
A Projection Set

If it is not specified, all the norms for vectors are 𝐿2 norms, by default.

A.1 Proof for the convexity of the projection set

Recall that the projection set is

𝐷𝑟 =

{︂
(𝑣, 𝜆) =

(︂
𝑤

𝜎2
,

1

𝜎2

)︂
∈ R𝑘 × R

⃒⃒⃒ 1

8(5− 2 log 𝑎)
≤ 𝜎2

𝜎2
0

≤ 96

𝑎2
, ‖𝑤‖22 ≤ 𝛽

}︂
So we have

‖𝑤‖2 = 𝑤𝑇𝑤 = (𝑣/𝜆)𝑇 (𝑣/𝜆) = 𝑣𝑇 𝑣/𝜆2 = ‖𝑣‖2/𝜆2

Therefore, if we transform it into a direct representation with 𝑣, 𝜆, we get

𝐷𝑟 =

{︂
(𝑣, 𝜆) ∈ R𝑘 × R>0

⃒⃒⃒ 𝑎2

96𝜎2
0

≤ 𝜆 ≤ 8(5− 2 log 𝑎)

𝜎2
0

, ‖𝑣‖2 ≤ 𝛽𝜆2

}︂
Where R>0 denotes the set of positive real numbers. We prove that this is a convex set by showing
that it is an (infinite) intersection of convex sets.

The first constraint 𝑎2

96𝜎2
0
≤ 𝜆 ≤ 8(5−2 log 𝑎)

𝜎2
0

is a region between two hyper planes, which is also a
convex constraint.

We prove that the second constraint ‖𝑣‖2 ≤ 𝛽𝜆2 is convex. Suppose we have two vectors such that
‖𝑣1‖2 ≤ 𝛽𝜆2

1 and ‖𝑣2‖2 ≤ 𝛽𝜆2
2. We need to prove that ‖𝜇𝑣1 + (1− 𝜇)𝑣2‖2 ≤ 𝛽(𝜇𝜆1 +(1−𝜇)𝜆2)2

for all 𝜇 ∈ (0, 1). With this condition and knowing that 𝜆1, 𝜆2 > 0, we know that ‖𝑣1‖ ≤
√
𝛽𝜆1 and

‖𝑣2‖ ≤
√
𝛽𝜆2. By the triangle inequality, we have ‖𝜇𝑣1 + (1− 𝜇)𝑣2‖2 ≤ (𝜇‖𝑣1‖+(1−𝜇)‖𝑣2‖)2 ≤

(𝜇
√
𝛽𝜆1+(1−𝜇)

√
𝛽𝜆2)2 = 𝛽(𝜇𝜆1+(1−𝜇)𝜆2)2. So, we proved the convexity of the third constraint.

Since the three constraints are all convex and the projection set is the intersection of the three
constraints, the projection set is convex.

A.2 Algorithm for projecting to the projection set

We have an explicit formula for projecting to the projection set. For convenience, we denote
𝜆min = 𝑎2

96𝜎2
0

and 𝜆max = 8(5−2 log 𝑎)
𝜎2
0

. Thus, the projection formula projects (𝑣, 𝜆) ∈ 𝐷𝑟 by
minimizing ‖(𝑣0, 𝜆0)− (𝑣, 𝜆)‖) as below:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(𝑣0, 𝜆0) 𝜆min ≤ 𝜆0 ≤ 𝜆max, ‖𝑣0‖2 ≤ 𝛽𝜆2
0

(𝑣0, 𝜆max) 𝜆0 ≥ 𝜆max, ‖𝑣0‖2 ≤ 𝛽𝜆2
max(︁√

𝛽𝜆max

‖𝑣0‖ 𝑣0, 𝜆max

)︁
𝜆0 ≥ 𝜆max, ‖𝑣0‖2 ≥ 𝛽𝜆2

max

(𝑣0, 𝜆min) 𝜆0 ≤ 𝜆min, ‖𝑣0‖2 ≤ 𝛽𝜆2
min(︁√

𝛽𝜆min

‖𝑣0‖ 𝑣0, 𝜆min

)︁
𝜆0 ≤ 𝜆min,

√
𝛽𝜆min ≤ ‖𝑣0‖ ≤

√
𝛽𝜆min + 𝜆min−𝜆0√

𝛽(︁√
𝛽𝜆max

‖𝑣0‖ 𝑣0, 𝜆max

)︁
𝜆0 ≤ 𝜆max, ‖𝑣0‖ ≥

√
𝛽𝜆max + 𝜆max−𝜆0√

𝛽(︁
𝛽‖𝑣0‖+

√
𝛽𝜆0

(𝛽+1)‖𝑣0‖ 𝑣0,
√
𝛽‖𝑣0‖+𝜆0

𝛽+1

)︁
Otherwise

B Missing Proofs

If it is not specified, all the norms for vectors are 𝐿2 norms, by default.

B.1 Sampling the Gradient of the Objective Function

Let 𝒟* be the joint distribution of the observed pairs (𝑥, 𝑦), where (𝑤*, 𝜎*) are the ground truth
parameters. Notice that we have a sampler that generates samples (𝑥, 𝑦) from 𝐷*. Also let’s define
𝒟(𝑤,𝜎) as the joint distribution of the pairs (𝑥, 𝑦), when the vector of parameters is (𝑤, 𝜎). We
recall that 𝒫 is the marginal distribution of 𝑥 of the joint distribution 𝒟*. Also, 𝒫0 is the original
distribution of 𝑥 before truncation.

1

So, after truncation, we have

𝒟*(�̄�, 𝑦) =
1{𝑦 ∈ 𝑆} · 𝒩 (𝑤*𝑇 �̄�, 𝜎*2; 𝑦) · 𝒫0(�̄�)

E𝑥∼𝒫0 [𝛼(𝑤*, 𝜎*, �̄�;𝑆))]

We note that 𝒩 (𝑤*𝑇 �̄�, 𝜎*2; 𝑦) is the probability density of 𝑦; that is, exp
(︁
− (𝑦−𝑤*𝑇 𝑥)2

2𝜎*2

)︁
. To make

it explicit, let’s say that the relationship between 𝒫 and 𝒫0 is,

𝒫(�̄�) =

∫︁
R

1{𝑦 ∈ 𝑆} · 𝒩 (𝑤*𝑇 �̄�, 𝜎*2; 𝑦) · 𝒫0(�̄�)

E𝑥∼𝒫0
[𝛼(𝑤*, 𝜎*, �̄�;𝑆)]

𝑑𝑦 =
𝛼(𝑤*, 𝜎*, �̄�;𝑆)

E𝑥∼𝒫0
[𝛼(𝑤*, 𝜎*, �̄�;𝑆))]

· 𝒫0(�̄�)

Now we can sample the gradient. The gradient is
𝜕ℓ̄

𝜕𝑣
= E

𝑥∼𝒫

[︂
E

𝑧∼𝑄𝑥

[𝑧 · 𝑥]− E
𝑦∼𝐹𝑥

[𝑦 · 𝑥]

]︂
𝜕ℓ̄

𝜕𝜆
=

1

2
E

𝑥∼𝒫

[︂
E

𝑦∼𝐹𝑥

[︀
𝑦2
]︀
− E

𝑧∼𝑄𝑥

[︀
𝑧2
]︀]︂
,

Where 𝐹𝑥 = 𝒩 (𝑤*𝑇𝑥, 𝜎*2, 𝑆) and 𝑄𝑥 = 𝒩 (𝑤𝑇𝑥, 𝜎2, 𝑆). Further, note that

E
𝑥∼𝒫

[︂
E

𝑦∼𝒩 (𝑤*𝑇 𝑥,𝜎*2,𝑆)
[𝑦 · 𝑥]

]︂
=

∫︁
𝑥

∫︁
𝑆

(𝑦 · 𝑥)
𝒩 (𝑤*𝑇𝑥, 𝜎*2; 𝑦)

𝒩 (𝑤*𝑇𝑥, 𝜎*2;𝑆)
· 𝑑𝑦 · 𝒫(𝑥) · 𝑑𝑥

=

∫︁
𝑥

∫︁
𝑆

(𝑦 · 𝑥)
𝒩 (𝑤*𝑇𝑥, 𝜎*2; 𝑦)

𝒩 (𝑤*𝑇𝑥, 𝜎*2;𝑆)
· 𝑑𝑦 · 𝒩 (𝑤*𝑇 �̄�, 𝜎*2;𝑆)

E𝑥∼𝒫0 [𝒩 (𝑤*𝑇𝑥, 𝜎*2;𝑆)]
· 𝒫0(�̄�) · 𝑑𝑥

=

∫︁
𝑥

∫︁
𝑆

(𝑦 · 𝑥)
𝒩 (𝑤*𝑇𝑥, 𝜎*2; 𝑦)

E𝑥∼𝒫0
[𝒩 (𝑤*𝑇𝑥, 𝜎*2;𝑆)]

· 𝒫0(�̄�) · 𝑑𝑦 · 𝑑𝑥 = E
(𝑥,𝑦)∼𝒟*

[𝑦 · 𝑥]

At each gradient step, we sample a pair of 𝑥, 𝑦 and multiply them together. Similarly we sample
1
2𝑦

2, where 𝑥 ∼ 𝒫 and 𝑦 ∼ 𝐹𝑥, and ignore 𝑥 after sampling. For the second term, we use rejection
sampling to generate the data 𝑧 · 𝑥 for 𝑧 ∼ 𝑄𝑥 and 𝑥 ∼ 𝒫 . Here, since we know the 𝑤 and 𝜎, the
generation process is simple. First, we generate 𝑥 using 𝐷* (we discard the 𝑦 value) and then sample
𝑧 = 𝑤𝑇𝑥 + 𝜀 where 𝜀 = 𝒩 (0, 𝜎2). If 𝑧 /∈ 𝑆, we continue to sample 𝜀 until we get 𝑧 ∈ 𝑆. Similarly,
we can sample 1

2𝑧
2 where 𝑥 ∼ 𝒫, 𝑧 ∼ 𝑄𝑥 in this way, and we can ignore 𝑥 after sampling.

Notice that if 𝑤, 𝜎 = 𝑤*, 𝜎*, we have 𝑄𝑥 = 𝐹𝑥, so
𝜕ℓ̄

𝜕𝑣
(𝑤*𝑇 , 𝜎*2) = E

𝑥∼𝒫

[︂
E

𝑧∼𝑄𝑥

[𝑧 · 𝑥]− E
𝑦∼𝐹𝑥

[𝑦 · 𝑥]

]︂
= 0

and
𝜕ℓ̄

𝜕𝜆
=

1

2
E

𝑥∼𝒫

[︂
E

𝑦∼𝐹𝑥

[︀
𝑦2
]︀
− E

𝑧∼𝑄𝑥

[︀
𝑧2
]︀]︂
,

B.2 Auxilliary Lemmas for Survival Probability of Feasible Points

For many of the following proofs, we require an estimation of 𝛼(𝑤, 𝜎, 𝑥) for a feasible 𝑤.
Lemma B.1. Let 𝑥,𝑤,𝑤′ ∈ R𝑘 and 𝜎, 𝜎′ > 0. Then,

log

(︂
1

𝛼(𝑤, 𝜎, 𝑥)

)︂
≤ max

(︃
1,

2𝜎′2

𝜎2

)︃
log

1

𝛼(𝑤′, 𝜎′, 𝑥)
+ max

(︃
0,

4𝜎′2

𝜎2
− 2

)︃
+

2𝜎′2

𝜎2

(︃
(𝑤𝑇𝑥− 𝑤′𝑇𝑥)2

2𝜎′2

)︃

Proof. Now, let’s define 𝐷, 𝐷′, and 𝐷′
𝑆 as 𝐷 = 𝒩 (𝑤𝑇𝑥, 𝜎), 𝐷′ = 𝒩 (𝑤′𝑇𝑥, 𝜎′), and 𝐷′

𝑆 =
𝒩 (𝑤′𝑇𝑥, 𝜎′, 𝑆). Then, we have:

𝛼(𝑤, 𝜎, 𝑥) = E
𝑦∼𝐷

[︁
1𝑦∈𝑆

]︁
= E

𝑦∼𝐷′

[︃
1𝑦∈𝑆 exp

(︂
(𝑦 − 𝑤′𝑇𝑥)2

2𝜎′2 − (𝑦 − 𝑤𝑇𝑥)2

2𝜎2

)︂]︃

=𝛼(𝑤′, 𝜎′, 𝑥) · E
𝑦∼𝐷′

𝑆

[︃
exp

(︂
(𝑦 − 𝑤′𝑇𝑥)2

2𝜎′2 − (𝑦 − 𝑤𝑇𝑥)2

2𝜎2

)︂]︃

≥𝛼(𝑤′, 𝜎′, 𝑥) · exp

(︃
E

𝑦∼𝐷′
𝑆

[︃
(𝑦 − 𝑤′𝑇𝑥)2

2𝜎′2 − (𝑦 − 𝑤𝑇𝑥)2

2𝜎2

]︃)︃
.

