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7 Proof of Theorem 1521

In this section, we prove Theorem 1 on the effect of shift invariance on the margin of a linear classifier.522

We call a linear classifier shift invariant when it places all possible shifts of a signal in the same class.523

We prove that for a shift invariant linear classifier the margin will depend only on differences in the524

DC components of the training signals. It follows that for the two classes shown in Figure 1, the525

margin of a linear, shift invariant classifier will shrink in proportion to 1√
d

, where d is the number of526

image pixels.527

Theorem 1. Let S1 and S2 denote the sets of all shifts of X1 and X2, as described above. They are528

linearly separable if and only if maxx1∈S1
fdc(x1) < minx2∈S2

fdc(x2) or maxx2∈S2
fdc(x2) <529

minx1∈S1
fdc(x1). Furthermore, if the two classes are linearly separable then, if the first inequality530

holds, the margin is minx2∈S2
fdc(x2)−maxx1∈S1

fdc(x1), and similarly if the second inequality531

holds. Furthermore, the max margin separating hyperplane has a normal of w̄.532

Proof. We only consider the case in which maxx1∈S1 fdc(x1) < minx2∈S2 fdc(x2), without loss533

of generality. Two classes are linearly separable iff there exists a d-dimensional unit vector w and534

a threshold T such that: ∀x1 ∈ S1,w
Tx1 ≤ T and ∀x2 ∈ S2,w

Tx2 ≥ T . We say the margin is:535

minx1∈S1,x2∈S2
wTx2 −wTx1.536

First, it is obvious that if maxx1∈S1
fdc(x1) < minx2∈S2

fdc(x2) then S1 and S2 are linearly537

separable, by letting w = w̄, and538

T = max
x1∈S1

fdc(x1) +
minx2∈S2

fdc(x2)−maxx1∈S1
fdc(x1)
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The margin for w̄ is minx2∈S2
fdc(x2)−maxx1∈S1

fdc(x1).539

Second, we consider the opposite direction, supposing that the two classes are linearly separable.540

In this case there exist some w and T that will separate the classes. We can assume WLOG that541

‖w‖ = 1 and fdc(w) > 0. Let x1 ∈ X1. Then we have WLOG: ∀s wTxs
1 < T . This gives:542 ∑d−1

s=0 w
Txs

1

d
< T =⇒

wT
∑d−1

s=0 x
s
1

d
< T

Note that ∀x ∈ Rd,
∑d−1

s=0 x
s is just a constant vector of length d with each term equal to

√
dfdc(x).543

Therefore:544 ∑d−1
s=0 w

Txs

d
= fdc(w)fdc(x) (1)

so545

fdc(w)fdc(x1) < T ∀x1 ∈ X1

By similar reasoning, we have:546

fdc(w)fdc(x2) > T ∀x2 ∈ X2

Because fdc(w) > 0, fdc(x1) < fdc(x2). So:547

max
x1∈X1

fdc(x1) <
T

fdc(w)
and min

x2∈X2

fdc(x2) >
T

fdc(w)

so548

max
x1∈X1

fdc(x1) < min
x2∈X2

fdc(x2) (2)

This shows that S1 and S2 are linearly separable if and only if their DC components are separable.549

We now show that if S1 and S2 are linearly separable, for the max margin separator we have550

w = w̄, with a margin of minx1∈S2 fdc(x2) − maxx1∈S1 fdc(x1). Because w̄Tx = fdc(x), and551

the DC components are separable, w̄ separates the data, and we can see that the margin will be552

minx∈S2
fdc(x)−maxx∈S1

fdc(x).553
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So, it remains to show that no other choice of w separates the data with a larger margin. Because we554

assume, WLOG that ‖w‖ = 1 the margin is:555

min
x2∈S2

wTx2 − max
x1∈S1

wTx1

We will show that ∀x1 ∈ X1,x2 ∈ X2 and ∀w such that ‖w‖ = 1:556

min
s

wTxs
2 −max

s
wTxs

1 ≤ min
s

w̄Txs
2 −max

s
w̄Txs

1 (3)

which implies that the margin from w̄ is greater than or equal to the margin from w. We note that557

mins w̄
Txs

2 −maxs w̄
Txs

1 = fdc(x2)− fdc(x1).558

From Equation 1 we know that559

max
s

wTxs ≥ fdc(w)fdc(x), min
s

wTxs ≤ fdc(w)fdc(x)

