∣∣∣V π∗IM (s)− V π
∗
I
MI (s)

∣∣∣=

max
s

∣∣∣(R(s, π∗I(s))−RI(s, π∗I(s)))

+
∑
s′

∞∑
t=1

∑
τ(s,t,s′)

γ(τ(s, t, s′))(P (τ(s, t, s′)|π∗I(s))− PI(τ(s, t, s′)|π∗I(s)))V
π∗I
M (s′)

+
∑
s′

∞∑
t=1

∑
τ(s,t,s′)

γ(τ(s, t, s′))PI(τ(s, t, s′)|π∗I(s)))
(
V
π∗I
M (s′)− V π

∗
I
MI (s′)

)∣∣∣
≤
∣∣∣∣R−RI ∣∣∣∣∞

+ max
s

∑
s′

∞∑
t=1

∑
τ(s,t,s′)

γ(τ(s, t, s′))|P (τ(s, t, s′)|π∗I(s))− PI(τ(s, t, s′)|π∗I(s)))
∣∣∣∣∣∣V π∗IM ∣∣∣∣∣∣

∞

+ max
s

∑
s′

∞∑
t=1

∑
τ(s,t,s′)

γ(τ(s, t, s′))PI(τ(s, t, s′)|π∗I(s)))
∣∣∣∣∣∣V π∗IM (s′)− V π

∗
I
MI

∣∣∣∣∣∣
∞

Rearranging the terms, we get:∣∣∣∣∣∣V π∗IM − V π∗IMI ∣∣∣∣∣∣∞ ≤ (1−max
s,o

∑
s′

γIo (s, s′)
)−1[∣∣∣∣R−RI ∣∣∣∣∞+

+ max
s,o

∑
s′

∞∑
t=1

∑
τ(s,t,s′)

γ(τ(s, t, s′))
∣∣P (τ(s, t, s′)|o)− PI(τ(s, t, s′)|o)|

)∣∣∣∣V ∗∣∣∣∣∞]
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Plugging the bounds for the two terms in our original loss, and plugging the upper bound on the
optimal value function from Remark 1, we get:

∣∣∣∣∣∣V π∗IM − V ∗M∣∣∣∣∣∣∞ ≤ (1−max
s,o

∑
s′

γIo (s, s′)
)−1∣∣∣∣∣∣R−RI ∣∣∣∣∣∣

∞
+

2ROmax

(
1−maxs,o

∑
s′ γ

I
o (s, s′)

)−1

(
1−maxs,o

∑
s′ γo(s, s

′)
) ×

max
s,o

∑
s′

∞∑
t=1

∑
τ(s,t,s′)

γ(τ(s, t, s′))
∣∣∣P (τ(s, t, s′)|o)− PI(τ(s, t, s′)|o))

∣∣∣
Further, substituting Lemma 1, we get the final result as follows:∣∣∣∣∣∣V π∗IM − V ∗M∣∣∣∣∣∣∞ ≤ ζIR(

1− γI
) +

2ROmax
∑∞
t=1 γ

t|S|ζIP(
1− γI

)(
1− γO

)
Recall that I was used to denote I→, the set of temporally extended intents, throughout the proof.

A.2.2 Corollary 1. SMDP - Multi-Time-Model of Intent - Value Loss Bound

A special case of our formulation is to model the consequences of following a specific course of
action based on final state representations at the SMDP level.

More precisely, the multi-time-model of an option intent must characterize both the target state distri-
bution resulting upon the option’s completion, and the intended temporal scale at which the option
operates i.e. I→o : S → SDist(S), where SDist stands for the set of all sub-probability distributions
over S. The intent-induced transition model would then take the role of the transition dynamics
reflected by the option model (assuming rewards are the same and known). For this case, we require
a metric between sub-probability distributions and assume that,
Assumption 1. For each state-option pair, the total variation between the intended distribution PI
and the true distribution P is bounded by a constant ζs,o, i.e.∑

s′

∣∣∣PI(s′|s, o)− p(s′|s, o)∣∣∣≤ ζs,o. (6)

The degree of satisfaction of the intent is the maximum over all (s, o) pairs, i.e. maxs,o ζs,o = ζI .

Corollary 1. [Multi-Time-Model of Intent- Value Loss.] Given a SMDPM corresponding to a set
of options O and a set of temporally extended multi-time-model of intents, the value loss between the
optimal policy for the original SMDPM and the optimal policy π∗I→ for the induced SMDPMI→
is given by: ∣∣∣∣∣∣V π∗I→M − V ∗M

∣∣∣∣∣∣
∞
≤ 2ζI

→ γROmax
(1− γ)2

, (7)

where ζI
→

is the degree of satisfaction of the intents (Eq. 6), ROmax = maxs,o r(s, o) is the maximum
option reward, and γ is the maximum expected option discount factor.

Proof. We now show that our general result in Theorem 1 can be reduced to a specific case of
considering the multi-time-option model of intents.

We first assume here that rewards are known and given which results in the term
∣∣∣∣R−RI ∣∣∣∣∞ = 0,

and the second term can be simplified further as follows:∣∣∣∣∣∣Q∗ −Q∗I ∣∣∣∣∣∣∞ ≤
∣∣∣∣Q∗∣∣∣∣∞

1−maxs,o
∑
s′ γ

I
o (s, s′)

max
s,o

∑
s′

∞∑
t=1

∑
τ(s,t,s′)

γ(τ(s, t, s′))
∣∣P (τ(s, t, s′)|o)− PI(τ(s, t, s′)|o)

∣∣
Plugging Remark 1, we get:

||V π
∗
I
M − V

∗
M||∞ ≤

2ROmax
(1− γ)2

max
s,o

∑
s′

∞∑
t=1

∑
τ(s,t,s′)

γ(τ(s, t, s′))
∣∣∣P (τ(s, t, s′)|o)− PI(τ(s, t, s′)|o)

∣∣∣
︸ ︷︷ ︸

≤γζI→
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Simplifying terms, we get the final result∣∣∣∣∣∣V π∗IM − V ∗M∣∣∣∣∣∣∞ ≤ 2ζI
γROmax
(1− γ)2

A.3 Proofs - Planning Loss Analysis

Definition 3 (Policy class ΠI→): Given affordance set AFI→ , letMI→ be the set of SMDPs over
the state-options pairs in AFI→ , let

ΠI→ = {π∗M} ∪ {π : ∃M̄ ∈MI→ s.t. π is optimal in M̄}.