2

Now, from Cauchy-Schwarz we have that

(𝑦 − 𝑤𝑇𝑥)2

2𝜎2
≤ 2𝜎′2

𝜎2

(︃
(𝑦 − 𝑤′𝑇𝑥)2

2𝜎′2
+

(𝑤𝑇𝑥− 𝑤′𝑇𝑥)2

2𝜎′2

)︃

and if we apply this to the above expression and take the logarithm of both sides of the inequality we
get

log𝛼(𝑤, 𝜎, 𝑥)

≥ log𝛼(𝑤′, 𝜎′, 𝑥) + E
𝑦∼𝐷′

𝑆

[︃(︃
1− 2𝜎′2

𝜎2

)︃
(𝑦 − 𝑤′𝑇𝑥)2

2𝜎′2

]︃
− E

𝑦∼𝐷′
𝑆

[︃
2𝜎′2

𝜎2

(︃
(𝑤𝑇𝑥− 𝑤′𝑇𝑥)2

2𝜎′2

)︃]︃

≥ log𝛼(𝑤′, 𝜎′, 𝑥) + E
𝑦∼𝐷′

𝑆

[︃
min

(︃
0, 1− 2𝜎′2

𝜎2

)︃
(2− log𝛼(𝑤′, 𝜎′, 𝑥))− 2𝜎′2

𝜎2

(︃
(𝑤𝑇𝑥− 𝑤′𝑇𝑥)2

2𝜎′2

)︃]︃

= min

(︃
−1,−2𝜎′2

𝜎2

)︃
(− log𝛼(𝑤′, 𝜎′, 𝑥))−min

(︃
0, 2− 4𝜎′2

𝜎2

)︃
− 2𝜎′2

𝜎2

(︃
(𝑤𝑇𝑥− 𝑤′𝑇𝑥)2

2𝜎′2

)︃

The second to last line is followed from Lemma 4.5 and the Lemma follows.

B.3 Proof of Theorem 4.1 and Lemma 4.4

Denote 𝑠 = max𝜎∈𝐷 𝜎
min𝜎∈𝐷 𝜎 =

√︁
8(5− 2 log 𝑎) 96

𝑎2 be the largest possible difference between variances,
where 𝐷 is the projection set defined in 3.1.

Next, to prove our strong convexity result, we use the following anti-concentration bound.

Theorem B.2 (Theorem 8 in Carbery & Wright (2001b))). There is an absolute constant 𝒞 such that
if 𝑝 : R𝑛 → R is a polynomial of degree at most 𝑑, 0 < 𝑞 <∞, and 𝜇 is a log-concave probability
measure on R𝑛, then

(︂∫︁
|𝑝(𝑥)|𝑞/𝑑d𝜇(𝑥)

)︂1/𝑞

𝛼−1/𝑑 · 𝜇 {𝑥 ∈ R𝑛 : |𝑝(𝑥)| ≤ 𝛼} ≤ 𝒞𝑞

We also need the following lemma for bounding the survival probability for any parameters in 𝐷.

Lemma B.3. For 𝑤, 𝜎 ∈ 𝐷, we can find a lower bound for the survival probability: 1
𝛼(𝑤,𝜎,𝑥(𝑖))

≤
exp(poly(1/𝑎)(1 + 𝛽

𝜎2
0
))

Proof. From Lemma B.1, when we plug 𝜎′ = 𝜎*, 𝑤′ = 𝑤*, we can derive that

log

(︂
1

𝛼(𝑤, 𝜎, 𝑥)

)︂
≤max

(︂
1,

2𝜎*2

𝜎2

)︂
log

(︂
1

𝛼(𝑤*, 𝜎*, 𝑥)

)︂
+ max

(︂
0,

4𝜎*2

𝜎2
− 2

)︂
+

2𝜎*2

𝜎2

(︃
(𝑤𝑇𝑥− 𝑤*𝑇𝑥)2

2𝜎*2

)︃

3

Since 𝜎, 𝜎* ∈ 𝐷, we have 𝜎*2

𝜎2 ≤ 𝑠2. Thus, we have

log

(︂
1

𝛼(𝑤, 𝜎, 𝑥)

)︂
≤max

(︂
1,

2𝜎*2

𝜎2

)︂
log

(︂
1

𝛼(𝑤*, 𝜎*, 𝑥)

)︂
+ max

(︂
0,

4𝜎*2

𝜎2
− 2

)︂
+

2𝜎*2

𝜎2

(︃
(𝑤𝑇𝑥− 𝑤*𝑇𝑥)2

2𝜎*2

)︃

≤2𝑠2

(︃
log

1

𝛼(𝑤*, 𝜎*, 𝑥)
+ 2 +

(︃
(𝑤𝑇𝑥− 𝑤*𝑇𝑥)2

2𝜎*2

)︃)︃

≤2𝑠2

(︃
− log 𝑎 + 2 +

(︃
(‖𝑤‖2 + ‖𝑤*‖2)‖𝑥‖2

𝜎*2

)︃)︃

≤2𝑠2
(︂
− log 𝑎 + 2 +

(︂
2𝛽

𝜎*2

)︂)︂
Since 𝜎0 and 𝜎* only have a polynomial difference, we have log

(︁
1

𝛼(𝑤,𝜎,𝑥)

)︁
≤ poly(1/𝑎)(1 + 𝛽

𝜎2
0
)

which finishes the proof.

Lemma B.4. Let 𝑧 ∼ 𝒩 (𝜇, 𝜎2, 𝑆) be a truncated normal variable. Assume 𝛼(𝜇, 𝜎2, 𝑆) = 𝑎. Then,
we have that

Var(𝑧2) = 2𝜇2𝜎2(𝑂(log(𝑎))) + 𝜎4𝑂(log(𝑎)2)

Proof. Denote an affine transformation 𝑆′ = {𝑥−𝜇
𝜎 |𝑥 ∈ 𝑆}. So 𝐷 = 𝒩 (𝜇, 𝜎, 𝑆) is transformed into

𝐷′ = 𝒩 (0, 1, 𝑆′), while the survival probability is maintained. We then have

Var𝑧∼𝐷(𝑧2) = Var𝑦∼𝐷′((𝜇 + 𝜎𝑦)2) = Var𝑦∼𝐷′(2𝜎𝜇𝑦 + 𝜎2𝑦2)

≤ 8(𝜎𝜇)2Var𝑦∼𝐷′(𝑦) + 2(𝜎)4Var𝑦∼𝐷′(𝑦2)

By Lemma 4.5 we have Var𝑦∼𝐷′ [𝑦] ≤ E[𝑦2] ≤ 4− 2 log 𝑎, and

Var𝐷′(𝑦2) ≤ E𝐷′(𝑦4) ≤
∫︀∞
𝑞

𝑥4𝑒−
𝑥2

2 d𝑥∫︀∞
𝑞

𝑒−
𝑥2

2 d𝑥
=

∫︀∞
𝑞

𝑥4𝑒−
𝑥2

2 d𝑥

𝑎/2

where 𝑞 satisfies
∫︀∞
𝑞

𝑒−
𝑥2

2 d𝑥 = 𝑎/2.

Now, all we need to prove is that 𝑞 = 𝑂(
√
− log 𝑎). Notice that if 𝑞 > 2

√
− log 𝑎 (in the case

𝑎 <
√

2/2 and 𝑞 > 1), then we have

𝑎/2 =

∫︁ ∞

𝑞

𝑒−𝑧2/2d𝑧 =

∫︁ ∞

𝑞2/2

1√
𝑧
𝑒−𝑧d𝑧 <

√
2

𝑞
𝑒−𝑞2/2 <

√
2𝑎2/𝑞 < 𝑎

This is a contradiction.

By integration by parts, we obtain∫︁ ∞

𝑞

𝑧4𝑒−𝑧2/2d𝑧 = 𝑞3𝑒−𝑞2/2 + 3

∫︁ ∞

𝑞

𝑧2𝑒−𝑧2/2d𝑧 = 𝑞3𝑒−𝑞2/2 + 3𝑞𝑒−𝑞2/2 + 3

∫︁ ∞

𝑞

𝑒−𝑧2/2d𝑧

and∫︀∞
𝑞

𝑧4𝑒−𝑧2/2d𝑧∫︀∞
𝑞

𝑒−𝑧2/2d𝑧
= 3 +

𝑞3𝑒−𝑞2/2 + 3𝑞𝑒−𝑞2/2∫︀∞
𝑞

𝑒−𝑧2/2d𝑧
≤ 3 +

𝑞3𝑒−𝑞2/2 + 3𝑞𝑒−𝑞2/2∫︀ 𝑞+1/𝑞

𝑞
𝑒−(𝑞2+3)/2d𝑧

≤ 3 + 15𝑞2 + 5𝑞4

Since when 𝑎 <
√

2/2, we have both 𝑞 < 2
√
− log 𝑎 and Var𝐷𝑠′(𝑦

2) = 𝑂(log 𝑎2). The lemma
follows.

4

B.3.1 Strong Convexity

Now, let’s deal with the Hessian Matrix.

First, we consider the case without truncation, that is,

E𝒫

⎡⎣⎛⎝ Var𝑥[𝑧]𝑥𝑥𝑇 −Cov𝑥

[︁
1
2𝑧

2, 𝑧
]︁
𝑥

−Cov𝑥

[︁
1
2𝑧

2, 𝑧
]︁
𝑥𝑇 Var𝑥

[︁
1
2𝑧

2
]︁ ⎞⎠⎤⎦

The variance (Var𝑥) and covariance (Cov𝑥) are calculated from the untruncated normal 𝑧 ∼
𝒩 (𝑤𝑇𝑥, 𝜎2). For all 𝑥, we have(︂

𝑣

𝜆

)︂𝑇
⎛⎝ Var𝑥[𝑧]𝑥𝑥𝑇 −Cov𝑥

[︁
1
2𝑧

2, 𝑧
]︁
𝑥

−Cov𝑥

[︁
1
2𝑧

2, 𝑧
]︁
𝑥𝑇 Var𝑥

[︁
1
2𝑧

2
]︁ ⎞⎠(︂𝑣

𝜆

)︂

=𝜎2(𝑥𝑇 𝑣)2 − 2𝜎2𝑤𝑇𝑥𝑥𝑇 𝑣𝜆 +
1

2
𝜎2(2(𝑤𝑇𝑥)2 + 𝜎2)𝜆2 := 𝐼(𝑥)

Denote �̄� = E𝑥∼𝒫

[︁∑︀
𝑥𝑥𝑇

]︁
. By assumption 2.4, we have �̄� ⪰ 𝑏𝐼 , and thus we have

E𝒫 [𝐼(𝑥)] = E𝒫 [𝜎2(𝑥𝑇 𝑣)2 − 2𝜎2𝑤𝑇𝑥𝑥𝑇 𝑣𝜆
1

2
𝜎2(2(𝑤𝑇𝑥)2 + 𝜎2)𝜆2]

=𝜎2𝑣𝑇𝑋𝑣 − 2𝜎2𝑤𝑇𝑋𝑣𝜆 +
1

2
𝜎2(2𝑤𝑇𝑋𝑤 + 𝜎2)𝜆2

=𝜎2(𝑥− 𝑤𝜆)𝑇𝑋(𝑥− 𝑤𝜆) +
1

2
𝜎4𝜆2

≥𝑏𝜎2‖𝑥− 𝑤𝜆‖2 +
1

2
𝜎4𝜆2

So, it is larger than
𝑏

2𝑏(1 + ‖𝑤‖2/𝜎2) + 1
(𝜎2‖𝑣‖2 + 𝜎4𝜆2)

Now we consider each summand again for the untruncated sum: we can write it as an integral in 2
variables with degree at most 4, as:

𝐼(𝑥) =

(︂
𝑣

𝜆

)︂𝑇
⎛⎝ Var𝑥[𝑧]𝑥𝑥𝑇 −Cov𝑥

[︁
1
2𝑧

2, 𝑧
]︁
𝑥

−Cov𝑥

[︁
1
2𝑧

2, 𝑧
]︁
𝑥𝑇 Var𝑥

[︁
1
2𝑧

2
]︁ ⎞⎠(︂𝑣

𝜆

)︂

=

∫︁∫︁
R×R

1

2
(𝑣𝑇𝑥)2(𝑦 − 𝑧)2 − 1

2
𝜆𝑣𝑇𝑥(𝑦 − 𝑧)2(𝑦 + 𝑧) +

1

8
𝜆2(𝑦 − 𝑧)2(𝑦 + 𝑧)2dP𝑥

Where P𝑥 is the untruncated joint normal distribution 𝒩 (𝑤𝑇𝑥, 𝜎2)⊗2. This can easily be verified as
a log-concave measure. Next, we define polynomial 𝑝(𝑦, 𝑧) as