This implies that:560

min
s

wTx2 −max
s

wTx1 ≤ fdc(w)(fdc(x2)− fdc(x1))

Given the constraint that ‖w‖ = 1, fdc(w) is maximized by w̄, and so fdc(w) ≤ 1, and561

fdc(w)(fdc(x2)− fdc(x1)) ≤ fdc(x2)− fdc(x1)

and Eq. 3 is shown to hold.562

563

8 Proof of Theorem 2 and Lemma 1564

In this section, we first define FC networks with the neural tangent kernel (NTK) (Jacot et al., 2018)565

and CNNs with a convolutional neural tangent kernel (CNTK) (Arora et al., 2019; Li et al., 2019)566

which we will use in the proof. Then we give the proofs of Theorem 2 and Lemma 1.567

Let x ∈ Rd denote the input to the network. A two-layer fully connected network is defined by568

fFC(x;W,v) = vTσ(Wx), (4)

where W ∈ Rm×d and v ∈ Rm are learnable parameters and σ(.) is the ReLU function applied569

elementwise. Assuming W and v are initialized with normal distribution, the corresponding FC-NTK570

for inputs z,x ∈ Rd is given by (Bietti & Mairal, 2019)571

k(z,x) =
1

π

(
2zTx(π − φ) + ‖z‖‖x‖ sinφ

)
, (5)

where φ denotes the angle between z and x, i.e., φ = arccos
(

zTx
‖z‖‖x‖

)
.572

Next we define the shift invariant convolutional model. Given an input x ∈ Rd and filters {wi}mi=1 ⊂573

Rq we denote by wi ∗ x ∈ Rd the circular convolution of x with the filter wi (with no bias). W ∗ x574

denotes the results of these convolutions, represented as an m× d matrix, with the m× q matrix W575

denoting the collection of all filters {wi}mi=1. Finally, let v ∈ Rm. Then a two layer convolutional576

network with global average pooling is defined by577

fConv(x;W,v) =
1

d
vTσ(W ∗ x))1d, (6)

W and v include the learnable parameters initialized with the standard normal distribution and578

1d ∈ Rd is the vector of all ones. In this model the input x is convolved with the rows of W . After579

ReLU the result undergoes a 1×1 convolution with parameters v followed by global average pooling,580

captured by the multiplication with 1
d1d.581

Given inputs z,x ∈ Rd, denote by z̄i, x̄j ∈ Rq their (cyclic) patches, 1 ≤ i, j ≤ d, so for582

example z̄i = (zi, z(i+1) mod d, ...z(i+q−1) mod d)T . Then the corresponding CNTK-GAP K(z,x)583

is constructed as follows.584

K(z,x) =
1

d2

d∑
i=1

d∑
j=1

k(z̄i, x̄j), (7)

2



where k(z̄i, x̄j) is the FC-NTK given by (5) (see a related construction in (Tachella et al., 2020)).585

We use FC-NTK and CNTK-GAP in kernel regression. Given training data {(xi, yi)}ni=1, xi ∈ X ,586

yi ∈ R, kernel ridge regression is the solution to (Saitoh & Sawano, 2016)587

gk = arg min
g∈Hk

n∑
i=1

(g(xi)− yi)2 + λ‖g‖2Hk
, (8)

where Hk denotes the reproducing kernel Hilbert space associated with k. The solution of (8) is588

given by589

gk(z) = (k(z,x1), ..., k(z,xn))(Hk + λI)−1y, (9)
where Hk is the n × n matrix with its i, j’th entry k(xi,xj), I denotes the identity matrix, and590

y = (y1, ..., yn)T . Below we consider the minimum norm interpolant, i.e.,591

gk = arg min
g∈Hk

‖g‖Hk
s.t. ∀i, g(xi) = yi. (10)

which is obtained when we let λ→ 0.592

Theorem 2. Let x,−x ∈ Rd be two training vectors with class labels 1,−1 respectively.593

