A Properties of the nonconvex lower bound example (4)

We enumerate all relevant properties of Φ and Ψ used in the analysis in the following lemma. Lemma 6 ([5, Lemma 1]). *The functions* Φ *and* Ψ *satisfy*

- *i.* For all $x \leq 1/2$ and $k \in \mathbb{N}$, $\Psi^{(k)}(x) = 0$.
- *ii.* For all $x \ge 1$ and |y| < 1, $\Psi(x)\Phi'(y) > 1$.
- *iii.* Both Ψ and Φ are infinitely differentiable. For all $k \in \mathbb{N}$, we have

$$\sup_{x} |\Psi^{(k)}(x)| \le \exp\left(\frac{5k}{2}\log(4k)\right) \quad and \quad \sup_{x} |\Phi^{(k)}(x)| \le \exp\left(\frac{3k}{2}\log\frac{3k}{2}\right)$$

iv. The functions and derivatives Ψ , Ψ' , Φ , Φ' are non-negative and bounded, with

$$0 < \Psi < e, 0 < \Psi' < \sqrt{54/e}, 0 < \Phi < \sqrt{2\pi e}, 0 < \Phi' < \sqrt{e}.$$

Note that $\Psi(0) = \Psi'(0) = 0$ by Lemma 6.*i*. Then it is easy to verify that $\frac{\partial \bar{f}^{nc}(\boldsymbol{x})}{\partial x_i} = 0$ if $x_i = x_{i-1} = 0$. Therefore, if $\operatorname{supp}(\boldsymbol{x}) \subset \{1, \ldots, i-1\}$, i.e., $x_j = 0$ for all $j \ge i$, we have $\frac{\partial \bar{f}^{nc}(\boldsymbol{x})}{\partial x_j} = 0$ for all $j \ge i+1$. Hence, $\operatorname{supp}(\nabla \bar{f}^{nc}) \subset \{1, \ldots, i\}$, which implies \bar{f}^{nc} is a zero-chain. Define $x_0 \equiv 1$ for simplicity. As long as the algorithm has not reached the end of the chain, there must be a phase transition point $1 \le k \le T$ such that $|x_k| < 1$ and $|x_{k-1}| \ge 1$. Using Lemma 6.*ii*, one can bound $\|\nabla \bar{f}^{nc}(\boldsymbol{x}^t)\|_2 \ge \left|\frac{\partial \bar{f}^{nc}(\boldsymbol{x})}{\partial x_k}\right| > 1$. By appropriately rescaling \bar{f}^{nc} so that it meets the requirement of the function class of interest, Carmon et al. [5] derived a lower bound of $T_{nc} := \Omega(1/\epsilon^2)$ gradient oracles.

B A Useful lemma

We first present a lemma useful for analyzing the quadratic components in our examples.

Lemma 7. Denote $\alpha = \frac{1}{n^2}$ and let $B = (\alpha I_n + A)^{-1}$ where A is the matrix defined in (7). If $n \ge 10$, we have for all $1 \le i \le n$,

$$0.1n \le B_{i,1} \le 20n.$$

Proof of Lemma 7. Let M be the cofactor matrix of $\alpha I_n + A$. We have

$$B = \frac{M^{\top}}{\det\left(\alpha I_n + A\right)}.$$

So we only need to compute det $(\alpha I_n + A)$ and $M_{1,i}$ for all $1 \le i \le n$. Note that all of them are determinants of tridiagonal matrices which can be computed using a three-term recurrence relation [12]. Let

$$p = 1 + \frac{\alpha}{2} + \sqrt{\alpha + \frac{\alpha^2}{4}}, \quad q = 1 + \frac{\alpha}{2} - \sqrt{\alpha + \frac{\alpha^2}{4}}$$

be the solutions of the following characteristic equation

$$x^2 - (2 + \alpha)x + 1 = 0$$

By standard calculations, we have

$$\det(\alpha I_n + A) = \frac{\left(\alpha + \frac{\alpha^2}{2}\right) \left(p^{n-1} - q^{n-1}\right) + \alpha \sqrt{\alpha + \frac{\alpha^2}{4}} \left(p^{n-1} + q^{n-1}\right)}{2\sqrt{\alpha + \frac{\alpha^2}{4}}},$$
$$M_{1,i} = \frac{\frac{\alpha}{2} \left(p^{n-i} - q^{n-i}\right) + \sqrt{\alpha + \frac{\alpha^2}{4}} \left(p^{n-i} + q^{n-i}\right)}{2\sqrt{\alpha + \frac{\alpha^2}{4}}}.$$

Define $D = p^{n-1}$, $E = D - \frac{1}{D}$, and $F = D + \frac{1}{D}$. We have $0 \le p^{n-i} - q^{n-i} \le E$ and $2 \le p^{n-i} + q^{n-i} \le F$.