𝑝(𝑦, 𝑧) =
1

2
(𝑣𝑇𝑥)2(𝑦 − 𝑧)2 − 1

2
𝜆𝑣𝑇𝑥(𝑦 − 𝑧)2(𝑦 + 𝑧) +

1

8
𝜆2(𝑦 − 𝑧)2(𝑦 + 𝑧)2

Let 𝛼 = 𝐼(𝑥)𝛼(𝑤, 𝜎, 𝑥)8/212𝒞4 where 𝒞 is the constant defined in Theorem B.2. Since joint normal
is a log-concave distribution, using Theorem B.2, plug in 𝑑 = 𝑞 = 4 and 𝛼 we get

𝐼(𝑥)
1/4

𝛼−1/4P{|𝑝(𝑦, 𝑧)| ≤ 𝛼} ≤ 4𝒞

Hence we have P{|𝑝(𝑦, 𝑧)| ≤ 𝛼} ≤ 𝛼(𝑤,𝜎,𝑥)2

2 . Notice that the polynomial 𝑝 is non-negative,

therefore, we have a probability of P{𝑝(𝑦, 𝑧) > 𝛼} > 1− 𝛼(𝑤,𝜎,𝑥)2

2 . Since P{𝑝(𝑦, 𝑧) ∈ 𝑆 × 𝑆} =

5

𝛼(𝑤,𝜎,𝑥)2

2 , we have P {𝑝(𝑦, 𝑧) > 𝛼|(𝑦, 𝑧) ∈ 𝑆 × 𝑆} > 1
2 . So we can estimate(︂

𝑣

𝜆

)︂𝑇
⎛⎝ Var′𝑥[𝑧]𝑥𝑥𝑇 −Cov′

𝑥

[︁
1
2𝑧

2, 𝑧
]︁
𝑥

−Cov′
𝑥

[︁
1
2𝑧

2, 𝑧
]︁
𝑥𝑇 Var′𝑥

[︁
1
2𝑧

2
]︁ ⎞⎠(︂𝑣

𝜆

)︂

=
1

𝛼(𝑤, 𝜎, 𝑥)2
E
[︁
𝑝(𝑦, 𝑧)

]︁
≥ 1

𝛼(𝑤, 𝜎, 𝑥)2
𝛼(𝑤, 𝜎, 𝑥)2

2
𝛼 =

𝛼(𝑤, 𝜎, 𝑥)8

213𝒞4
𝐼(𝑖)

Here, the variance (Var′𝑥) and covariance (Cov′𝑥) are calculated from the truncated normal distribution
𝑧 ∼ 𝒩 (𝑤𝑇𝑥, 𝜎2, 𝑆).

Now, by taking both the minimum survival probability, 𝛼(𝑤, 𝜎, 𝑥) and the sum of the inequality
above, we show that the lower bound of the Hessian Matrix is:

𝑟

(︂
𝜎2𝐼 0
0 𝜎4

)︂
:=

min𝑖 𝛼(𝑤, 𝜎, 𝑥)8

213𝒞4
𝑏

2𝑏(1 + ‖𝑤‖2/𝜎2) + 1

(︂
𝜎2𝐼 0
0 𝜎4

)︂
From the lower bound in Lemma B.3, we have

𝑟 ≥ exp

(︂
−poly(1/𝑎)(1 +

𝛽

𝜎2
0

)

)︂
𝑏

2𝑏(1 + ‖𝑤‖2/𝜎2) + 1

Since 𝜎 > poly(1/𝑎)𝜎0 and ‖𝑤‖2 < 𝛽, we have

H ⪰ 𝑏 exp

(︂
−poly(1/𝑎)(1 +

𝛽

𝜎2
0

)

)︂(︂
𝜎2
0𝐼 0
0 𝜎4

0

)︂
Using the same argument, we can derive Lemma 4.4, calculating the lower bound for the strong
convexity of the minimum point. We can put 𝜎 = 𝜎*, 𝑤 = 𝑤* and min𝑖 𝛼(𝑤, 𝜎, 𝑥) ≥ 𝑎 due to the
assumptions.

H(𝑣*, 𝜆*) ⪰ 𝑏
𝑎8

213𝒞4
1

3 + 2𝑏‖𝑤*‖2/𝜎*2

(︂
𝜎*2𝐼 0

0 𝜎*4

)︂

Remark: By Lemma B.3, we have 𝛼(𝑤, 𝜎, 𝑥) ≥ exp
(︁
−2𝑠2

(︁
− log 𝑎 + 2 + 2𝛽

𝜎*2

)︁)︁
. Notice that

𝜎2 ≥ 1
18(5−2 log 𝑎)𝜎

2
0 , we have

𝑏

2𝑏(1 + ‖𝑤‖2/𝜎2) + 1
≥ 𝑏

2𝑏(1 + 𝛽/𝜎2) + 1
= Ω(

𝑏

𝑏(1 + 𝛽/𝜎2) + 1
)

Therefore, we can yield a bound of

H ⪰ Ω

(︂
exp

(︂
−16𝑠2

(︂
− log 𝑎 + 2 +

2𝛽

𝜎*2

)︂)︂
𝑏

𝑏(1 + 𝛽/𝜎2) + 1

)︂(︂
𝜎2𝐼 0
0 𝜎4

)︂
Here, we can ignore the constant factor, since it is unknown what the 𝒞 is in Carbery & Wright
(2001a). Also, we did not transform a general 𝜎 in the projection set to 𝜎0 on purpose.

B.3.2 Bounded Step Variance

Now, let’s focus on the upper bound of the squared variance. To eliminate confusion let 𝑦 be the
value of the dependent variable for which we are computing the gradient.

Let the 𝑦 ∼ 𝒩 (𝑤*𝑇𝑥, 𝜎2*) and 𝑧 ∼ 𝒩 (𝑤𝑇𝑥, 𝜎2). So, we have

E𝒫

[︁
E
[︁
||(𝑦 − 𝑧)𝑥||2

]︁]︁
≤4 · E𝒫

[︁
E[||(𝑦 − 𝑤*𝑇𝑥)𝑥||2 + ||(𝑧 − 𝑤𝑇𝑥)𝑥||2]

]︁
+ 4 · ||𝑥𝑇 (𝑤 − 𝑤*)𝑥||2

For the first term, we have that by Lemma B.1, it holds that

4E𝒫

[︁
E
[︁
||(𝑦 − 𝑤*𝑇𝑥)𝑥||2

]︁]︁
≤ 4E𝒫

[︁
E
[︁
(𝑦 − 𝑤*𝑇𝑥)2

]︁
‖𝑥‖2

]︁
≤4(𝜎*)2(2− 4 log(𝛼(𝑤*, 𝑥, 𝜎*)))‖𝑥‖2 ≤ 4(2− 4 log 𝑎)(𝜎*)2 ≤ 4(2− 4 log 𝑎)(𝑠𝜎0)2

6

Similarly, we have

4E𝒫

[︁
||(𝑧 − 𝑤𝑇𝑥)𝑥||2

]︁
≤ 4E𝒫

[︁
(𝑧 − 𝑤𝑇𝑥)2

]︁
‖𝑥‖2

≤4𝜎2 E
𝒫

[︁
2− 4 log(𝛼(𝑤, 𝑥, 𝜎))‖𝑥‖2

]︁
=8𝜎2 + 16E𝒫

[︁
−𝜎2 log(𝛼(𝑤, 𝑥, 𝜎))‖𝑥‖2

]︁
≤ 8𝜎2 + 16E𝒫

[︀
−𝜎2 log(𝛼(𝑤, 𝑥, 𝜎))

]︀
By Lemma 4.5, we have

− 𝜎2 log(𝛼(𝑤, 𝑥, 𝜎))

≤max
(︁
𝜎2, 2𝜎*2

)︁
log

1

𝛼(𝑤*, 𝜎*, 𝑥)
+ max

(︁
0, 4𝜎*2 − 2𝜎2

)︁
+ 2𝜎*2

(︁
(𝑤𝑇𝑥− 𝑤*𝑇𝑥)2

)︁
≤𝜎*2(−𝑠2 log 𝑎 + 4 + 2𝛽)

Hence, we have

4E𝒫E
[︁⃦⃦

(𝑧 − 𝑤𝑇𝑥)𝑥
⃦⃦2]︁ ≤ 8𝜎2 + 16E𝒫

[︁
−𝜎2 log(𝛼(𝑤, 𝑥, 𝜎))‖𝑥‖2

]︁
≤8𝑠2𝜎0

2 + 16𝑠2𝜎0
2(4 + 2𝛽 − 𝑠2 log 𝑎)

And for the last term, we have
4 · ||𝑥𝑇 (𝑤 − 𝑤*)𝑥||2 ≤ 16𝛽2

because ||𝑤||2, ||𝑤*||2 ≤ 𝛽2 and ||𝑥|| ≤ 1.

Now, let’s deal with the squared gradient of 𝜆. Notice that for 𝑦 ∼ 𝒩 (𝑤*𝑇𝑥, 𝜎2*, 𝑆), we have:
E[𝑦4] =(E[𝑦2])2 + Var(𝑦2)

=2(E[(𝑦 − 𝑤*𝑇𝑥)2] + (𝑤*𝑇𝑥)2)2 + Var(𝑦2)

≤2((2− 4 log𝛼(𝑤*, 𝜎*, 𝑥))𝜎*2 + (𝑤*𝑇𝑥)2)2 + 2(𝑤*𝑇𝑥)2𝜎*2𝑂(log𝛼(𝑤*, 𝜎*, 𝑥))

+𝜎*4𝑂(log𝛼(𝑤*, 𝜎*, 𝑥)2)

≤2(𝑂(log 𝑎)poly(1/𝑎)𝜎2
0 + 𝛽)2 + 𝑂(log 𝑎)poly(1/𝑎)𝛽𝜎2

0 + 𝜎4
0𝑂(log 𝑎)poly(1/𝑎)

=poly(1/𝑎)(𝜎0
4 + 𝜎2

0𝛽 + 𝛽2) ≤ poly(1/𝑎)(𝜎0
4 + 𝛽2)

The first inequality is due to 4.5 and B.4. The second inequality comes from the following three facts:
because of the projection set, we have 𝜎* = poly(1/𝑎)𝜎0, (𝑤*𝑇𝑥)2 ≤ ‖𝑤‖22‖𝑥‖

2
2 ≤ 𝛽 by 2.2, and

𝛼(𝑤*, 𝜎*, 𝑥) ≥ 𝑎 by our assumption 2.3. The third inequality combines the term and by AM-GM
inequality: 𝛽𝜎0 ≤ (𝛽2 + 𝜎4

0)/2.

Now we are dealing with 𝑧 ∼ 𝒩 (𝑤𝑇𝑥, 𝜎2, 𝑆), which is more complicated, but still has the same
order bound.

E[𝑧4] =(E[𝑧2])2 + Var(𝑧2)

=2(E[(𝑧 − 𝑤𝑇𝑥)2] + (𝑤𝑇𝑥)2)2 + Var(𝑧2)

≤2((2− 4 log𝛼(𝑤, 𝜎, 𝑥))𝜎2 + (𝑤𝑇𝑥)2)2 + 2(𝑤𝑇𝑥)2𝜎2𝑂(log𝛼(𝑤, 𝜎, 𝑥))

+𝜎4𝑂(log𝛼(𝑤, 𝜎, 𝑥)2)

The inequalities hold for the same reason as bounding E[𝑦4]. By B.3 We know that
− log𝛼(𝑤, 𝜎, 𝑥(𝑖)) ≤ poly(1/𝑎)(1 + 𝛽

𝜎2
0
). Since we are estimating the parameters inside the projec-

tion set, we can derive 𝜎 = poly(1/𝑎)𝜎0 and by 2.3, we have (𝑤𝑇𝑥)2 ≤ ‖𝑤‖22‖𝑥‖
2
2 ≤ 𝛽, giving

us
2((2− 4 log𝛼(𝑤, 𝜎, 𝑥))𝜎2 + (𝑤𝑇𝑥)2)2

≤2((2 + poly(1/𝑎)(1 +
𝛽

𝜎2
0

))2𝜎2) + (𝑤𝑇𝑥)2)

=2((2 + poly(1/𝑎)(1 +
𝛽

𝜎2
0

))2𝜎2
0)poly(1/𝑎) + 𝛽)

=poly(1/𝑎)(𝜎2
0 + 𝛽)2 = poly(1/𝑎)(𝜎4

0 + 𝛽2)

7

The last inequality is due to the AM-GM inequality, since 𝛽𝜎2
0 ≤ 1/2(𝛽2 + 𝜎4

0) and

2(𝑤𝑇𝑥)2𝜎2𝑂(log𝛼(𝑤, 𝜎, 𝑥)) + 𝜎4𝑂(log𝛼(𝑤, 𝜎, 𝑥)2)

≤2𝛽𝜎2
0𝑂(poly(1/𝑎)(1 +

𝛽

𝜎2
0

)) + poly(1/𝑎)𝜎4
0(poly(1/𝑎)(1 +

𝛽

𝜎2
0

))2

=2𝛽𝑂(poly(1/𝑎)(𝛽 + 𝜎2
0)) + poly(1/𝑎)((𝜎2

0 + 𝛽))2

=poly(1/𝑎)(𝛽2 + 𝛽𝜎2
0 + 𝜎4) = poly(1/𝑎)(𝜎4

0 + 𝛽2)

Combining these, we get the result:

E𝒫E
[︁
𝑦2/2− 𝑧2/2

]︁2
≤ 1

4
E𝒫
[︀
E(𝑦4) + E(𝑧4)

]︀
≤E𝒫

[︀
poly(1/𝑎)(𝜎4

0 + 𝛽2)
]︀

= poly(1/𝑎)(𝜎4
0 + 𝛽2) = poly(1/𝑎)(1 + 𝜎4

0 + 𝛽2)

The gradient of 𝑣 is also within this bound. Thus, the bounded step variance is proved.