1. Let k(z,x) denote NTK for the bias-free, two-layer fully connected network. Then ∀z ∈ Rd,594

the minimum norm interpolant gk(z) ≥ 0 iff zTx ≥ 0.595

2. Let K(z,x) denote CNTK-GAP for the bias-free, two-layer convolutional network, and596

assume HK is invertible. Then ∀z ∈ Rd, either gK(z) ≥ 0 iff zT1d ≥ 0 or gK(z) ≥ 0 iff597

zT1d ≤ 0. (I.e., zT1d = 0 forms a separating hyperplane.)598

The theorem tells us that NTK and CNTK produce linear classifiers. (1) tells us that NTK produces a599

separating hyperplane with a normal vector x, while (2) says that for CNTK the normal direction is600

1d.601

Proof. 1. Solving the regression problem (9) with λ→ 0 we have602

Hk =

(
k(x,x) k(x,−x)
k(−x,x) k(−x,−x)

)
= 2xTxI,

where the latter equality is obtained from (5) by noting that φ = 0 along the diagonal and603

φ = π for the off-diagonal entries. Therefore, using (9) and noting that y = (1,−1)T ,604

gk(z) =
1

2xTx
(k(z,x)− k(z,−x))

Given a test point z ∈ Rd, let φ now denote the angle between z and x and note that the605

angle between z and −x is π − φ. Therefore,606

k(z,x) =
1

π

(
2zTx(π − φ) + ‖z‖‖x‖ sinφ

)
k(z,−x) =

1

π

(
−2zTxφ+ ‖z‖‖x‖ sinφ

)
,

implying that607

k(z,x)− k(z,−x) = 2zTx. (11)

from which we obtain gk(z) = zTx
xTx

. Consequently, gk(z) > 0 if and only if zTx > 0.608

2. Using the definition of K (Eq. 7) it is clear that K(x,x) = K(−x,−x). Therefore, using609

Lemma 1 we need to show that K(z,x) > K(z,−x) on one side of the plane zT1d = 0.610

Consider the patches z̄i in z and x̄j in x. From (11) we have611

k(z̄i, x̄j)− k(z̄i,−x̄j) = 2z̄Ti x̄j ,

implying that612

K(z,x)−K(z,−x) =
2

d2

d∑
i=1

d∑
j=1

z̄Ti x̄j .
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Rewriting this in matrix notation we have613

K(z,x)−K(z,−x) =
2

d2
1T
d Z

TX1d,

where Z and X are q × d matrices whose columns respectively contain all the patches of614

z and x. Since all rows of Z and X are identical up to a cyclic permutation ẑ = Z1d and615

x̂ = X1d are vectors of constants in Rq with the constants zT1d and xT1d respectively.616

Consequently, using Lemma 1617

gK(z) = c(K(z,x)−K(z,−x)) =
2cq

d2
(zT1d)(xT1d).

where, becauseK is positive definite andHK is invertible, c = 1/(K(x,x)−K(x,−x)) >618

0. Denoting β = 2cq
d2 (xT1d), we obtain that gK(z) > 0 if and only if sign(β) zT1d > 0,619

proving the theorem.620

621

The following lemma was used to prove Thm. 2.622

Lemma 1. Let k(., .) be a positive definite kernel with a training set {(x1,+1), (x2,−1)} ⊂ Rd×R.623

If k(x1,x1) = k(x2,x2) and Hk is invertible with λ → 0 then a test point z ∈ Rd is classified as624

+1 if and only k(z,x1) > k(z,x2).625

Proof. Denote by a = k(x1,x1) = k(x2,x2) and b = k(x1,x2), then Hk =

(
a b
b a

)
. Clearly,626

y = (1,−1)T is an eigenvector of Hk with the eigenvalue a − b > 0, which is positive due to627

the positive definiteness of k. Consequently, y is also an eigenvector of H−1k with eigenvalue628

1/(a− b) > 0. Applying (9) we have629

gk(z) = (k(z,x1), k(z,x2))H−1y

=
1

a− b
(k(z,x1)− k(z,x2))

Therefore, gk(z) > 0 if and only if k(z,x1) > k(z,x2).630
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