Therefore

$$\det(\alpha I_n + A) = \frac{\left(\alpha + \frac{\alpha^2}{2}\right)E + \alpha\sqrt{\alpha + \frac{\alpha^2}{4}}F}{2\sqrt{\alpha + \frac{\alpha^2}{4}}},$$
$$1 \le M_{1,n} \le M_{1,i} \le M_{1,1} = \frac{\frac{\alpha}{2}E + \sqrt{\alpha + \frac{\alpha^2}{4}}F}{2\sqrt{\alpha + \frac{\alpha^2}{4}}}.$$

Noting $\alpha = \frac{1}{n^2}$, we have

$$D = p^{n-1} = \left(1 + \frac{1}{2n^2} + \frac{1}{n}\sqrt{1 + \frac{1}{4n^2}}\right)^{n-1}$$

We can bound $2 \le D \le 8$ if $n \ge 10$. Then it is straightforward to upper and lower bound $\det(\alpha I_n + A)$ and $M_{1,i}$ and then obtain the bound of $B_{i,1}$. If $n \ge 10$, we have

$$0.1n \le B_{i,1} \le 20n, \forall 1 \le i \le n.$$

C Proofs for the lower bound in the deterministic setting

Proof of Lemma 4. Let $B = \left(\frac{1}{n^2}I_n + A\right)^{-1}$ where A is the matrix defined in (7). By symmetry, we have $B_{1,1} = B_{n,n}$ and $B_{1,n} = B_{n,1}$. Then we have

$$h_m(x,z) = \frac{C}{2n} \left(B_{1,1}x^2 - B_{n,1}xz + \frac{B_{1,1}}{4}z^2 \right).$$

Let $a_1 = B_{1,1}/n$ and $a_2 = B_{n,1}/n$. By Lemma 7 we know $0.1 \le a_1, a_2 \le 20$ and complete the proof.

To prove the main theorem, we need several additional lemmas. The following lemma gives a lower bound of the gradient norm when the algorithm hasn't reached the end of the chain.

Lemma 8. If $|z_i| < 1$ for some $i \leq T$, then $\left\|\nabla \overline{f}_m^{nc-sc}(\boldsymbol{x}, \boldsymbol{z})\right\|_2 > \frac{1}{3}$.

Proof of Lemma 8. We define $z_1 \equiv 1$ for simplicity. Since $|z_i| < 1$ and $|z_1| \ge 1$, we are able to find some $1 < j \le i$ to be the smallest j for which $|z_j| < 1$. So we know $|z_{j-1}| \ge 1$. We can compute

$$\begin{aligned} \frac{\partial \bar{f}_m^{\text{nc-sc}}(\boldsymbol{x}, \boldsymbol{z})}{\partial x_{j-1}} &= -\Psi(-z_{j-1})\Phi'(-x_{j-1}) - \Psi(z_{j-1})\Phi'(x_{j-1}) + 12\left(x_{j-1} - \frac{1}{2}z_j\right) \\ &=: p(x_{j-1}, z_{j-1}) + 12\left(x_{j-1} - \frac{1}{2}z_j\right), \\ \frac{\partial \bar{f}_m^{\text{nc-sc}}(\boldsymbol{x}, \boldsymbol{z})}{\partial z_j} &= -\Psi'(-z_j)\Phi(-x_j) - \Psi'(z_j)\Phi(x_j) - 6\left(x_{j-1} - \frac{1}{2}z_j\right) \\ &=: q(x_j, z_j) - 6\left(x_{j-1} - \frac{1}{2}z_j\right). \end{aligned}$$