A.3.1 Proof of Theorem 2. Planning Loss - Trajectories Based Intent.

Proof. To prove this theorem we will be using the lemmas below: Lemma 2, Lemma 3, and Lemma 4,
and 5.

Note: For convenience, throughout our proofs we will be using I instead of I→ to denote a set of
temporally extended intents. Similarly, we will use I instead of I→o to denote a temporally extended
intent for an option o.

Lemma 2. For any SMDP M̂AFI , which is an approximate model of the SMDP given by the intent
collection I4, we have∣∣∣∣∣∣V ∗MI − V π∗M̂AFIMI

∣∣∣∣∣∣
∞
≤ 2 max

π∈ΠI
||V πMI − V

π
M̂AFI

||∞. (8)

Proof. ∀s ∈ S , Let us consider:

V ∗MI (s)− V
π∗M̂AFI
MI (s)

=
(
V ∗MI (s)− V

π∗MI
M̂AFI

(s)
)

+
(
V
π∗MI
M̂AFI

(s)− V ∗M̂AFI (s)
)

︸ ︷︷ ︸
≤0

+
(
V ∗M̂AFI

(s)− V
π∗M̂AFI
MI (s)

)

≤
(
V ∗MI (s)− V

π∗MI
M̂AFI

(s)
)
−
(
V ∗M̂AFI

(s)− V
π∗M̂AFI
MI (s)

)
≤ 2 max

π∈
{
π∗
M̂AFI

,π∗MI

} ∣∣∣V πMI (s)− V πM̂AFI (s)
∣∣∣

Taking a max over all states on both sides of the inequality and noticing that the set of all policies is a
trivial super set of

{
π∗M̂AFI

, π∗MI

}
, we get the equation in Lemma 2 above. Moreover since, our

definition of ΠI is a superset with the optimal policies included, we can further say the following:∣∣∣∣∣∣V ∗MI − V π∗M̂AFIMI

∣∣∣∣∣∣
∞
≤ 2 max

π∈ΠI
||V πMI − V

π
M̂AFI

||∞.

Lemma 3. For any SMDP M̂AFI bounded by [0, ROmax] with corresponding value function bounded
by Vmax which is an approximate of the SMDP estimated from data experienced in the world for a
set of intents I,∣∣∣∣∣∣V πMI − V πM̂AFI ∣∣∣∣∣∣∞ ≤ 1(

1− γI
) max

s,o

∣∣∣(R̂I(s, o) + 〈γ̂(s, o, ; )P̂I(s, o, ; ), V πMI 〉)− V
π
MI

∣∣∣.
(9)

4We overload notation and throughout our proofs, for convenience we interchangeably use I and I to denote
set of temporally extended intents.
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Proof. Given any policy over options π, define state-value function V0, V1, . . . Vm such that V0 =
V πMI ,

From this point onward, we use AFI(o) and AFI(s) to denote affordable states and affordable
options respectively. Recall that AFI ⊆ S ×O.

∀s ∈ AFI(o),
Vm(s) =

∑
o∈AFI(s)

π(o|s)
(
R̂(s, o) + 〈P̂I(s, o, ; ), Vm−1〉

)
Now, rewriting the above in new format:

Vm(s) =
∑
o

π(o|s)

[∑
s′

∞∑
t=1

∑
τ(s,t,s′)

P̂I(τ(s, t, s′)|o)[G(τ(s, t, s′)) + γ(τ(s, t, s′))Vm−1(s′)]

]

Therefore:

||Vm − Vm−1||∞ = max
s

 ∑
o∈AFI(s)

π(o|s)
∑
s′

∞∑
t=1

∑
τ(s,t,s′)

P̂I(τ(s, t, s′)|o)γ(τ(s, t, s′))(Vm−1(s′)− Vm−2(s′))


≤max

s

∑
o∈AFI(s)

π(o|s)
∑
s′

∞∑
t=1

∑
τ(s,t,s′)

P̂I(τ(s, t, s′)|o)γ(τ(s, t, s′))||Vm−1 − Vm−2||∞

= max
s

∑
o∈AFI(s)

π(o|s)
∑
s′

γIo (s, s′)||Vm−1 − Vm−2||∞

(10)

Since E[
∑
s′ γ

I
o (s, s′)]≤maxs,o

∑
s′ γ

I
o (s, s′), therefore

||Vm − Vm−1||∞ ≤max
s,o

∑
s′

γIo (s, s′)︸ ︷︷ ︸
γI

||Vm−1 − Vm−2||∞

Therefore,

||Vm − V0||∞
m−1∑
k=0

||Vk+1 − Vk||∞ ≤ ||V1 − V0||∞
m−1∑
k=1

(γI)k−1.

Taking the limit m→∞, Vm→ V πM̂AFI
, we have:

||VM̂AFI − V0||∞ ≤
1(

1− γI
) ||V1 − V0||∞

where notice that V0 = V πMI and

V1 =
∑

o∈AFI(s)

π(o|s)
(
R̂I + 〈γ(s, o, ; )P̂I(s, o; ), V πM 〉

)
.

Therefore,∣∣∣∣∣∣V πMI − V πM̂AFI ∣∣∣∣∣∣∞
≤ 1(

1− γI
) max

s

∣∣∣ ∑
o∈AFI(s)

π(o|s)(R̂I(s, o) + 〈γ(s, o, ; )P̂I(s, o, ; ), V πMI 〉)− V
π
MI

∣∣∣
≤ 1(

1− γI
) max

s,o

∣∣∣(R̂I(s, o) + 〈γ(s, o, ; )P̂I(s, o, ; ), V πMI 〉)− V
π
MI

∣∣∣.
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Next, we turn to Lemma 4.

Lemma 4. For any SMDP M̂AFI with value function bounded by Vmax which is an approximate of
the SMDP estimated from data experienced in the world for a set of intents I, The following holds
with probability at least 1− δ:∥∥∥∥V ∗MI − V π∗M̂AFIMI

∥∥∥∥
∞
≤ 2ROmax(

1− γI
)(

1− γO
)√ 1

2n
log

2|AFI ||ΠI |
δ

.