Remark: From the proof we can say

E[𝑦4] = 𝑂(1− log 𝑎)(𝜎*4 + 𝛽2)

And similarly, we have the bound for E(𝑧2) using Lemma B.3

E[𝑧4] ≤2((2− 4 log𝛼(𝑤, 𝜎, 𝑥))𝜎2 + (𝑤𝑇𝑥)2)2 + 2(𝑤𝑇𝑥)2𝜎2𝑂(log𝛼(𝑤, 𝜎, 𝑥))

+𝜎4𝑂(log𝛼(𝑤, 𝜎, 𝑥)2)

=2((2 + 8𝑠2(− log 𝑎 + 2 +
2𝛽

𝜎*2))𝜎2 + (𝑤𝑇𝑥)2)2

+2(𝑤𝑇𝑥)2𝜎2𝑂(2𝑠2(− log 𝑎 + 2 +
2𝛽

𝜎*2)) + 𝜎4𝑂(4𝑠4(− log 𝑎 + 2 +
2𝛽

𝜎*2)2)

Notice that because 𝜎2/𝜎*2 ≤ 𝑠2 = 𝑂(1−log 𝑎
𝑎2), and also (𝑤𝑇𝑥)2 ≤ ‖𝑤‖2‖𝑥‖2 ≤ 𝛽, the highest

“degree” containing 𝑎 is 𝑎−8(1− log 𝑎)10 (𝑎−4(1− log 𝑎)4 comes from 𝑠4, additional (1− log 𝑎)2

from the coefficients, and additionally 𝑎−4(1− log 𝑎)4 comes from a hidden 𝑠4 produced by 𝜎4/𝜎*4).
Also, we can write (𝑤𝑇𝑥)2𝜎2 = 𝑂(𝜎4 + (𝑤𝑇𝑥)4). Finally, we can write

E[𝑧4] ≤ 𝑂

(︃
(1− log 𝑎)10

𝑎8
(𝛽2 + 𝜎*4)

)︃

The terms in E[‖(𝑦 − 𝑧)𝑥‖2] have lower degrees of both in 1/𝑎, 𝛽 ,and 𝜎*. So, we can only add one
to 𝛽2 + 𝜎*4 as in the proof above. Therefore, we can write the total gradient as a bound of

𝑂

(︃
(1− log 𝑎)10

𝑎8
(1 + 𝛽2 + 𝜎*4)

)︃
This bound is greater than the bounded domain.

B.4 Proof of Lemma 4.2

We estimate the projection set with the following procedure:

(1) We use OLS on 𝑚 samples (𝑥(𝑖), 𝑦(𝑖)), and get a estimated weight 𝑤0

(2) Then we take another 𝑚 samples (�̄�(𝑖), 𝑦(𝑖)) and calculate the mean 𝜎2
0 = 1

𝑚

∑︀𝑚
𝑖=1(𝑦(𝑖) −

𝑤𝑇
0 �̄�

(𝑖))2.

First, we try to figure out the lower bound of 𝜎2
0 . We prove a claim: 𝑚 is large (at least 𝑚 ≥ 3), for any

𝑤, there are at least 𝑛/6 (with probability > 15/16) samples such that |𝑦(𝑖)−𝑤𝑇 �̄�(𝑖)| > 𝑎
4𝜎

*. Notice

that 𝜎2
0 = 1

𝑚

∑︀
|𝑦(𝑖) − 𝑤𝑇 �̄�(𝑖)|2 for some empirical 𝑤 = 𝑤0. To finish the proof, we scale the whole

distribution by multiplying by 1
𝜎* . Since we proved this, we have 𝜎2

0 = 1
𝑚 (𝑛

6 ×
𝑎2

16𝜎
*2) ≥ 𝑎2

96𝜎
*2.

Now we can show that 𝜎* = 1 WLOG. In the proof of Lemma 9 in the paper Daskalakis et al. (2019),

8

we notice that in the worst case, 𝑦𝑖−𝑤*𝑇𝑥(𝑖) are part of the distribution 𝐷(𝑎) (where 𝐷(𝑎) dominates
Unif(𝑎/2, 𝑎/2) = 𝑈(𝑎)). for all 𝑡 > 0 and 𝐷 ∼ 𝐷(𝑎) and 𝑈 ∼ 𝑈(𝑎), P(|𝐷| < 𝑡) ≤ P(|𝑈 | < 𝑡)
holds. Here, this means that even for the densest [−𝑎

4 ,
𝑎
4] it only take 1/2. So, any 𝑎/2 window of 𝑦

takes at most 1/2 of the probability. So we have

P

(︃
|𝑦(𝑖) − 𝑤*𝑇𝑥(𝑖)| > 𝑎

4

)︃
> 1/2

Now, all we have left to prove is that if 𝑋,𝑋𝑖 ∼ Ber(1/2) P, then P(𝑋1 + · · ·+𝑋𝑛 < 𝑛/6) < 1/16
if 𝑛 > 4. Thus, we need to prove that

(︀
𝑛
0

)︀
+ · · ·+

(︀
𝑛
𝑟

)︀
< 2𝑛/16 where 𝑟 = ⌊(𝑛− 1)/6⌋.

For 𝑛 ≤ 18 it is easy to see this result by checking one by one. Regardless, for 13 ≤ 𝑛 ≤ 18,
we have (𝑟 + 1)

(︀
𝑛
𝑟

)︀
< 2𝑛/16. For 𝑛 ≥ 19, we use induction to prove the stronger bound of

(𝑟 + 1)
(︀
𝑛
𝑟

)︀
< 2𝑛/16. Now, suppose that this stronger statement holds for 𝑛, and we want to prove

the same bound for 𝑛 + 6. We already know that (𝑟 + 1)
(︀
𝑛
𝑟

)︀
< 2𝑛/16. So, if we want to prove

(𝑟 + 2)
(︀

𝑛
𝑟+1

)︀
< 2𝑛+6/16, we need to show that

𝑟 + 2

(𝑟 + 1)2
(𝑛 + 6) · · · (𝑛 + 1)

(𝑛− 𝑟 + 5) · · · (𝑛− 𝑟 + 1)
< 64

Further, we know that
𝑟 + 2

𝑟 + 1
≤ 4

3
< 2

𝑛 + 1

𝑟 + 1
≤ 𝑛 + 1

𝑛/6
≤ 6× 14

13
< 7

(𝑛 + 6) · · · (𝑛 + 2)

(𝑛− 𝑟 + 5) · · · (𝑛− 𝑟 + 1)

≤ (𝑛 + 6)(𝑛 + 5)(𝑛 + 4)(𝑛 + 3)(𝑛 + 2)

(5𝑛/6 + 5)(5𝑛/6 + 4)(5𝑛/6 + 3)(5𝑛/6 + 2)(5𝑛/6 + 1)

≤19× 18× 17× 16× 15

15× 14× 13× 12× 11
< 4

So, we get
𝑟 + 2

(𝑟 + 1)2
(𝑛 + 6) · · · (𝑛 + 1)

(𝑛− 𝑟 + 5) · · · (𝑛− 𝑟 + 1)
< 2× 7× 4 < 64

Therefore, we prove the claim. Now we turn to the upper bound on the 𝜎2
0 . Denote the least square

estimator of 𝑚 samples to be 𝑤1. So we have

E[𝜎2
0] = E

[︃
1

𝑚

∑︁
𝑖

(𝑦(𝑖) − 𝑤0
𝑇𝑥(𝑖))2

]︃
≤ 1

2
E

[︃∑︁
𝑖

(𝑦(𝑖) − 𝑤𝑇
1 𝑥

(𝑖))2 + (𝑤𝑇
0 𝑥

(𝑖) − 𝑤𝑇
1 𝑥

(𝑖))2

]︃
Since 𝑤1 is the OLS estimator, we have

E

[︃
1

𝑚

∑︁
𝑖

(𝑦(𝑖)−𝑤𝑇
1 𝑥

(𝑖))2

]︃
≤ E

[︃
1

𝑚

∑︁
𝑖

(𝑦(𝑖)−𝑤*𝑇𝑥(𝑖))2

]︃
≤ 1

𝑚

∑︁
𝑖

(4−2 log 𝑎)𝜎*2 = (4−2 log 𝑎)𝜎*2

The first inequality is because of OLS, and the second inequality is due to Lemma 4.5. Now we need
to bound 1

2 E[1
𝑚

∑︀
𝑖(𝑤

𝑇
0 𝑥

(𝑖) − 𝑤𝑇
1 𝑥

(𝑖))2]. Notice that

(𝑤𝑇
0 𝑥

(𝑖) − 𝑤𝑇
1 𝑥

(𝑖))2 = ((𝑤𝑇
0 − 𝑤𝑇

1)𝑥(𝑖))2 ≤
⃦⃦
𝑤𝑇

0 − 𝑤𝑇
1

⃦⃦2⃦⃦⃦
𝑥(𝑖)
⃦⃦⃦2
≤
⃦⃦
𝑤𝑇

0 − 𝑤𝑇
1

⃦⃦2
So, we need this value to have a small norm. Also since we are doing OLS on the same distribution
of data (𝑥, 𝑦), we can prove that there is a concentration of samples around the empirical estimator.

Moreover, notice that the weight formula for linear regression is
(︁∑︀

𝑖 𝑥
(𝑖)𝑥(𝑖)𝑇

)︁−1∑︀
𝑖 𝑥

(𝑖)𝑦(𝑖) (here
we abuse the notation, we are talking about general 𝑚 samples.) Or, we do an average, yielding

9

(1
𝑚

∑︀
𝑖 𝑥

(𝑖)𝑥(𝑖)𝑇)−1 1
𝑚

∑︀
𝑖 𝑥

(𝑖)𝑦(𝑖). Therefore, if we have infinite samples, we get a final estimator
𝑤∞ = (E(𝑥𝑥𝑇))−1E(𝑦𝑥) for (𝑥, 𝑦) ∼ 𝐷*, where 𝐷* is defined in Section B.1. We also have
𝑤0, 𝑤1 → 𝑤∞ if 𝑚→∞. Now, we are going to show how will they converge.

First, we investigate 1
𝑚

∑︀
𝑖 𝑥

(𝑖)𝑥(𝑖)𝑇 . We need a theorem in Tropp (2015).
Theorem B.5. (Combination of Theorem 1.6.2 and Section 1.6.3 in Tropp (2015)) Let 𝑥1,...,𝑥𝑛 be
𝑖.𝑖.𝑑. random vectors with dimension 𝑝. Let 𝑌 = 1

𝑛

∑︀
𝑥𝑖𝑥

𝑇
𝑖 and 𝐴 = E[𝑥𝑖𝑥

𝑇
𝑖]. Assume that each

one is uniformly bounded ‖𝑥𝑘‖ ≤ 𝐵 for each 𝑘 = 1, · · · , 𝑛. Introduce the sum 𝑍 = 𝑌 − 𝐴 Then

P(‖𝑍‖2 ≥ 𝑡) ≤ 2𝑝 · exp
(︁

−𝑛𝑡2/2
𝐵‖𝐴‖2+𝐵𝑡/3

)︁
for all 𝑡 ≥ 0. Here ‖𝐴‖2 is the spectral norm.