Note that Lemma 6.*iv* implies for all $2 \le i \le T$,

$$-5 < p(x_j, z_j) < 0, \quad -20 < q(x_j, z_j) < 0.$$

There are two possible cases

1. If $|x_{j-1}| < 1$, we have $p(x_{j-1}, z_{j-1}) < -1$ by Lemma 6.*ii*. Then

$$\frac{\partial \bar{f}_m^{\text{nc-sc}}(\boldsymbol{x}, \boldsymbol{z})}{\partial x_{j-1}} + 2 \cdot \frac{\partial \bar{f}_m^{\text{nc-sc}}(\boldsymbol{x}, \boldsymbol{z})}{\partial z_j} = p(x_{j-1}, z_{j-1}) + 2q(x_j, z_j) < -1$$

Therefore we can bound

$$\left\| \nabla \bar{f}_m^{\text{nc-sc}}(\boldsymbol{x}, \boldsymbol{z}) \right\|_2 \ge \max\left\{ \left| \frac{\partial \bar{f}_m^{\text{nc-sc}}(\boldsymbol{x}, \boldsymbol{z})}{\partial x_{j-1}} \right|, \left| \frac{\partial \bar{f}_m^{\text{nc-sc}}(\boldsymbol{x}, \boldsymbol{z})}{\partial z_j} \right| \right\} > \frac{1}{3}.$$

2. Otherwise if $|x_{j-1}| \ge 1$, we have $12 |x_{j-1} - \frac{1}{2}z_j| > 6$. Since $|p(x_{j-1}, z_{j-1})| < 5$, we must have

$$\left\|\nabla \bar{f}_m^{\text{nc-sc}}(\boldsymbol{x}, \boldsymbol{z})\right\|_2 \ge \left|\frac{\partial \bar{f}_m^{\text{nc-sc}}(\boldsymbol{x}, \boldsymbol{z})}{\partial x_{j-1}}\right| > 1.$$

Now we verify the smoothness and boundedness requirements of the function class we consider. **Lemma 9.** \bar{f}^{nc-sc} and \bar{f}^{nc-sc}_{m} satisfy the following.

- $i. \quad \bar{f}_m^{nc\text{-}sc}(\boldsymbol{0},\boldsymbol{0}) \inf_{\boldsymbol{x} \in \mathbb{R}^T, \boldsymbol{z} \in \mathbb{R}^{T-1}} \bar{f}_m^{nc\text{-}sc}(\boldsymbol{x}, \boldsymbol{z}) \leq 12T.$
- *ii.* \bar{f}^{nc-sc} *is* ℓ_0 -smooth for some numerical constant ℓ_0 .

Proof of Lemma 9.

i. First note that $\bar{f}_m^{\text{nc-sc}}(\mathbf{0},\mathbf{0}) = -\Phi(1)\Phi(0) \leq 0$. Also, by Lemma 6.*iv*, we have for all $\boldsymbol{x} \in \mathbb{R}^T, \boldsymbol{z} \in \mathbb{R}^{T-1},$

$$\bar{f}_m^{\text{nc-sc}}(\boldsymbol{x}, \boldsymbol{z}) \ge -\Psi(1)\Phi(x_1) - \sum_{i=2}^T \Psi(z_i)\Phi(x_i) \ge -12T.$$

 $\text{Therefore } \bar{f}_m^{\text{nc-sc}}(\boldsymbol{0},\boldsymbol{0}) - \inf_{\boldsymbol{x} \in \mathbb{R}^T, \boldsymbol{z} \in \mathbb{R}^{T-1}} \bar{f}_m^{\text{nc-sc}}(\boldsymbol{x},\boldsymbol{z}) \leq 12T.$

ii. Let $\boldsymbol{v} = (\boldsymbol{x}, \boldsymbol{z}, \bar{\boldsymbol{y}})$ be the variable of $\bar{f}^{\text{nc-sc}}$. We know $\frac{\partial \bar{f}^{\text{nc-sc}}}{\partial v_i \partial v_j} \neq 0$ only if i = j or v_i and v_j are directly connected in the chain shown in Figure 1 (c). Therefore the Hessian of $\bar{f}^{\text{nc-sc}}$ is tridiagonal if we rearranging the coordinates of \boldsymbol{v} according to the order of the chain. By Lemma 6.*iii* and the expression of $\bar{f}^{\text{nc-sc}}$, it is straightforward to verify that each tridiagonal entry of the Hessian is $\mathcal{O}(1)$. Therefore the ℓ_2 norm of the Hessian is $\mathcal{O}(1)$, which means $\bar{f}^{\text{nc-sc}}$ is $\mathcal{O}(1)$ -smooth.