Proof. Using Lemma 2 (L2) and Lemma 3( L3), we have∥∥∥∥V π∗MIMI − V
π∗M̂AFI
MI

∥∥∥∥
∞
≤ 2 max

π∈ΠI

∥∥∥V πMI − V πM̂AFI ∥∥∥∞ L2.

≤ 2(
1− γI

) max
π∈ΠI

s×o∈AFI

∣∣∣(R̂I(s, o) + 〈γ(s, o, ; )P̂I(s, o, ; ), V πMI 〉)− V
π
MI

∣∣∣L3.

Since (P̂I(s, o, ; ), V πMI 〉)− V
π
MI ) is the average of the IID samples the agent obtains by interacting

with the environment, bounded in [0, Vmax] with mean V πMI (for any s, o, π tuple i.e. state, option
and policy over options tuple). Then according to Hoeffdings inequality,

∀t≥ 0, P
(∣∣∣ ∑

o∈AFI(s)

(R̂I(s, o) + 〈γ(s, o, ; )P̂I(s, o, ; ), V πMI 〉)− V
π
MI

∣∣∣> t
)
≤ 2 exp

{
−2nt2

(Vmax)2

}
To obtain a uniform bound over all s, o, π tuples, we equate the RHS to δ

|AFI(o)||AFI(s)|ΠI | and the
result follows as shown below.

2 exp

{
−2nt2

(Vmax)2

}
=

δ

|AFI(o)||AFI(s)||ΠI |
−2nt2

(Vmax)2
= log

δ

2|AFI(o)||AFI(s)||ΠI |
2nt2

(Vmax)2
= log

2|AFI(o)||AFI(s)||ΠI |
δ

t2 = Vmax
1

2n
log

2|AFI(o)||AFI(s)||ΠI |
δ

t= Vmax

√
1

2n
log

2|AFI(o||AFI(s)||ΠI |
δ

We express the state-option pairs in affordances as the size of affordances. Formally, the size of
affordances for a intent can be expressed as |AFI |. Plugging this back, and using Remark 1, we get
the final result.

Lemma 5. Given any policy over options π, we have∣∣∣∣∣∣V πM − V πMI ∣∣∣∣∣∣∞ ≤ 1

(1− γI)

(
2ζIR +

∣∣∣∣∣∣V πM∣∣∣∣∣∣∞ max
s,o

∞∑
t=1

γt|S|ζIP
)

(11)

Proof. We will use the following Bellman operator:

T πMf =
∑
o

π(o|s)
[∑

s′

∞∑
t=1

∑
τ(s,t,s′)

P (τ(s, t, s′)|o)[G(τ(s, t, s′) + γ(τ(s, t, s′))f(s′)]
]
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(T πM1
− T πM2

)f(s)

=
∑
o

π(o|s)
[(
R1(s, o)−R2(s, o)

)
+
∑
s′

∞∑
t=1

∑
τ(s,t,s′)

γtf(s′)
(
P1(τ(s, t, s′)|o)− P2(τ(s, t, s′)|o)

)]

=
∑
o

π(o|s)
(
R1(s, o)−R2(s, o)

)
+
∑
o

π(o|s)
∑
s′

∞∑
t=1

γt
∑

τ(s,t,s′)

f(s′)
(
P1(τ(s, t, s′)|o)− P2(τ(s, t, s′)|o)

)

≤ ζIR +
∣∣∣∣∣∣f ∣∣∣∣∣∣

∞
max
s,o

∞∑
t=1

γt
∑
s′

∑
τ(s,t,s′)

(
P1(τ(s, t, s′)|o)− P2(τ(s, t, s′)|o)

)

≤ ζIR +
∣∣∣∣∣∣f ∣∣∣∣∣∣

∞
max
s,o

∞∑
t=1

γt
∑
s′

[ ∑
τ(s,t,s′)

(
P1(τ(s, t, s′)|o)− P2(τ(s, t, s′)|o)

)]

≤ ζIR +
∣∣∣∣∣∣f ∣∣∣∣∣∣

∞

∞∑
t=1

γt|S|ζIP

and

T πMf1(s)− T πMf2(s) =

=
∑
o

π(o|s)
(
R1(s, o)−R2(s, o)

)
+
∑
o

π(o|s)
∑
s′

∞∑
t=1

∑
τ(s,t,s′)

γtPM(τ(s, t, s′)
(
f1(s′)− f2(s′)

)
≤ ζIR +

∣∣∣∣∣∣f1 − f2

∣∣∣∣∣∣
∞

max
s,o

∑
s′

γMo (s, s′)

Now, the following holds for the initial value error we are interested to bound:

||V πM − V πMI ||∞ ≤ ||V
π
M − T πMIV

π
M||∞ + ||T πMIV

π
M − V πMI ||∞

= ||T πMV πM − T πMIV
π
M||∞ + ||T πMIV

π
M − T πMIV

π
MI ||∞

= ||(T πM − T πMI )V πM||∞ + ||T πMI (V πM − V πMI )||∞

≤ ζIR +
∣∣∣∣∣∣V πM∣∣∣∣∣∣∞ max

s,o

∞∑
t=1

γt|S|ζIP + ζIR + max
s,o

∑
s′

γIo (s, s′)||V πM − V πMI ||∞

Unfolding the above to infinity, we obtain in the limit the following:

||V πM − V πMI ||∞ ≤
1

(1−maxs,o
∑
s′ γ

I
o (s, s′))

(
2ζIR +

∣∣∣∣∣∣V πM∣∣∣∣∣∣∞ max
s,o

∞∑
t=1

γt|S|ζIP
)

Therefore,

||V πM − V πMI ||∞ ≤
1

(1− γI)

(
2ζIR +

∣∣∣∣∣∣V πM∣∣∣∣∣∣∞ max
s,o

∞∑
t=1

γt|S|ζIP
)

Plugging Lemmas Back. Now the following holds for the original LHS of the planning loss bound
we are after.∣∣∣∣∣∣V ∗M − V π∗M̂AFIM

∣∣∣∣∣∣
∞
≤
∣∣∣∣∣∣V ∗M − V π∗MIM

∣∣∣∣∣∣
∞

+
∣∣∣∣∣∣V π∗MIM − V ∗MI

∣∣∣∣∣∣
∞

+∣∣∣∣∣∣V ∗MI − V π∗M̂AFIMI

∣∣∣∣∣∣
∞

+
∣∣∣∣∣∣V π∗M̂AFIMI − V

π∗M̂AFI
M

∣∣∣∣∣∣
∞
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Theorem 1 applies to the first term, Lemma 5 to the second and forth term, and Lemma 4 for the third
term. Finally,