Let 𝑋0 = E(𝑥𝑥𝑇). We can choose a big enough 𝑚 such that with probability 1− 1
64 , the spectral

norm of 1
𝑚

∑︀
𝑖 𝑥

(𝑖)𝑥(𝑖)𝑇 −𝑋0 does not exceed 𝛿; 𝛿 is another constant determined later. This 𝛿 is

smaller than 𝑏 and 𝑋0 ⪰ 𝑏𝐼 by the assumptions. So, 1
𝑚

∑︀
𝑖 𝑥

(𝑖)𝑥(𝑖)𝑇 is positive definite and we can
take the inverse.

Now, let’s calculate the inverse. Let �̄� = 1
𝑚

∑︀
𝑖 𝑥

(𝑖)𝑥(𝑖)𝑇 . Notice that

�̄�−1 −𝑋−1
0 = 𝑋−1

0 (𝑋0 − �̄�)�̄�−1

has spectral norm at most 𝛿
𝑏(𝑏−𝛿) . Since 𝑋0 has a spectral norm ≥ 𝑏, 𝑋0 − �̄� has spectral norm ≤ 𝛿

therefore �̄� has spectral norm ≥ 𝑏− 𝛿.

Then we investigate �̄� = 1
𝑚

∑︀
𝑖 𝑦

(𝑖)𝑥(𝑖). Let 𝑥0 = E[𝑦𝑥]. We use Chebyshev’s inequality in the
vector form. Notice that

P(‖�̄�− 𝑥0‖ ≥ 𝛿′) ≤ E[‖�̄�− 𝑥0‖2]

𝛿′2

In our case, we know that all 𝑦, 𝑥 are independently chosen. So, we have

E[‖�̄�− 𝑥0‖2 ≤ E[‖�̄�‖2] =
1

𝑚
E[‖𝑦 · 𝑥‖2]

=
1

𝑚

(︃
E

[︃
1

2

(︁⃦⃦⃦
(𝑦 − 𝑤*𝑇𝑥)2 · 𝑥

⃦⃦⃦2
+
⃦⃦⃦
(𝑤*𝑇𝑥)𝑥

⃦⃦⃦2)︁]︃)︃
≤ 1

2𝑚
((4− 2 log 𝑎)𝜎*2 + 𝛽)

Here, we use both Lemma 4.5 and assumption 1.1 that ‖𝑥‖ ≤ 1, ‖𝑤‖2 ≤ 𝛽. From this we can also
derive that

E[‖𝑥0‖] ≤
√︁
E[‖𝑥0‖2] =

√︁
(4− 2 log 𝑎)𝜎*2 + 𝛽

We also make 𝑚 large enough to have the probability of at most 1/64, so that ‖�̄�− 𝑥0‖ ≥ 𝛿′.

Notice that we have the estimator 𝑤 = �̄�−1𝑥0. This gives us⃦⃦
�̄�−1�̄�−𝑋0

−1𝑥0

⃦⃦
=
⃦⃦
�̄�−1(�̄�− 𝑥0) + (�̄�−1 −𝑋0

−1)𝑥0

⃦⃦
≤
⃦⃦
�̄�−1(�̄�− 𝑥0)

⃦⃦
+
⃦⃦

(�̄�−1 −𝑋0
−1)𝑥0

⃦⃦
≤ 1

𝑏− 𝛿
𝛿′ +

𝛿

𝑏(𝑏− 𝛿)

√︁
(4− 2 log 𝑎)𝜎*2 + 𝛽

(Notice for any vector 𝑣 and square matrix 𝐴 if ‖𝑣‖ ≤ 𝑎, ‖𝐴‖2 ≤ 𝑏, then ‖𝐴𝑣‖ ≤ 𝑎𝑏. This is because
the 𝐿2 norm for a vector equals to its spectral norm, and we have ‖𝐴𝐵‖2 ≤ ‖𝐴‖2‖𝐵‖2) .

Since there is a 1/64 probability that ‖�̄�− 𝑥0‖ ≤ 𝛿′ does not hold, and there is also a
1/64 probability that

⃦⃦
�̄� −𝑋0

⃦⃦
2
≤ 𝛿′ does not hold, this

⃦⃦
�̄�−1�̄�−𝑋0

−1𝑥0

⃦⃦
≤ 1

𝑏−𝛿 𝛿
′ +

𝛿
𝑏(𝑏−𝛿)

√︀
(4− 2 log 𝑎)𝜎*2 + 𝛽 holds with a probability of at least 1− 1/32. That means, 𝑤0 and 𝑤1

each have a 1− 1/32 probability of being close to the convergence limit, and a probability of at most
1− 1/16 that both of them are close.

Take 𝛿 = 𝜎*𝑏2

4
√

(4−2 log 𝑎)𝜎*2+𝛽
and 𝛿′ = 𝑏𝜎*/4. So, we have at most 1− 1/16 probability that both

𝑤0 and 𝑤1 are
1

𝑏− 𝛿
𝛿′ +

𝛿

𝑏(𝑏− 𝛿)

√︁
(4− 2 log 𝑎)𝜎*2 + 𝛽 ≤ 𝜎*

2

10

close to 𝑤∞. Therefore, the norm between 𝑤0 and 𝑤1 is at most 𝜎*.

To achieve 𝛿 difference of �̄� −𝑋0, we may need 2𝑝 · exp
(︁

−𝑛𝑡2/2
𝐵‖𝐴‖2+𝐵𝑡/3

)︁
≤ 1/64. In our case, we

have 𝑝 = 𝑘, 𝑡 = 𝛿, 𝐵 = 1 and ‖𝐴‖2 also has a upper bound 1. So, we need at least log(128𝑘) 1+𝛿/3
𝛿2 ≤

log(128𝑘) 32((4−2 log 𝑎)𝜎*2+𝛽)
𝑏4𝜎*2 samples.

Also, to achieve 𝛿′ difference of �̄�− 𝑥0, we may need 1
2𝑚 ((4− 2 log 𝑎)𝜎*2 + 𝛽) 1

(𝑏𝜎*/4)2 ≤ 1/64.

So, we need at least 512((4−2 log 𝑎)𝜎*2+𝛽)
𝑏2𝜎*2 samples.

These two bounds of samples are covered with "poly" constraints of the informal theorem 1.4 and the
first inequality of theorem 3.2.

Overall, we have

E[𝜎2
0] = E

[︃
1

𝑚

∑︁
𝑖

(𝑦(𝑖) − 𝑤0
𝑇𝑥(𝑖))2

]︃
≤ 1

2
E

[︃∑︁
𝑖

(𝑦(𝑖) − 𝑤𝑇
1 𝑥

(𝑖))2 + (𝑤𝑇
0 𝑥

(𝑖) − 𝑤𝑇
1 𝑥

(𝑖))2

]︃

≤1

2
((4− 2 log 𝑎)𝜎*2 +

⃦⃦
𝑤𝑇

0 − 𝑤𝑇
1

⃦⃦2
) ≤ 1

2
((4− 2 log 𝑎)𝜎*2 + 𝜎*2) =

1

2
((5− 2 log 𝑎)𝜎*2)

By Markov’s Inequality, we have a probability of 1/16 that 𝜎2
0 ≤ 16(E(𝜎2

0)). Now, we have
1/8 probability (1/16 for Markov, 1/16 for the concentration) to hold 𝜎2

0 ≤ 16(E(𝜎0)) ≤ 8(5 −
2 log 𝑎)𝜎*2. Therefore, for the whole projection set, it takes ≥ 1− 1/8− 1/16 = 13/16 probability
to hold.

B.5 Proof of the Smoothness

The smoothness can be given by this bound:

Theorem B.6. The Hessian of ℓ̄(𝑣, 𝜆) satisfies H2(𝑣, 𝜆) ⪯ 𝛾2𝐼 where 𝛾 = poly(1/𝑎, 1
𝜎0
, 𝜎0, 𝛽).

Hence ℓ̄ is 𝛾 smooth.

Denote that 𝑠 =
max𝜎∈𝐷𝑟 𝜎
min𝜎∈𝐷𝑟 𝜎 =

√︁
8(5− 2 log 𝑎) 96

𝑎2 is the largest possible difference between the

variances. Since we already have H is symmetric and positive definite, H2 is symmetric and positive
definite. So, by the Cauchy-Schwarz inequality, we have

H2 =
(︁

E
𝑥∼𝒫

[︁
H𝑥

]︁)︁2
⪯ E

𝑥∼𝒫

[︁
H2

𝑥

]︁
Since for each sample (𝑥(𝑖)) we can calculate

H2
𝑥 =

(︂
𝐴𝑥𝑇

𝑥 −𝐵𝑥
−𝐵𝑥𝑇 𝐶

)︂2

=

(︃
(𝐴2 + 𝐵2‖𝑥‖2)𝑥𝑥𝑇 −(𝐴 + 𝐶)𝐵‖𝑥‖2𝑥
−(𝐴 + 𝐶)𝐵‖𝑥‖2𝑥(𝑖)𝑇 (𝐵‖𝑥‖2)2 + 𝐶2

)︃

⪯2

(︂
(𝐴2 + 𝐵2‖𝑥‖2)𝑥𝑥𝑇 0

0 (𝐵‖𝑥‖2)2 + 𝐶2

)︂
⪯2

(︂
(𝐴2 + 𝐵2)𝐼 0

0 𝐵2 + 𝐶2

)︂
⪯2

(︂
(𝐴2 + 𝐴𝐶)𝐼 0

0 𝐴𝐶 + 𝐶2

)︂
where

𝐴 = Var𝐷[𝑧], 𝐵 = Cov𝐷

[︁1

2
𝑧2, 𝑧

]︁
, 𝐶 = Var𝐷

[︁1

2
𝑧2
]︁

and the distribution 𝐷 = 𝒩 (𝑤𝑇𝑥, 𝜎2, 𝑆),

11

we can deduce the first inequality this way. Since the matrix H2
𝑥 is positive definite, it is also positive

semi-definite. Further, if the matrix
(︂

𝐴 𝐵
𝐵𝑇 𝐶

)︂
is positive semi-definite, the matrix

(︂
𝐴 −𝐵
−𝐵𝑇 𝐶

)︂
is also positive- semi-definite. Thus, we conclude(︂

𝐴 𝐵
𝐵𝑇 𝐶

)︂
⪯ 2

(︂
𝐴 0
0 𝐶

)︂
The second inequality comes from 𝐵2 > 0 and 𝑑 = ‖𝑥‖22 < 1. Finally, the third inequality comes
from 𝐵2 < 𝐴𝐶.

Thus, we can write

𝛾2 = 2E𝒫

[︁
𝐴 + 𝐶

]︁2
= 2E𝒫

[︂
Var𝐷(𝑥)([𝑧] + Var𝐷(𝑥)[

1

2
𝑧2)]

]︂2
where 𝐷(𝑥) = 𝒩 (𝑤𝑇𝑥, 𝜎2, 𝑆). Also, by Lemma B.4, we have

(𝐴 + 𝐶)2 = poly
(︁

log
1

𝛼(𝑤, 𝜎, 𝑥)
𝜎2 + log2 1

𝛼(𝑤, 𝜎, 𝑥)
𝜎4 + log

1

𝛼(𝑤, 𝜎, 𝑥)
(𝑤𝑇𝑥)2𝜎2

)︁
Since log 1

𝛼(𝑤,𝜎,𝑥) can be written as poly(1/𝑎)(1 + 𝛽/𝜎2
0) by Lemma B.3, 𝜎 can be written as

poly(𝜎0, 1/𝑎), and |𝑤𝑇𝑥| ≤ 𝛽. Then finally we can write

𝛾2 = poly
(︁

1/𝑎, 𝛽, 𝜎0 +
1

𝜎0

)︁
Now, we will prove the smoothness. For any two vectors 𝜃1 = (𝑣1, 𝜆1) and 𝜃2 = (𝑣2, 𝜆2), we define
the unit vector with same direction of (𝑣2, 𝜆2) − (𝑣1, 𝜆1) as u. Since the projection set written in
𝑣, 𝜆 is convex, we claim that all of the points along the line segment (𝑣2, 𝜆2)(𝑣1, 𝜆1) are within the
projection set. Hence,⃦⃦
∇ℓ̄(𝑣2, 𝜆2)−∇ℓ̄(𝑣1, 𝜆1)

⃦⃦
=

⃦⃦⃦⃦
⃦
∫︁ ‖𝜃2−𝜃1‖

0

𝜕∇ℓ̄
𝜕u

⃒⃒⃒⃒
(𝑣1,𝜆1)+u𝑡

ud𝑡

⃦⃦⃦⃦
⃦

≤
∫︁ ‖𝜃2−𝜃1‖

0

⃦⃦⃦⃦
⃦ 𝜕∇ℓ̄𝜕u

⃒⃒⃒⃒
(𝑣1,𝜆1)+u𝑡

u

⃦⃦⃦⃦
⃦d𝑡 =

∫︁ ‖𝜃2−𝜃1‖

0

√︁
u𝑇H((𝑣1, 𝜆1) + u𝑡)𝑇H((𝑣1, 𝜆1) + u𝑡)ud𝑡

≤
∫︁ ‖𝜃2−𝜃1‖

0

√︀
u𝑇 𝛾2𝐼ud𝑡 = 𝛾‖𝜃2 − 𝜃1‖

Thus, we derive that 𝐿𝒟 is 𝛾-smooth.