With all the above properties of $\bar{f}^{\text{nc-sc}}$ and $\bar{f}_m^{\text{nc-sc}}$, we are ready to show Theorem 1.

Proof of Theorem 1. As in [5], we construct the hard instance $f^{\text{nc-sc}}$ by appropriately rescaling $\overline{f}^{\text{nc-sc}}$ defined in (5),

$$f^{
m nc-sc}(\boldsymbol{x}, \boldsymbol{z}; \bar{\boldsymbol{y}}) = rac{L\lambda^2}{\ell_0} \bar{f}^{
m nc-sc}\left(rac{\boldsymbol{x}}{\lambda}, rac{\boldsymbol{z}}{\lambda}; rac{oldsymbol{y}}{\lambda}
ight),$$

where $\lambda > 0$ is some parameter to be determined later and ℓ_0 is the smoothness parameter defined in Lemma 9.*ii*. Note that we can show

$$f_m^{\text{nc-sc}}(\boldsymbol{x}, \boldsymbol{z}) := \max_{\bar{\boldsymbol{y}} \in \mathbb{R}^{n(T-1)}} f^{\text{nc-sc}}(\boldsymbol{x}, \boldsymbol{z}; \bar{\boldsymbol{y}}) = \max_{\boldsymbol{u} \in \mathbb{R}^{n(T-1)}} \frac{L\lambda^2}{\ell_0} \bar{f}^{\text{nc-sc}}\left(\frac{\boldsymbol{x}}{\lambda}, \frac{\boldsymbol{z}}{\lambda}; \boldsymbol{u}\right) = \frac{L\lambda^2}{\ell_0} \bar{f}^{\text{nc-sc}}_m\left(\frac{\boldsymbol{x}}{\lambda}, \frac{\boldsymbol{z}}{\lambda}\right),$$

which means the order of maximization and rescaling can be interchanged. After the rescaling, $f^{\text{nc-sc}}$ is still a zero-chain. Also, if $z_T = 0$ for some $(\boldsymbol{x}, \boldsymbol{z}; \bar{\boldsymbol{y}})$, Lemma 8 shows that

$$\left\|\nabla \bar{f}_m^{\text{nc-sc}}\left(\frac{\boldsymbol{x}}{\lambda},\frac{\boldsymbol{z}}{\lambda}\right)\right\|_2 > \frac{1}{3}.$$

Therefore

$$\left\|\nabla f_m^{\text{nc-sc}}\left(\boldsymbol{x},\boldsymbol{z}\right)\right\|_2 = \frac{L\lambda}{\ell_0} \left\|\nabla \bar{f}_m^{\text{nc-sc}}\left(\frac{\boldsymbol{x}}{\lambda},\frac{\boldsymbol{z}}{\lambda}\right)\right\|_2 > \frac{L\lambda}{3\ell_0}.$$

Choosing $\lambda = \frac{3\ell_0\epsilon}{L}$ garautees $\|\nabla f_m^{\text{nc-sc}}(\boldsymbol{x}, \boldsymbol{z})\|_2 > \epsilon$. Now we check $f^{\text{nc-sc}} \in \mathcal{F}(L, \mu, \Delta)$. Note that

$$abla^2 f^{
m nc-sc}\left({m x},{m z};ar{{m y}}
ight) = rac{L}{\ell_0}
abla^2 ar{f}^{
m nc-sc}\left(rac{{m x}}{\lambda},rac{{m z}}{\lambda};rac{{m y}}{\lambda}
ight).$$

Therefore we know the smoothness parameter of $f^{\text{nc-sc}}$ is L and the strong concavity parameter is $\frac{L}{\ell_0 n^2}$. Therefore we should choose

$$n = \left\lfloor \sqrt{\frac{L}{\mu \ell_0}} \right\rfloor$$

to make $f^{\text{nc-sc}} \mu$ -strongly concave in \bar{y} .