∣∣∣∣∣∣V ∗M − V π∗M̂AFIM

∣∣∣∣∣∣
∞
≤ 1(

1− γI
)ζIR +

2ROmax(
1− γI

)(
1− γO

) max
s,o

∞∑
t=1

γt|S|ζIP+

2

(1− γI)

(
2ζIR +

ROmax
(1− γO)

max
s,o

∞∑
t=1

γt|S|ζIP
)

+

2ROmax(
1− γI

)(
1− γO

)√ 1

2n
log

2|AFI ||ΠI |
δ

Rearranging terms, we get:

∣∣∣∣∣∣V ∗M − V π∗M̂AFIM

∣∣∣∣∣∣
∞
≤ 5ζIR(

1− γI
) +

2ROmax(
1− γI

)(
1− γO

)(2 max
s,o

∞∑
t=1

γt|S|ζIP +

√
1

2n
log

2|AFI ||ΠI |
δ

)

A.3.2 Corollary 3. SMDP - Multi-Time-Model of Intent : Planning Loss

Analogous to the value loss analysis, we obtain the special case of planning loss bound for multi-
time-model of an option intent as follows:

Corollary 2 (Multi-Time-Model of Intent- Planning Loss.). Let M be any SMDP, I→ a set of
temporally extended multi-time-model of intents, O a set of options, and M̂AFI→ the corresponding
approximate SMDP over affordable state-option pairs AFI→ . Then, the certainty equivalence
planning loss with M̂AFI→ is

∣∣∣∣∣∣V ∗M − V π∗M̂AFI→M

∣∣∣∣∣∣
∞
≤ 2ROmax

(1− γO)2

(
2γζI

→
+

√
1

2n
log

2|AFI→ ||ΠI→ |
δ

)

with probability at least 1− δ, where ζI
→

is the degree of satisfaction of the intents (Eq. 1), ROmax =
maxs,o r(s, o) is the maximum option reward, and γO = maxs,o

∑
s′ γo(s, s

′) is the maximum
expected discount factor for both intent and option model.

Proof. We now show that the trajectories-based planning loss bound can be reduced to the special
case where intents were defined via sub-probability distributions incorporating both time and final
state.

First, we consider the trajectories-based planning loss bound:

∣∣∣∣∣∣V ∗M − V π∗M̂AFIM

∣∣∣∣∣∣
∞
≤ 5ζIR(

1− γI
) +

2ROmax(
1− γI

)(
1− γO

)(2 max
s,o

∞∑
t=1

γt|S|ζIP +

√
1

2n
log

2|AFI ||ΠI |
δ

)

We plug our assumption that rewards are known and given which results in the constant ζIR = 0,
option and intent discount factors are assumed to be the same i.e. γO = γI , and the second term can
be simplified further as follows:
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∣∣∣∣∣∣V ∗M − V π∗M̂AFIM

∣∣∣∣∣∣
∞
≤ 2ROmax(

1− γO
)2 ×

(
2 max

s,o

∑
τ(s,t,s′)

γ(τ(s, t, s′))
∣∣∣P (τ(s, t, s′)|o)− PI(τ(s, t, s′)|o)

∣∣∣
︸ ︷︷ ︸

≤γζI

+

(12)√
1

2n
log

2|AFI ||ΠI |
δ

)
≤ 2ROmax(

1− γO
)2 ×

(
2γζI +

√
1

2n
log

2|AFI ||ΠI |
δ

)
(13)

A.4 Intent expression on end-state

Consider the definition of Q∗(s, o) from Sec. 3 and note that it can be re-written in our notation as:

Q∗(s, o) =
∑
s′

(r(s, o, s′) + γo(s, s
′) max

o′
Q∗(s′, o′))

Note that γo(s, s′)≤ γ. With this notation, it is clear that the previous results from Sec. A.2 and
Sec. A.3 on value loss and planning loss from Khetarpal et al. (2020a) apply readily. In particular,
if options only take a single step, we recover exactly their bounds, as the reward difference upper
bound ζIR will be 0 and the above inequality becomes equality i.e. γo(s, s′) = γ.

B Details of Experiments

B.0.1 Implementation Details

We use the environment implementation from OpenAI Gym5. We build upon open source code
released by Khetarpal et al. (2020a) significantly scaling it up using Launchpad (Yang et al., 2021).
Our code can be found at https://github.com/deepmind/affordances_option_models/. We implemented
three nodes:

1. Data collection (Rollout): Runs options, πo(a|s), in the environment to collect transition
data.

2. Model (and affordance) learning (Trainer): Uses the data from the Rollout node to train the
option models and affordance models where relevant.

3. Planning and evaluation (Evaluation): Uses the trained options models to perform value
iteration and obtain a policy over options, πO(ot|st). The policy over options, πO(ot|st),
and options, πo(a|s), are then evaluated over 1000 episodes to record the proportion that
successfully dropped the passenger.

We used a shared internal cluster and each run used≈ 3 cpus for≈ 48 hours. We used linear networks
for all models. We initialize the affordance classifier to output 1 by shifting the input to the final
sigmoid by 2, i.e. Aθ(s, o, s′, I) = sigmoid(fθ(s, o, s

′, I) + 2), where fθ is a linear model.

B.0.2 Hyperparameter Settings

Given the simplicity and purpose of our experiments we only did a hyperparameter sweep over the
learning rate (0.001, 0.0001). We chose the maximum option length to be a 100 to allow options to
terminate naturally. We set the hidden size of the models to be 0 (i.e. linear models). Each experiment
was repeated for 4 independent seeds. We use the color-blind friendly palette from Lawlor (2020) for
our figures.

5https://github.com/openai/gym/blob/master/gym/envs/toy_text/taxi.py
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Figure B1: A higher learning rate can be used to learn the model when using affordances.
Right shows divergence when using an unrestricted affordance set (Everything) for a higher learning
rate compared to using any affordances.