B.6 Proof of Corollary 4.6

Proof. By Theorem 4.1, we can choose 𝜌 to be poly(𝛽, 𝜎0 + 1
𝜎0
, 1
𝑎), and 𝜁 =

exp
(︁
−poly(1/𝑎)(1 + 𝛽

𝜎2
0
)
)︁

min{𝜎2
0 , 𝜎

4
0}. Then using Section 4.4 the assumptions of Theorem

3.5are satisfied and applying Theorem 3.5the Lemma follows.

B.7 Detailed proof of Theorem 3.2

The notation is the same as in Section 4.5, and we present the details of the two cases considered in
that section. Here, the estimation below does not contain the number of samples for 𝑛 to to define
projection 𝐷. In Section 4.2, we need the number of samples as 𝑂

(︁
(1−log 𝑎)𝜎*2+𝛽

𝑏4𝜎*2

)︁
. This is bounded

above by the right hand side of 3.2: 𝑛 must be at the order of poly(𝜎*·𝛽
𝑎·𝑏 , 1

𝑎·𝜎*) and the order of

poly(𝜎*, 1
𝑏) · exp

(︁
poly(𝛽

𝑎·𝜎*)
)︁

.

Case 𝜂𝑡 = 𝑐/
√
𝑡. First, combining Theorem 3.4 and Theorem 4.1 and the projection set, we get the

corollary 4.3. We can derive the corollary as follows: by Theorem 4.1 and the rest of Section 4.3

12

,we know that the step variance and the domain is bounded by some polynomial of 𝜎0, 𝛽,
1
𝑎 , 1/𝜎0.

By Theorem 3.4, if the final (𝑤*, 𝜎*2) ∈ 𝐷, we have, after 𝑛 steps, E
[︁
ℓ̄(𝑣, �̂�)− ℓ̄(𝑣*, 𝜆*)

]︁
≤

poly(
𝜎0·𝛽
𝑎·𝑏 , 1

𝑎×𝜎0
)·log(𝑛)

𝑛1/2 . Notice that from the definition of the projection set, 𝜎0/𝜎
* and 𝜎*/𝜎0 both

are bounded by poly(1/𝑎). Therefore, we can rewrite this bound to E
[︁
ℓ̄(𝑣, �̂�)− ℓ̄(𝑣*, 𝜆*)

]︁
≤

poly(𝜎*·𝛽
𝑎·𝑏 , 1

𝑎×𝜎*)·log(𝑛)
𝑛1/2 .

Our next step is to transform the optimality in function values to closeness to the true parameters. To
do so we use the strong convexity of ℓ̄ at the optimum.

By Lemma 4.5, we have:

ℓ̄(𝑣*, 𝜆*) = E
𝑥∈𝒫

E
𝑦

[︃
(𝑦 − 𝑤*𝑇𝑥)2

2𝜎*2 + log𝛼(𝑤*, 𝜎*, 𝑥)

]︃
≤ 4− 2 log min

𝑥∈𝒫
𝛼(𝑤*, 𝜎*, 𝑥) ≤ 4− 2 log 𝑎

We receive the first inequality by ignoring the log𝛼(𝑤*, 𝜎*, 𝑥) term and the fact that the expectation
is smaller then the maximum. By applying Markov’s inequality we get

P
(︁
ℓ̄(𝑣, �̂�)− ℓ̄(𝑣*, 𝜆*) > 5E

[︁
ℓ̄(𝑣, �̂�)− ℓ̄(𝑣*, 𝜆*)

]︁)︁
<

1

7
. (B.1)

The inequality implies that, with a probability of at least 6/7, the actual difference is at most 7 times its
expectation. The constant 7 can be absorbed by the poly term. Also, the probability that (𝑣*, 𝜆*) ∈ 𝐷
is at least 13/16 by Lemma 4.2. Combining these two, we have at least 13/16−1/7 > 2/3 probability
to hold:

ℓ̄(𝑣, �̂�)− ℓ̄(𝑣*, 𝜆*) ≤ E
[︁
ℓ̄(𝑣, �̂�)− ℓ̄(𝑣*, 𝜆*)

]︁
≤

poly(𝜎*·𝛽
𝑎𝑏 , 1

𝑎×𝜎*) · log(𝑛)

𝑛1/2
(B.2)

Now by applying Lemma 4.4, we transform the difference in functions to the 𝐿2 norm distance.
Since 𝑣, �̂� converge to 𝑣*, 𝜆*, when they have small distance, we can approximate the rate using the
convexity of the minimum. Therefore, we have

‖𝑣 − 𝑣*‖2 + (�̂�− 𝜆*)2 ≤ 2

𝛿

(︁
ℓ̄(𝑣, �̂�)− ℓ̄(𝑣*, 𝜆*)

)︁
≤

poly(𝜎*·𝛽
𝑎𝑏 , 1

𝑎×𝜎*) · log(𝑛)

𝛿 · 𝑛1/2
(B.3)

where

H(𝑣*, 𝜆*) ⪰ 𝑏
𝑎8

213𝒞4
1

3 + 2𝑏‖𝑤*‖2/𝜎*2

(︂
𝜎*2𝐼 0

0 𝜎*4

)︂
⪰ 𝛿𝐼

Notice that ‖𝑤‖2 ≤ 𝛽. Therefore 𝛿−1 = poly
(︁

𝜎*·𝛽
𝑎·𝑏 , 1

𝑎·𝜎*

)︁
, and this term can be absorbed into the

term poly(𝜎*·𝛽
𝑎×𝑏 ,

1
𝑎𝜎*).

Finally, by Cauchy-Schwartz Inequality, we have

‖�̂� − 𝑤*‖+
⃒⃒⃒
�̂�2 − 𝜎*2

⃒⃒⃒
≤
√︂

2
(︁
‖�̂� − 𝑤*‖2 +

⃒⃒
�̂�2 − 𝜎*2

⃒⃒2)︁
(B.4)

And for the 𝑤 part, we parameterize back and we get

‖�̂� − 𝑤*‖2 ≤
⃦⃦⃦⃦
𝑣

�̂�
− 𝑣*

𝜆*

⃦⃦⃦⃦2
≤ 2

(︃⃦⃦⃦⃦
𝑣

�̂�
− 𝑣

𝜆*

⃦⃦⃦⃦2
+

⃦⃦⃦⃦
𝑣

𝜆* −
𝑣*

𝜆*

⃦⃦⃦⃦2)︃

≤ ‖𝑣‖
2

𝜆*2�̂�2
(�̂�− 𝜆*)2 +

||𝑣 − 𝑣*||2

𝜆*2
≤ poly(1/𝑎, 𝜎*, 𝛽)

⃦⃦⃦
(𝑣, �̂�)− (𝑣*, 𝜆*)

⃦⃦⃦2
(B.5)

The last inequality is because of the projection set, we have �̂�, 𝜆* = poly(1/𝑎)𝜎*−2. Also, by
Assumption 2.2 we have ‖𝑣‖ = ‖�̂�‖/�̂�2 ≤

√
𝛽/(poly(1/𝑎)𝜎*2). For the 𝜎, we have

|�̂�2 − 𝜎*2|2 =

⃦⃦⃦⃦
1

�̂�
− 1

𝜆*

⃦⃦⃦⃦2
≤ 1

𝜆*2�̂�2
(�̄�− 𝜆*)2 ≤ poly(1/𝑎, 𝜎*)

⃦⃦⃦
(𝑣, �̂�)− (𝑣*, 𝜆*)

⃦⃦⃦2
(B.6)

13

The last inequality is also derived from the projection set. Combining inequality (B.1) with inequality
(B.6), we have, with a probability of at least 2/3,

‖�̂� − 𝑤*‖+
⃒⃒⃒
�̂�2 − 𝜎*2

⃒⃒⃒
≤
√︂

2
(︁
‖�̂� − 𝑤*‖2 +

⃒⃒
�̂�2 − 𝜎*2

⃒⃒2)︁
≤
√︂

2poly(1/𝑎, 𝜎*, 𝛽)
⃦⃦⃦
(𝑣, �̂�)− (𝑣*, 𝜆*)

⃦⃦⃦2
≤

√︃
2poly(1/𝑎, 𝜎*, 𝛽)

poly(𝜎*·𝛽
𝑎𝑏 , 1

𝑎·𝜎*) · log(𝑛)

𝛿 · 𝑛1/2

=
poly(𝜎*·𝛽

𝑎𝑏 , 1
𝑎·𝜎*) · log(𝑛)

𝑛1/4

And therefore, inequality (3.1) of Theorem 3.2 follows.

Remark: We can derive in the theorem 2 in Shamir & Zhang (2013) that the bound is 𝑂(𝜌2 1+log𝑛√
𝑛

).
We have already written the bound for H and step variance in the form of 𝜎*. Therefore, the right
hand side of inequality B.2 is

𝑂

(︃
(1− log 𝑎)10

𝑎8
(1 + 𝛽2 + 𝜎*4)

log 𝑛√
𝑛

)︃

And 𝛿−1 = 3+2𝑏𝛽/𝜎*2

𝑏𝑎8 min(𝜎*2,𝜎*4) = 𝑂
(︁

(𝜎*2+𝛽)(1+𝜎*2)
𝑏𝑎8𝜎*6

)︁
. Here, we used a trick that min(𝑥2, 𝑥4) =

Ω(𝑥4

1+𝑥2)

By equations B.5 and B.6, the factor to be multiplied from 𝑣, 𝜆 to 𝑤, is max(1
𝜆*2 ,

‖𝑣‖2

�̂�2𝜆*2) =

max(𝜎*4, 𝜎*4‖�̂�‖2) = 𝑂((𝜎*)4(1+𝛽)) the factor to be multiplied from 𝜆 to 𝜎 is 1

�̂�
2
𝜆*2

= 𝜎*2�̂�2 =

𝑂(𝜎*4𝑠2) = 𝑂(𝜎*4 1−log 𝑎
𝑎2). So, the overall multiplying factor is 𝑂(𝜎*4 1−log 𝑎

𝑎2 (1 + 𝛽))

Therefore, by multiplying these bounds and square root, we have a bound of

𝑂(

√︃
(1− log 𝑎)10

𝑎8
(1 + 𝛽2 + 𝜎*4)

log 𝑛√
𝑛

(𝜎*2 + 𝛽)(1 + 𝜎*2)

𝑏𝑎8𝜎*6 𝜎*4 1− log 𝑎

𝑎2
(1 + 𝛽))

Which can be simplify to

𝑂

(︃
(1− log 𝑎)5.5

𝑎9

√
log 𝑛
4
√
𝑛

(1 + 𝛽2)(𝜎*3 + 𝜎*−1)√
𝑏

)︃

Case 𝜂𝑡 = 1/(𝜁𝑡). We just plug in the result in Theorem 4.1 into Theorem 3.5 and in Section B.6 we
have proved Corollary 4.6. That is, if 𝑤*, 𝜎* ∈ 𝐷, we have

E
[︂⃦⃦⃦

(𝑣, �̂�)− (𝑣*, 𝜆*)
⃦⃦⃦2]︂
≤ poly

(︂
𝛽, 𝜎0 +

1

𝜎0
,

1

𝑎

)︂
× exp

(︂
poly(1/𝑎)

(︂
1 +

𝛽

𝜎2
0

)︂)︂
1

𝑏2𝑛
.