C Sample Complexity Analysis - Multi-Time-Model of Intent

Classical methods for planning in RL assume access to the complete knowledge of the MDP. However,
in large domains, this is an infeasible assumption. A common approach is to consider sample-based
models in which the transitions are estimated by sampling the model, with the number of calls to this
sampler referred to as the sample complexity. In practise, a model P̂ is estimated to approximate the
transition model which is then used for planning (See Sec 4.2).

We then ask the question of how difficult is to build an approximate model for everything in an
environment. It is intuitive to see that modelling one-time step dynamics would require samples in
the order of magnitude of the size of the state-action space (See Table 3). To mitigate this, we propose
constructing temporally abstract partial models. Specifically, we examine the sample complexity
of obtaining an ε estimation of the optimal action-value function given only access to a generative
model (Kearns and Singh, 1999; Kakade et al., 2003; Azar et al., 2012).

Consider a SMDPM where a deterministic policy over options is a map π : S →O that maps a state
into an option. The value function of a policy π is a vector V π ∈ R|S|, defined as follows, ∀s ∈ S:

V π(s) :=
∑
o∈O π(o|s) [r(s, o) +

∑
s′ p(s

′|s, o)V π(s′)] ,

where p(s′|s, o) =
∑∞
k=1 p(s

′, k)γk.

Analogously, the option value functionQπ ∈ R|S×O|, for a policy π is defined as follows, ∀s ∈ S ×O

Qπ(s, o) := r(s, o) + (Po · V π)(s, o),

where
Po =

∑
s′

p(s′|s, o), V π(s′) =
∑
o′∈O′

π(o′|s′)Qπ(s′, o′)

As described earlier, we assume access to a generative model, which can provide us with samples
at the SMDP level {s′, τ} ∼ P (·|s, o). Similar to previously described setting, we consider a set of
temporally extended intents I→, with the assumption that each option o has an intent associated with
it Io, resulting in an induced SMDPMI , with corresponding option models denoted by P Io . Let
M̂AFI→ be the approximate SMDP over affordable state-option pairs denoted by AFI→ , with P̂ Io
as the corresponding options model.

We then define P̂ Io , our empirical model for each option o ∈ O be defined as follows. ∀o ∈ O:

P̂I(s
′|s, o) =

count(s, o, s′)

N
=

∑N
i=1 1{s′i = s′}γτi

N
,

where {s′i, τi} ∼ P (·|s, o)∀1≤ i≤N.
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Sample Complexity
Actions Without Affordances Affordance-aware
Primitive O

(
|S|A|

(1−γ)4ε2

)
O
(
|AFI |

(1−γ)4ε2

)
Temporally Extended O

(
|S||O|

(1−γ)4ε2

)
O
(
|AFI |

(1−γ)4ε2

)
Table 3: Comparison of Sample Complexity - provides evidence on the role of temporal abstraction
and affordances in obtaining an ε estimation of the optimal value function. Incorporating affordances
results in potential improvements in sample complexity in both primitive and temporally extended
actions, although at the cost of approximation error induced via intents. Here γ is the maximum
expected discount factor for both intent and option model.

where count is the number of times the state-option pair (s, o) pair transitions to s′. Note thatMI
and M̂AFI→ are equivalent to the SMDPM in reward6, except the estimated transition dynamics
instead of the true transition kernel per option i.e. Po.

To derive an ε optimal estimate of the optimal value function in the SMDP, we here consider the
SMDP Q-value iteration (QVI) (Sutton et al., 1999) analogous to the primitive case of Q-value
iteration, but only for state-option pairs that are affordable. See C.1.1 for details.
Theorem 3. LetM be a SMDP, I→ a set of temporally extended intents corresponding to a set of
options O. If M̂AFI→ is the corresponding approximate SMDP over affordable state-option pairs
AFI→ , and Qk is returned by SMDP Q-value iteration at the kth epoch, with inputs including the
approximate SMDP as the generative model, and number of samples m, where

m=O
(
|AFI→ |

(1− γ)4ε2

)
,

then with probability greater than 1− δ, the following holds for ε≥ 2ζI
→

γ
(1−γ)2 , and for all s, o:

||Qk −Q∗||∞ ≤ ε,

where ζI
→

is the degree of satisfaction of the intents, γ is the maximum expected discount factor of

an option, k =
log

(
ε(1−γ)2−2ζI

→
γ

2(1−γ)

)
log γ

, and Q∗ is the optimal option value function in the underlying
SMDPM.

The proof is in Appendix C.1.2. The approximation error in the intended distribution ζI
→

predomi-
nantly governs how good an estimate of the optimal option value function can be made for a given set
of intents I→. Our results suggests that we can only guarantee approximations of Q∗ up to the lower
bound on ε i.e. 2ζI

→
γ

(1−γ)2 .

Following through the proof of Theorem 3, it is easy to show that the number of samples m required
to obtain an ε estimation of the optimal Q-value function without incorporating affordances is
proportional to the size of the state-option space as shown in Theorem 4.

Theorem 4. LetM be a SMDP with a set of options O. If M̂ is the corresponding approximate
SMDP, and Qk is returned by SMDP Q-value iteration at the kth epoch, with inputs including the
approximate SMDP as the generative model, and number of samples m, where

m=O
( |S||O|

(1− γ)4ε2

)
,

then with probability greater than 1− δ, the following holds for all s and o:

||Qk −Q∗||∞ ≤ ε,

where γ is the maximum expected option discount factor, k = log(ε(1−γ))
log γ

, and Q∗ is the optimal
option value function in the underlying SMDPM.

6Note that here we assume the reward function is known and deterministic and therefore is identical to the
true SMDP.
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For a complete proof, See Appendix C.1.3. To summarize, Table 3 decouples the role of temporal
abstraction and the effect of incorporating affordances. Predicting and reasoning across multiple
timescales naturally results in a growing set of action choices leading to a large number of sam-
ples. Larger gains can be established when considering both temporal abstractions and affordance
information, with a carefully designed set of intents.

C.1 Proofs - Sample Complexity Analysis

Note: We again overload notation and throughout our proofs, for convenience we interchangeably use
I and I→ to denote set of temporally extended intents. Similarly, for convenience we interchangeably
use I and I→o to denote a temporally extended intent for an option o.

C.1.1 SMDP Q-Value Iteration (QVI)

To derive an ε optimal estimate of the optimal option-value function in the SMDP, we here consider
the SMDP Q-value iteration (SMDP-QVI) (Sutton et al., 1999) process as detailed in algorithm
below.

Algorithm 1 Model-based SMDP Q-Value Iteration (SMDP-QVI)
1: V0 = 0, Q0 = 0
2: for epoch k = 1 . . . K do
3: for (s, o) ∈ AFI , do
4: Qk(s, o) = r(s, o) + (P̂ Io Vk−1)(s, o)
5: Vk(s) = maxo∈AFI(s) Qk(s, o)
6: end for
7: end for
8: Output Qk

C.1.2 Proof of Theorem 3 - Sample complexity of Temporally Abstract Partial Model.

Proof. We here consider the transition models in the ground SMDPM, the intent induced SMDP
MI , and the approximate SMDP M̂AFI over affordable state-option pairs are denoted by Po, P Io ,
and P̂ Io respectively.

We here consider
∣∣∣∣∣∣Qk −Q∗∣∣∣∣∣∣

∞
.

Adding and subtracting Q̂∗M̂AFI
and Q∗MI we get,

Qk −Q∗ =Qk − Q̂∗M̂AFI︸ ︷︷ ︸
Term (A)

+ Q̂∗M̂AFI
−Q∗MI︸ ︷︷ ︸

Term (B)

+Q∗MI −Q
∗︸ ︷︷ ︸

Term (C)

Bounding Term (A)∣∣∣∣∣∣Qk − Q̂∗M̂AFI ∣∣∣∣∣∣∞ = max
(s,o)∈AFI

[
r(s, o) + (P̂ Io Vk−1)(s, o)− (r(s, o) + (P̂ Io V̂

∗)(s, o))
]

= max
(s,o)∈AFI

∣∣∣(P̂ Io (Vk−1 − V̂ ∗))(s, o)
∣∣∣

≤ γ
∣∣∣∣∣∣Vk−1 − V̂ ∗

∣∣∣∣∣∣
∞

≤ γ max
s∈AFI(o)

∣∣∣ max
o∈AFI(s)

Qk−1(s, o)− max
o∈AFI(s)

Q̂∗M̂AFI
(s, o)

∣∣∣
≤ γ max

(s,o)∈AFI

∣∣∣Qk−1(s, o)− Q̂∗M̂AFI (s, o)
∣∣∣

= γ
∣∣∣∣∣∣Qk−1 − Q̂∗M̂AFI

∣∣∣∣∣∣
∞
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Unrolling the above k times, we get;

∣∣∣∣∣∣Qk − Q̂∗M̂AFI ∣∣∣∣∣∣∞ ≤ (γ)k
∣∣∣∣∣∣Q0 − Q̂∗M̂AFI

∣∣∣∣∣∣
∞
≤ (γ)k

(1− γ)

Bounding Term (B)(
Q̂∗M̂AFI

−Q∗MI
)

(s, o) = (P̂ Io V̂
∗)(s, o)− (P Io V

∗)(s, o)

= (P̂ Io V
∗ − P Io V ∗)(s, o)︸ ︷︷ ︸+ (P̂ Io V̂

∗)(s, o)− (P̂ Io V
∗)(s, o)︸ ︷︷ ︸ Adding and Subtracting P̂ Io V

∗

=
((
P̂ Io − P Io

)
V ∗
)

(s, o)−
(
P̂ Io

(
V ∗ − V̂ ∗

))
(s, o)

=
((
P̂ Io − P Io

)
V ∗
)

(s, o)−∑
s′∈AFI(o)

P̂ Io (s′|s, o)
(

max
o′∈AFI(s)

Q∗MI (s′, o′)− max
o′∈AFI(s)

Q̂∗M̂AFI
(s′, o′)

)

Considering the max over all state-options, we have;∣∣∣∣∣∣Q̂∗M̂AFI −Q∗MI ∣∣∣∣∣∣∞ ≤ ∣∣∣∣∣∣(P̂ Io − P Io )V ∗∣∣∣∣∣∣+ γ
∣∣∣∣∣∣Q̂∗M̂AFI −Q∗MI ∣∣∣∣∣∣∞

Finally; ∣∣∣∣∣∣Q̂∗M̂AFI −Q∗MI ∣∣∣∣∣∣∞ ≤ 1

(1− γ)

∣∣∣∣∣∣(P̂ Io − P Io )V ∗MI ∣∣∣∣∣∣
Now let’s fix a state option pair (s, o) ∈ AFI

(
P̂ Io − P Io

)
V ∗MI =

1

N

N∑
i=1

V ∗MI (s′i)− Es′∈P Io (·|s,o)[V
∗
MI (s′)]

=
1

N

(
SN − E[SN ]

)
where SN =

∑N
i=1 Xi and Xi = V ∗(s

′

i), Xi are independent variable and |Xi| ≤ Vmax.

We now consider the Hoeffdings inequality:

P
( 1

N
(SN − E[SN ])≥ t

)
≤ 2 exp

(−N2t2

NV 2
max

)
= 2 exp

(−Nt2
V 2
max

)
Applying Hoeffdings, we get;

P
(

max
s,o∈AFI

∣∣∣(P̂ Io − P Io )V ∗MI (s, o)
∣∣∣≥ t)= P

(
∃(s, o ∈ AFI)s.t.

∣∣∣(P̂ Io − P Io )V ∗MI (s, o)
∣∣∣≥ t)

≤
∑
AFI

Pr
(∣∣∣(P̂ Io − P Io )V ∗MI (s, o)

∣∣∣≥ t)// Union Bound

= 2|AFI(o)||AFI(s)| exp
(−Nt2
V 2
max

)
= 2|AFI | exp

(−Nt2
V 2
max

)
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We assume that the failure probability δ ≥ 0, We then solve for t by equating the RHS to δ as follows:

2|AFI | exp
(−Nt2
V 2
max

)
= δ

exp
(−Nt2
V 2
max

)
=

δ

2|AFI |
−Nt2

V 2
max

= log
δ

2|AFI |

t2 =
V 2
max

N
log

2|AFI |
δ

t= Vmax

√
1

N
log

2|AFI |
δ

Plugging this back in Term (B)
∣∣∣∣∣∣Q̂∗M̂AFI −Q∗MI

∣∣∣∣∣∣
∞
≤ 1

(1−γ)

∣∣∣∣∣∣(P̂o − Po)V ∗∣∣∣∣∣∣, we get:

∣∣∣∣∣∣Q̂∗M̂AFI −Q∗MI ∣∣∣∣∣∣∞ ≤ Vmax
(1− γ)

√
1

N
log

2|AFI |
δ

Based on Remark 2,

∣∣∣∣∣∣Q̂∗M̂AFI −Q∗MI ∣∣∣∣∣∣∞ ≤ ROmax
(1− γ)2

√
1

N
log

2|AFI |
δ

Bounding Term (C)
∣∣∣∣∣∣Q∗MI −Q∗∣∣∣∣∣∣∞

We first define the following optimality bellman operator:

Q∗M = T Q∗M
where

(
T f
)

:=R(s, o) + 〈P (s, o), Vf 〉

whereVf (·) := max
o∈O

f(·, o)

Our aim here is to bound
∣∣∣∣∣∣Q∗M1

−Q∗M2

∣∣∣∣∣∣
∞

for any two SMDP models M1 and M2.