Applying Markov’s inequality again as inequality (B.1), we have

P
(︂⃦⃦⃦

(𝑣, �̂�)− (𝑣*, 𝜆*)
⃦⃦⃦2

< 7E
[︂⃦⃦⃦

𝑣, �̂�− (𝑣*, 𝜆*)
⃦⃦⃦2]︂)︂

< 1/7 (B.7)

Similarly to the proof of inequality (3.1) above, of Theorem 3.2, we have that with probability at least
2/3 it holds that

⃦⃦⃦
(𝑣, �̂�)− (𝑣*, 𝜆*)

⃦⃦⃦2
≤

poly(𝜎0) · exp
(︁

poly(𝛽
𝑎·(𝜎0)

)
)︁

𝑏2 · 𝑛

14

Again, using the same inequality (B.4) to (B.6), we can transform the bound from square bound to a
linear one:

‖�̂� − 𝑤*‖+
⃒⃒⃒
�̂�2 − 𝜎*2

⃒⃒⃒
≤
√︂

2poly(1/𝑎, 𝜎*, 𝛽)
⃦⃦⃦
(𝑣, �̂�)− (𝑣*, 𝜆*)

⃦⃦⃦2

≤

⎯⎸⎸⎷
2poly(1/𝑎, 𝜎*, 𝛽)

poly(𝜎0) · exp
(︁

poly(𝛽
𝑎·(𝜎0)

)
)︁

𝑏2 · 𝑛

=
poly(𝜎0) · exp

(︁
poly(𝛽

𝑎·𝜎0
)
)︁

𝑏
√
𝑛

We get the last inequality because the poly(1/𝑎, 𝜎*, 𝛽) can be absorbed into poly(𝜎0) and exponential
term of poly(𝛽/𝛼𝜎0). Therefore, the inequality (3.2) of Theorem 3.2 follows.

Remark: Again, we can calculate the bound by plugging Theorem 4.1 into 3.5. This gives us a
difference of 4𝜌2

𝜁2𝑡 , where 𝜌 is the bound on the step variance in Section B.3.2 and 𝜁 is the lower bound
in the B.3.1. Specifically, we have

𝜌2 = 𝑂

(︃
(1− log 𝑎)10

𝑎8
(1 + 𝛽2 + 𝜎*4)

)︃
and from the remark in the B.3.1, we have

𝜁 = Ω

(︂
exp

(︂
−16𝑠2

(︂
− log 𝑎 + 2 +

2𝛽

𝜎*2

)︂)︂
𝑏

𝑏(1 + 𝛽/𝜎2) + 1

)︂
min(𝜎2, 𝜎4)

for all the possible 𝜎 in the projection set. Since we know that 𝜎2/𝜎*2 we may say 𝜎2/𝜎*2 ≥
𝑂
(︁

𝑎2

1−log 𝑎

)︁
. Also 𝑠 = 96×8(5−2 log 𝑎)

𝑎2 . For (𝑏(1+𝛽/𝜎2)+1)
𝑏min(𝜎2,𝜎4) , the numerator is 𝑂(1 + 𝛽/𝜎2) = 𝑂(1 +

𝛽/(1−log 𝑎)𝜎*2

𝑎2) = 𝑂((1 + 𝛽/𝜎*2) 1−log 𝑎
𝑎2), and the denominator is 𝑏min(𝜎2, 𝜎4) = Ω

(︁
𝑏 𝜎4

1+𝜎2

)︁
=

Ω
(︁
𝑏 𝜎*4

1+𝜎*2

(1−log 𝑎)2

𝑎4

)︁
. Therefore, we can write 1

𝜁 as

𝑂

(︃
exp

(︃
9× 214(1− log 𝑎)

𝑎2

(︁
− log 𝑎 + 2 +

2𝛽

𝜎*2

)︁)︃1 + 𝛽/𝜎*2

𝑏𝜎*4 (1 + 𝜎*2)
(1− log 𝑎)3

𝑎6

)︃

Since we know that 𝜌2 = 𝑂((1−log 𝑎)10

𝑎8 (1 +𝛽2 +𝜎*4)) and the coefficient 𝑂(𝜎*4 1−log 𝑎
𝑎2 (1 +𝛽)) =:

𝐾 for transforming 𝑣, 𝜆 to 𝑤, 𝜎, we can take the square root of this term, and calculate a bound for

the final estimation. This is given by taking
√︁

4𝜌2

𝜁2𝑛𝐾 and then counting the both highest and lowest
degrees of 𝛽, 𝜎*, 𝑎

𝑂

(︂
exp

(︂
3× 212(5− 2 log 𝑎)

𝑎2

(︁
− log 𝑎 + 2 +

2𝛽

𝜎*2

)︁)︂ (1− log 𝑎)8.5

𝑎15
(1 + 𝛽2.5)(𝜎*−1 + 𝜎*3)

1

𝑏
√
𝑛

)︂
B.8 Proof of Theorem 5.1 and Corollary 5.2

We cite a lemma in the multivariate version of Proposition 2 in Leluc & Portier (2020).
Definition B.7. A stochastic algorithm is a sequence (𝑥𝑘)𝑘≥0 of random variables defined in a
probability space (Ω,ℱ , 𝑃) and valued in R𝑑. Define (ℱ𝑘)𝑘≥0 as the natural 𝜎-field associated to
the stochastic algorithm (𝑥𝑘)𝑘≥0, i.e., ℱ𝑘 = 𝜎(𝑥0, 𝑥1, · · · , 𝑥𝑘), 𝑘 ≥ 0. A policy is a sequence of
random probability measures (𝑃𝑘)𝑘≥0, each defined on a measurable space (𝑆,𝒮) that are adapted to
ℱ𝑘.
Definition B.8. Given a policy (𝑃𝑘)𝑘≥0 and a learning rates sequence (𝛼𝑘)𝑘≥1 of positive numbers,
the SGD algorithm is defined by the update rule 𝑥𝑘 = 𝑥𝑘−1 − 𝛼𝑘𝐶𝑘𝑔(𝑥𝑘−1, 𝜉𝑘) where 𝜉𝑘 ∼ 𝑃𝑘−1

with 𝑔 : R𝑑 × 𝑆 → R𝑑

Theorem B.9. Proposition 2 in Leluc & Portier (2020). If we suppose that the assumptions below
are fulfilled:

15

1. The gradient estimation of 𝐹 is unbiased, that is, for 𝑘 ≥ 1, the expected sampled gradient
is equal to the total gradient. (E(𝑔(𝑥𝑘−1, 𝜉𝑘)|ℱ𝑘−1) = ∇𝐹 (𝑥𝑘−1))

2. The sequence (𝛼𝑘)𝑘≥1 is positive, decreasing to 0, and satisfies the Robbins-Monro condi-
tion:

∑︀
𝑘≥1 𝛼𝑘 = +∞ and

∑︀
𝑘≥1 𝛼

2
𝑘 <∞.

3. The objective function is 𝐿−smooth.

4. The objective function has only one minimum point 𝑥* and lim‖𝑥‖→∞ 𝐹 (𝑥) =∞

5. With probability 1, there exist 0 ≤ ℒ, 𝜎2 <∞ such that

∀𝑥 ∈ R𝑑,∀𝑘 ∈ N,E(||𝑔(𝑥𝑘−1, 𝜉𝑘)||2|ℱ𝑘−1) ≤ 2ℒ(𝐹 (𝑥)− 𝐹 (𝑥*)) + 𝜎2

6. The sequence of step-size is equal to 𝛼𝑘 = 𝛼𝑘−𝛽 with 𝛽 ∈ (1/2, 1].

7. 𝐻 = ∇2𝐹 (𝑥*) is positive definite and 𝑥 ↦→ ∇2𝐹 (𝑥) is continuous at 𝑥*.

8. Denote 𝑤𝑘 = ∇𝐹 (𝑥𝑘−1)− 𝑔(𝑥𝑘−1, 𝜉𝑘) and 𝛾𝑘 = E(𝑤𝑘+1𝑤
𝑇
𝑘+1|ℱ𝑘). There is a positive

definite matrix Γ𝑘
𝑘→∞−−−−→ Γ.

9. And there exist 𝛿, 𝜀 > 0 such that almost surely sup𝑘≥1 E(||𝑤𝑘||2+𝛿|ℱ𝑘−1)1||𝑥−𝑥*||≥𝜀 <
∞.

Assume that (𝐻 − 𝜅𝐼) is positive definite where 𝜅 = 1𝛽=11/2𝛼. Let (𝑥𝑘)𝑘≥0 be obtained by the
SGD rule, then 1√

𝛼𝑘
(𝑥𝑘 − 𝑥*) weakly converge to a multivariate normal 𝒩 (0,Σ) where Σ satisfy

the following equation:
(𝐻 − 𝜅𝐼)Σ + Σ(𝐻𝑇 − 𝜅𝐼) = Γ

In our settings, we have 𝑥𝑘 = (𝑣 𝜆)(𝑘) and the 𝜉𝑘 is new data (𝑥𝑘, 𝑦𝑘). The gradient 𝑔(𝑥𝑘, 𝜉𝑘)
is ∇ − ℓ(𝑣(𝑘), 𝜆(𝑘);𝑥(𝑘), 𝑦(𝑘)). Also, we have set 𝐶𝑘 = 𝐼, 𝛼 = 1

𝜁 , 𝛽 = 1 where 𝜁𝐼 is the lower
bound of the Hessian matrix H at (𝑣*, 𝜆*). Here, we can see that H− 1

2𝛼𝐼 is positive definite, since
H ⪰ 1

𝛼𝐼 ≻
1
2𝛼𝐼 . In the section below, we prove that the nine assumptions hold in our settings. Also,

in our settings, H is symmetric, so H𝑇 = H. We will omit the transpose of 𝐻 in the future content.

B.8.1 Assumptions 1-7

• Assumption 1 holds for our algorithm: each time the sampled 𝑢𝑖 is an unbiased estimator of
∇ℓ̄(𝑣(𝑡−1), 𝜆(𝑡−1)).

• Assumption 2 holds because of our chosen parameter. The step size is 𝜂𝑡 = 1/𝜁 · 𝑡 which
also satisfies assumption 6.

• Assumption 3 is proved in the subsection B.5.

• Assumptions 5 and 7 are implied by Theorem 4.1 for the bounded step variance and strong
convexity.

• From the strong convexity of the Hessian Matrix, we derive that the solution of ∇ℓ̄ is
unique since ℓ̄ has an unique minimum. Also, since the Hessian matrix is strongly convex
everywhere, it can be deduced that when ‖(𝑣, 𝜆)‖ → ∞, the ℓ̄ goes to infinity. This proves
assumption 4.

B.8.2 Assumptions 8 & 9

First, we propose another proposition, to state that (𝑣, 𝜆) converge almost surely to (𝑣*, 𝜆*):
Theorem B.10. Proposition 1 in Leluc & Portier (2020): Assumptions 1 to 5 are fulfilled. Then the
sequence of iterates (𝑥𝑘)𝑘≥0 obtained by the SGD rule in Definition B.8 converges almost surely
towards the minimizer 𝑥𝑘 → 𝑥*

Since (𝑣, 𝜆) converge almost surely to (𝑣*, 𝜆*), the ℓ̄ is twice differentiable, and 𝑥(𝑖), 𝑦(𝑖) are i.i.d,
then we have that the distribution of 𝑤𝑘 converges to the case when 𝑣, 𝜆 → 𝑣*, 𝜆*. So, E[𝑤𝑘𝑤

𝑇
𝑘]

16

converges to some matrix Γ. The matrix Γ is positive definite, since it is a positive combination of
some matrices of form 𝑣𝑣𝑇 . Since 𝑛→∞ the parameter (𝑣, 𝜆) converge to (𝑣*, 𝜆*) almost surely,
and the gradient of ℓ̄ at the true parameter is zero, we have

Γ = E
𝑥∼𝒫

E
𝑦

[︂
(
𝜕𝑙(𝑥, 𝑦; 𝑣, 𝜆)

𝜕(𝑣, 𝜆)
−∇ℓ̄)(𝜕𝑙(𝑥, 𝑦; 𝑣, 𝜆)

𝜕(𝑣, 𝜆)
−∇ℓ̄)𝑇

]︂
= E

𝑥∼𝒫
E
𝑦

[︃(︂
𝜕𝑙(𝑥, 𝑦; 𝑣, 𝜆)

𝜕(𝑣, 𝜆)

)︂(︂
𝜕𝑙(𝑥, 𝑦; 𝑣, 𝜆)

𝜕(𝑣, 𝜆)

)︂𝑇
]︃

when (𝑣, 𝜆) = (𝑣*, 𝜆*). Since the assumption 2.4 gives E𝑥∼𝒫 𝑥𝑥𝑇 ⪰ 𝑏𝐼 , the rank of 𝑥(𝑖) is full.
Therefore, the gradients will not all be on the same linear subspace (since the gradient is some scalar
times 𝑥(𝑖) and 𝑦(𝑖), which itself is generated with noise.) Hence, Γ is positive definite.