Let T1 and T2 be the Bellman operator of the SMDPs M1 and M2 respectively. Therefore,∣∣∣∣∣∣Q∗M1
− T2Q

∗
M1

∣∣∣∣∣∣
∞

=
∣∣∣∣∣∣T1Q

∗
M1
− T2Q

∗
M1

∣∣∣∣∣∣
∞

= max
(s,o)∈S×O

∣∣∣〈P1(s, o), V ∗M1
〉 − 〈P2(s, o), V ∗M1

〉
∣∣∣

= max
(s,o)∈S×O

∣∣∣Es′∼P1(s,o)[V
∗
M1

(s′)]− Es′∼P2(s,o)[V
∗
M1

(s′)]
∣∣∣

≤
∣∣∣∣∣∣dF

M1,M2

∣∣∣∣∣∣
∞

Therefore, ∣∣∣∣∣∣Q∗M1
−Q∗M2

∣∣∣∣∣∣
∞

=
∣∣∣∣∣∣Q∗M1

− T2Q
∗
M1

+ T2Q
∗
M1
− T2Q

∗
M2

∣∣∣∣∣∣
∞

≤
∣∣∣∣∣∣dF

M1,M2

∣∣∣∣∣∣
∞

+
∣∣∣∣∣∣T2Q

∗
M1
− T2Q

∗
M2

∣∣∣∣∣∣
∞
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Bounding the second term of the last step i.e.
∣∣∣∣∣∣T2Q

∗
M1
− T2Q

∗
M2

∣∣∣∣∣∣
∞

;∣∣∣T2f1(s, o)− T2f2(s, o)
∣∣∣=
∣∣∣(r(s, o) + 〈P2(s, o)Vf1(s)〉

)
−
(
r(s, o) + 〈P2(s, o)Vf2(s)〉

)∣∣∣
=
∣∣∣〈P2(s, o)Vf1(s)〉

)
− 〈P2(s, o)Vf2(s)〉

∣∣∣
≤ max

(s,o)∈S×O

∣∣∣Es′∼P2(s,o)[Vf1(s′)]− Es′∼P2(s,o)[Vf2(s′)]
∣∣∣

= max
(s,o)∈S×O

∑
s′

P2(s′|s, o)
∣∣∣Vf1(s′)− Vf2(s′)

∣∣∣
≤ γ

∣∣∣∣∣∣V ∗M1
− V ∗M2

∣∣∣∣∣∣
∞

Therefore, ∣∣∣∣∣∣Q∗MI −Q∗∣∣∣∣∣∣∞ ≤ ∣∣∣∣∣∣dF
M1,M2

∣∣∣∣∣∣
∞

+ γ
∣∣∣∣∣∣V ∗MI − V ∗∣∣∣∣∣∣∞

where note that the second term in the last step is bounded as following,

max
s

∣∣∣V ∗M1
− V ∗M2

∣∣∣= max
s

∣∣∣max
o

Q∗M1
(s, o)−max

o
Q∗M2

(s, o)
∣∣∣

≤max
s

∣∣∣max
o

(Q∗M1
(s, o)−Q∗M2

(s, o))
∣∣∣

≤max
s,o

∣∣∣Q∗M1
(s, o)−Q∗M2

(s, o)
∣∣∣

=
∣∣∣∣∣∣Q∗M1

−Q∗M2

∣∣∣∣∣∣
∞

Therefore, ∣∣∣∣∣∣Q∗MI −Q∗∣∣∣∣∣∣∞ ≤ ∣∣∣∣∣∣dF
M1,M2

∣∣∣∣∣∣
∞

+ γ
∣∣∣∣∣∣V ∗MI − V ∗∣∣∣∣∣∣∞

≤
∣∣∣∣∣∣dF

M1,M2

∣∣∣∣∣∣
∞

+ γ
∣∣∣∣∣∣Q∗MI −Q∗∣∣∣∣∣∣∞

≤ 1

(1− γ)

∣∣∣∣∣∣dF
MI ,M

∣∣∣∣∣∣
∞

≤ ζIγROmax
(1− γ)2

.

We conclude,∣∣∣∣∣∣Qk −Q∗∣∣∣∣∣∣
∞
≤
∣∣∣∣∣∣Qk − Q̂∗M̂AFI→ ∣∣∣∣∣∣∞ +

∣∣∣∣∣∣Q̂∗M̂AFI→ −Q∗MI ∣∣∣∣∣∣∞ +
∣∣∣∣∣∣Q∗MI −Q∗∣∣∣∣∣∣∞

≤ (γ)k

(1− γ)
+

1

(1− γ)2

√
1

N
log(2|AFI |) +

ζIγROmax
(1− γ)2

To obtain an ε estimation of the optimal Q-value function in the SMDP, we distribute the error across
Term A, B, and C such that ;∣∣∣∣∣∣Qk −Q∗∣∣∣∣∣∣

∞
≤ Term (A) + Term (C)︸ ︷︷ ︸

≤ε/2

+ Term (B)︸ ︷︷ ︸
≤ε/2

By choosing k =
log

(
ε(1−γ)2−2ζγ

2(1−γ)

)
log γ

and N = 4
(1−γ)4ε2 log(2|AFI→ |), we get

∣∣∣∣∣∣Qk −Q∗∣∣∣∣∣∣
∞
≤

ε/2 + ε/2
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Note that this choice of k holds if and only if:

ε(1− γ)2 ≥ 2ζIγ

ε≥ 2ζIγ

(1− γ)2

Therefore, the total number of samples needed to get an ε-estimation of the optimal option value
function is;

N |S||O|=O
( |AFI→ |

(1− γ)4ε2

)

C.1.3 Proof of Theorem 4 - Sample complexity of Temporally Abstract Full Model.