For assumption 9, notice that if we bound 𝑣, 𝜆 by the projection set, the 𝑤, 𝜎 are both bounded. Thus,
∀(𝑣, 𝜆) ∈ 𝐷𝑟, the gradient is bounded if we set 𝜀 such that ||(𝑣, 𝜆) − (𝑣*, 𝜆*)|| to be inside the
projection set. Also 𝒫 is bounded. So, if 𝑦 ∼ 𝐹𝑥 = 𝒩 (𝑤*𝑇𝑥, 𝜎*2, 𝑆), we have

𝜕ℓ

𝜕𝑣
= (E𝑧∼𝑄𝑥 [𝑧]− 𝑦)𝑥,

𝜕ℓ

𝜕𝜆
=

1

2
(𝑦2 − E𝑧∼𝑄𝑥 [𝑧2])

Where 𝑄𝑥 = 𝒩 (𝑤𝑇𝑥, 𝜎2, 𝑆). Next, we show that E𝑦

[︁⃦⃦
𝜕ℓ
𝜕𝑣

⃦⃦4
+
(︀
𝜕ℓ
𝜕𝜆

)︀4]︁
is bounded. We know that

the expression can be written as

E𝑦

[︃⃦⃦⃦⃦
𝜕ℓ

𝜕𝑣

⃦⃦⃦⃦4
+

(︂
𝜕ℓ

𝜕𝜆

)︂4
]︃

=
E𝑦∼𝒩 (𝑤*𝑇 𝑥,𝜎*2)

[︁
1𝑦∈𝑆

(︁⃦⃦
𝜕ℓ
𝜕𝑣

⃦⃦4
+
(︀
𝜕ℓ
𝜕𝜆

)︀4)︁]︁
𝛼(𝑤*, 𝜎*, 𝑥)4

≤ 1

𝑎4
E𝑦∼𝒩 (𝑤*𝑇 𝑥,𝜎*2)

[︃⃦⃦⃦⃦
𝜕ℓ

𝜕𝑣

⃦⃦⃦⃦4
+

(︂
𝜕ℓ

𝜕𝜆

)︂4
]︃

Because E[𝑧] and E[𝑧2] are bounded, and 𝑥 is also bounded. Also, 𝑤*𝑇𝑥 and 𝜎* are bounded. the
expression inside the expectation can be written as a polynomial of 𝑦 of degree ≤ 8. Notice that for
the polynomial 𝑃 (𝑡), if 𝑡 is a given normal distribution𝒩 (𝜇, 𝜎) where 𝜇 and 𝜎 are bounded, E𝑦(𝑃 (𝑡))

is bounded. Thus, we have E𝑦

[︁⃦⃦
𝜕ℓ
𝜕𝑣

⃦⃦4
+
(︀
𝜕ℓ
𝜕𝜆

)︀4]︁
is bounded if we choose 𝑥 in the projection set.

Therefore, ||𝑤𝑘||4 = ||𝜕ℓ(𝑣,𝜆,𝑥,𝑦)𝜕(𝑣,𝜆) −∇ℓ̄||4 ≤ 8(||𝜕ℓ(𝑣,𝜆,𝑥,𝑦)𝜕(𝑣,𝜆) ||
4 + ||∇ℓ̄||4) is also bounded, since the

bound of the latter term can be derived by the bounded step variance in 4.1.

Therefore, when we set 𝜀 such that ||(𝑣 𝜆)− (𝑣* 𝜆*)|| to be inside the projection set, and 𝛿 = 2, we
can maintain a bounded expectation.

B.8.3 Final Estimation

Since all assumptions hold, we know that the difference of the estimator and true parameter(︁√︀
𝑘−1/𝜁

)︁−1

((𝑣 𝜆)− (𝑣* 𝜆*)) is asymptotically normal, and that the variance is given by equation

(H− 𝜅𝐼)Σ + Σ(H𝑇 − 𝜅𝐼) = Γ

Where H is the Hessian matrix at (𝑣*, 𝜆*).

Notice that the (𝑣, 𝜆) converge to (𝑣*, 𝜆*) almost surely, so we can apply the plug-in confidence
interval. We can substitute the true estimates by the empirical estimates as justified by the Slutsky’s
theorem. Notice that the parameter Ĥ = H(𝑣, �̂�) converges to the true parameter H (because 𝑣, 𝜆

is converging by Theorem B.10) And Γ̂ (defined below) converges to Γ (by the last subsection.)
Therefore, we can apply Slutsky’s Theorem and we can substitute the estimated parameters for true
parameters to calculate the confidence region. We can substitute H to Ĥ where Ĥ = H(𝑣, �̂�) is
the empirical Hessian matrix evaluated at (𝑣, �̂�). Also, the empirical Γ can be evaluated by Γ(𝑣, �̂�),
where

Γ(𝑣, 𝜆) =
1

𝑛

𝑛∑︁
𝑖=1

𝜕𝑙(𝑣, 𝜆;𝑥(𝑖), 𝑦(𝑖))

𝜕(𝑣, 𝜆)

𝜕𝑙(𝑣, 𝜆;𝑥(𝑖), 𝑦(𝑖))

𝜕(𝑣, 𝜆)

𝑇

17

That is, we can write √
𝑛(𝜃 − 𝜃′)→ 𝒩 (0, 𝜁−1Σ)

Where (Ĥ− 𝜅𝐼)Σ + Σ(Ĥ− 𝜅𝐼) = Γ(𝑣, �̂�), and 𝜃 is the joined vector of 𝑣, 𝜆. Notice that here we
are converging to a random matrix, so we interpret this estimation as

𝜁1/2Σ−1/2
√
𝑛(𝜃 − 𝜃′)→ 𝒩 (0, 𝐼)

By the delta method, since we have (𝑤, 𝜎) = (𝑣/𝜆, 1/𝜆), we know that

∇(𝜃) =𝐽𝑇 =
𝜕(𝑤, 𝜎2)

𝜕(𝑣, 𝜆)

⃒⃒⃒⃒
𝑣=𝑣,𝜆=�̂�

=

(︂
1/�̂�𝐼 0

−𝑣𝑇 /�̂�2 −1/�̂�2

)︂
=

(︂
�̂�2𝐼 0

−�̂�𝑇 �̂�2 −�̂�4

)︂

So we have (now 𝑤, 𝜎2 are written in terms of 𝜃)
√
𝑛(𝜃 − 𝜃) ∼ 𝒩 (0, 𝐽(𝜁−1Σ)𝐽𝑇)

Or, in other terms, let 𝑆 = 𝐽(𝜁−1Σ)𝐽𝑇 , we have
√
𝑛𝑆−1/2(𝜃 − 𝜃) ∼ 𝒩 (0, 𝐼)

Thus, Theorem 5.1 is proved. In addition, this yields

(𝜃 − 𝜃)𝑇 (
1

𝑛
𝐽(𝜁−1Σ)𝐽𝑇)−1(𝜃 − 𝜃) ∼ 𝜒𝑘+1

Let 𝑞𝛼 is the 1− 𝛼 quantile of the distribution 𝜒𝑘+1, so we have the confidence region

(𝜃 − 𝜃)𝑇 (𝐽(𝜁−1Σ)−1𝐽𝑇)−1(𝜃 − 𝜃) ≤ 𝑞𝛼/𝑛

Where we can calculate

𝐽−1 =

(︂
1/�̂�2𝐼 −�̂�/�̂�4

0 −1/�̂�4

)︂
To make it clearer, we define 𝑅 = 𝐽−1. So Or, write back to �̂�, �̂�, as(︂(︂

𝑤
𝜎2

)︂
−
(︂
�̂�
�̂�2

)︂)︂𝑇

𝑅𝑇 Σ−1𝑅

(︂(︂
𝑤
𝜎2

)︂
−
(︂
�̂�
�̂�2

)︂)︂
≤ 𝑞𝛼

𝜁𝑛

C Experiment Setup

In our main paper, we provide theoretical guarantees for truncated linear regression with unknown
noise variance and test our procedure on synthetic data. Here, we give an overview of how we set
up these experiments. In our experimental section, we mention that we perform each experiment
for an specified number of trials. For each algorithm a trial means something different. For the
Croissant & Zeileis (2018) experiments, we write the dataset of interest to a csv file, which is then
read in an R script and the procedure is run. For Daskalakis et al. (2019) and our algorithm, a trial is
considered complete in a of couple ways. First off, every 100 steps, we check the 𝐿2 norm of the
validation set’s gradient. If its magnitude is less than 1𝑒− 1, we terminate the procedure, and return
the current estimates. However, if after taking 2500 gradient steps, the validation set’s gradient 𝐿2

norm is greater than 1𝑒− 1, we re-run the stochastic process. We do this a maximum of three times,
and return the trial with the smallest gradient.

For these experiments, we use a PyTorch SGD optimizer, starting our procedure with a learning rate
of 1𝑒− 1, and decaying it at a rate of .9 every 100 gradient steps.

All of the experiments performed in this paper were performed on a 15-inch MacBookPro with a 2.2
GHz 6-Core Intel Core i7 with 16 GB of memory. It is of note to mention that 2500 gradients steps
with batch size 10 ran in a maximum of 3 seconds for the experiments.

18

D Code

We provide code for our experiment at the following GitHub repository: https://github.com/
pstefanou12/Truncated-Regression-With-Unknown-Noise-Variance-NeurIPS-2021.

Below, we provide the gradient that we used for conducting all of our experiments.

1 class TruncatedUnknownVarianceMSE(ch.autograd.Function):
2 """
3 Computes the gradient of negative population log likelihood for
4 truncated linear regression with unknown noise variance.
5 """
6 @staticmethod
7 def forward(ctx , pred , targ , lambda_ , phi):
8 ctx.save_for_backward(pred , targ , lambda_)
9 ctx.phi = phi

10 return 0.5 * (pred.float () - targ.float ()). pow (2). mean (0)
11

12 @staticmethod
13 def backward(ctx , grad_output):
14 pred , targ , lambda_ = ctx.saved_tensors
15 # calculate std deviation of noise distribution estimate
16 sigma = ch.sqrt(lambda_.inverse ())
17 stacked = pred[None , ...]. repeat(args.num_samples , 1, 1)
18 # add noise to regression predictions
19 noised = stacked + sigma * ch.randn(stacked.size ())
20 # filter out copies that fall outside of truncation set
21 filtered = ctx.phi(noised)
22 z = noised * filtered
23 lambda_grad = .5 * (targ.pow (2) - (z.pow (2). sum(dim=0) /
24 (filtered.sum(dim=0) + args.eps)))
25 """
26 multiply the v gradient by lambda , because autograd computes
27 v_grad*x*variance , thus need v_grad *(1/ variance) to cancel
28 variance factor
29 """
30 out = z.sum(dim=0) / (filtered.sum(dim =0) + args.eps)
31 return lambda_ * (out - targ) / pred.size(0),
32 targ / pred.size(0), lambda_grad / pred.size(0), None

Listing 1: Truncated version of mean squared-error loss

E Future Work

There are many ways to build upon our work. One thing to point out is that, we use an SGD
framework, while Croissant & Zeileis (2018) uses an analytic gradient and Hessian provided by the
Henningsen & Toomet (2011) package and the Newton-Raphson method. Since we do not explicitly
calculate integrals in our method, our framework could be used to train non-linear models, including
neural networks. Further, now that there are two methods to learn from truncated linear models, it
would be interesting to explore an actual example where a dataset has been truncated or censored
due to uncontrollable circumstances. With multiple methods for learning from truncated samples,
it would interesting to see what results each of the method’s give. An interesting field to explore
would be environmental sciences, as there are a lot of examples where there is truncation due to
measurement instrumentation failure or natural causes. One last to ponder would be what theoretical
guarantees can be derived for an algorithm in the censored setting. We emphasize that our algorithm
for truncated data will work in the censored setting, but with additional knowledge of all the covariate
features, can we design an algorithm with better error and/or run-time bounds?

19

https://github.com/pstefanou12/Truncated-Regression-With-Unknown-Noise-Variance-NeurIPS-2021
https://github.com/pstefanou12/Truncated-Regression-With-Unknown-Noise-Variance-NeurIPS-2021

	Efficient_Truncated_Linear_Regression_with_Unknown_Noise_Variance
	Introduction
	Models and assumptions
	Main Result
	Overview of the proof of Theorem 3.2.
	The Negative Population Conditional Log-Likelihood Function of Truncated Linear Regression
	Computational Problems
	Bounded Step Variance, Bounded Domain, and Strong Convexity
	Feasibility of Optimal Solution
	Proof of Theorem 3.2

	Inference and Confidence Regions
	Synthetic Experiments
	Semi-Synthetic Experiment
	Projection Set
	Proof for the convexity of the projection set
	Algorithm for projecting to the projection set

	Missing Proofs
	Sampling the Gradient of the Objective Function
	Auxilliary Lemmas for Survival Probability of Feasible Points
	Proof of Theorem 4.1 and Lemma 4.4
	Strong Convexity
	Bounded Step Variance

	Proof of Lemma 4.2
	Proof of the Smoothness
	Proof of Corollary 4.6
	Detailed proof of Theorem 3.2
	Proof of Theorem 5.1 and Corollary 5.2
	Assumptions 1-7
	Assumptions 8 & 9
	Final Estimation

	Experiment Setup
	Code
	Future Work