Proof. We here consider
∣∣∣∣∣∣Qk −Q∗∣∣∣∣∣∣

∞
, andQ∗ is the optimal option value function in the underlying

SMDPM.

Adding and subtracting Q̂∗ we get,

Qk −Q∗=Qk − Q̂∗︸ ︷︷ ︸
Term (A)

+ Q̂∗ −Q∗︸ ︷︷ ︸
Term (B)

Bounding Term (A)∣∣∣∣∣∣Qk − Q̂∗∣∣∣∣∣∣
∞

= max
(s,o)∈S×O

[
r(s, o) + P̂oVk−1(s, o)− (r(s, o) + P̂oV̂

∗(s, o))
]

= max
(s,o)∈S×O

∣∣∣P̂o(Vk−1 − V̂ ∗)(s, o)
∣∣∣

≤ γD
∣∣∣∣∣∣Vk−1 − V̂ ∗

∣∣∣∣∣∣
∞

≤ γD max
s∈S

∣∣∣max
o∈O

Qk−1(s, o)−max
o∈O

Q̂∗(s, o)
∣∣∣

≤ γD max
(s,o)∈S×O

∣∣∣Qk−1(s, o)− Q̂∗(s, o)
∣∣∣

= γD
∣∣∣∣∣∣Qk−1 − Q̂∗

∣∣∣∣∣∣
∞

Unrolling the above k times, we get;∣∣∣∣∣∣Qk − Q̂∗∣∣∣∣∣∣
∞
≤ (γD)k

∣∣∣∣∣∣Q0 − Q̂∗
∣∣∣∣∣∣
∞
≤ (γD)k

(1− γD)

Bounding Term (B)(
Q̂∗ −Q∗

)
(s, o) = P̂oV̂

∗(s, o)− PoV ∗(s, o)

= P̂oV
∗(s, o)− PoV ∗(s, o)− P̂oV̂ ∗(s, o)− P̂oV ∗(s, o) Adding and Subtracting P̂oV ∗

=
(
P̂o − Po

)
V ∗(s, o)− P̂o

(
V̂ ∗ − V ∗

)
(s, o)

=
(
P̂o − Po

)
V ∗(s, o)−

∑
s′∈S

P̂o(s
′|s, o)

(
max
o′∈O

Q̂∗(s′, o′)−max
o′∈O

Q∗(s′, o′)
)

Therefore; ∣∣∣∣∣∣Q̂∗ −Q∗∣∣∣∣∣∣
∞
≤
∣∣∣∣∣∣(P̂o − Po)V ∗∣∣∣∣∣∣+ γD

∣∣∣∣∣∣Q̂∗ −Q∗∣∣∣∣∣∣
∞
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Finally; ∣∣∣∣∣∣Q̂∗ −Q∗∣∣∣∣∣∣
∞
≤ 1

(1− γD)

∣∣∣∣∣∣(P̂o − Po)V ∗∣∣∣∣∣∣
Now let’s fix a state option pair (s, o) ∈ S ×O(

P̂o − Po
)
V ∗ =

1

N

N∑
i=1

V ∗(s′i)− Es′∈Po(·|s,o)[V
∗(s′)]

=
1

N

(
SN − E[SN ]

)
where SN =

∑N
i=1 Xi and Xi = V ∗(s

′

i), Xi are independent variable and |Xi| ≤ Vmax.

We now consider the Hoeffdings inequality:

P
( 1

N
(SN − E[SN ])≥ t

)
≤ 2 exp

(−N2t2

NV 2
max

)
= 2 exp

(−Nt2
V 2
max

)
Applying Hoeffdings, we get;

P
(

max
S,O

∣∣∣(P̂o − Po)V ∗(s, o)∣∣∣≥ t)= P
(
∃(s, o)s.t.

∣∣∣(P̂o − Po)V ∗(s, o)∣∣∣≥ t)
≤
∑
S,O

Pr
(∣∣∣(P̂o − Po)V ∗(s, o)∣∣∣≥ t)// Union Bound

= 2|S||O| exp
(−Nt2
V 2
max

)
We assume that the failure probability δ ≥ 0, We then solve for t by equating the RHS to δ as follows:

2|S||O| exp
(−Nt2
V 2
max

)
= δ

exp
(−Nt2
V 2
max

)
=

δ

2|S||O|
−Nt2

V 2
max

= log
δ

2|S||O|

t2 =
V 2
max

N
log

2|S||O|
δ

t= Vmax

√
1

N
log

2|S||O|
δ

Plugging this back in Term (B)
∣∣∣∣∣∣Q̂∗ −Q∗∣∣∣∣∣∣

∞
≤ 1

(1−γD)

∣∣∣∣∣∣(P̂o − Po)V ∗∣∣∣∣∣∣, we get:

∣∣∣∣∣∣Q̂∗ −Q∗∣∣∣∣∣∣
∞
≤ Vmax

(1− γD)

√
1

N
log

2|S||O|
δ

Therefore; ∣∣∣∣∣∣Qk −Q∗∣∣∣∣∣∣
∞
≤
∣∣∣∣∣∣Qk − Q̂∗∣∣∣∣∣∣

∞
+
∣∣∣∣∣∣Q̂∗ −Q∗∣∣∣∣∣∣

∞

≤ (γD)k

(1− γD)
+

Vmax
(1− γD)

√
1

N
log

2|S||O|
δ

≤ (γD)k

(1− γD)
+

Rmax
(1− γD)2

√
1

N
log

2|S||O|
δ
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To obtain an ε estimation of the optimal Q-value function in the SMDP, we distribute the error
uniformly; ∣∣∣∣∣∣Qk −Q∗∣∣∣∣∣∣

∞
≤ ε/2 + ε/2

Equating each term to ε/2 and solving for k and N results in k = log(ε(1−γD))
log γD

and N =
4

(1−γD)4ε2
log(2|S||O|) Therefore;

N |S||O|=O
( |S||O|

(1− γD)4ε2

)
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