Then it suffices to verify $f_m^{\text{nc-sc}}(\mathbf{0},\mathbf{0}) - \inf_{x,z} f_m^{\text{nc-sc}}(x,z) \leq \Delta$. By Lemma 9,

$$f_m^{\text{nc-sc}}(\boldsymbol{0},\boldsymbol{0}) - \inf_{\boldsymbol{x},\boldsymbol{z}} f_m^{\text{nc-sc}}(\boldsymbol{x},\boldsymbol{z}) = \frac{L\lambda^2}{\ell_0} \left(\bar{f}_m^{\text{nc-sc}}(\boldsymbol{0},\boldsymbol{0}) - \inf_{\boldsymbol{x},\boldsymbol{z}} \bar{f}_m^{\text{nc-sc}}(\boldsymbol{x},\boldsymbol{z}) \right) \leq \frac{12LT\lambda^2}{\ell_0}$$

which is less than Δ if choosing

$$T = \left\lfloor \frac{\ell_0 \Delta}{12L\lambda^2} \right\rfloor = \left\lfloor \frac{L\Delta}{108\ell_0 \epsilon^2} \right\rfloor$$

Since $z_T^t = 0$ if $t \le n(T-1)$, we conclude that $\|\nabla f_m^{\text{nc-sc}}(\boldsymbol{x}^t, \boldsymbol{z}^t)\|_2 > \epsilon$ whenever

$$t \le n(T-1) = \frac{c_0 L \Delta \sqrt{\kappa}}{\epsilon^2}$$

for some numerical constant c_0 .

D Proofs for the lower bound in the stochastic setting

Lemma 10. Let $h_m^{sg}(x, z) := \max_{\boldsymbol{y} \in \mathcal{C}_{nR_2}^n} h^{sg}(x, z; \boldsymbol{y})$. If $R_2 \ge 30R_1$, for every x, z such that $|x|, |z| \le R_1$, we have

$$h_m^{sg}(x,z) = h_m(x,z),$$

where h_m is the quadratic function defined in (8).

Proof of Lemma 10. Note that

$$\max_{\boldsymbol{y}\in\mathbb{R}^n}h^{\mathrm{sg}}(x,z;\boldsymbol{y}) = \frac{C}{2n}\boldsymbol{b}_{x,z}^{\top}\left(\frac{1}{n^2}I_n + A\right)^{-1}\boldsymbol{b}_{x,z} = h_m(x,z).$$

It suffices to verify that

$$\max_{\boldsymbol{y}\in\mathcal{C}_{nR_2}^n} h^{\mathrm{sg}}(x,z;\boldsymbol{y}) = \max_{\boldsymbol{y}\in\mathbb{R}^n} h^{\mathrm{sg}}(x,z;\boldsymbol{y}),$$

i.e.,

$$oldsymbol{y}^*(x,z) := \operatorname*{argmax}_{oldsymbol{y} \in \mathbb{R}^n} h^{\mathrm{sg}}(x,z;oldsymbol{y}) \in \mathcal{C}^n_{nR_2}$$

We can compute that

$$\boldsymbol{y}^*(x,z) = \left(\frac{1}{n^2}I_n + A\right)^{-1} \boldsymbol{b}_{x,z} = B \cdot \boldsymbol{b}_{x,z},$$

where $B = (\frac{1}{n^2}I_n + A)^{-1}$ is the matrix defined in Lemma 7. Let $y_i^*(x, z)$ be the *i*-th coordinate of $y^*(x, z)$ for some $1 \le i \le n$. By symmetry of *B* and Lemma 7, we have

$$y_{i}^{*}(x,z)| = \left| xB_{i,1} - \frac{1}{2}zB_{i,n} \right|$$
$$= \left| xB_{i,1} - \frac{1}{2}zB_{n-i,1} \right|$$
$$\leq 30nR_{1} \leq nR_{2}.$$

Therefore $\boldsymbol{y}^*(x,z) \in \mathcal{C}_{nR_2}^n$ and we complete the proof.

Now we analyze the properties of $\bar{f}^{\text{nc-sc-sg}}$ and $\bar{f}^{\text{nc-sc-sg}}_m$. Lemma 11. $\bar{f}^{\text{nc-sc-sg}}$ and $\bar{f}^{\text{nc-sc-sg}}_m$ satisfy the following.

i.
$$\bar{f}_m^{nc\text{-}sc\text{-}sg}(\mathbf{0},\mathbf{0}) - \inf_{\boldsymbol{x}\in\mathcal{C}_{R_1}^T,\boldsymbol{z}\in\mathcal{C}_{R_1}^{T-1}} \bar{f}_m^{nc\text{-}sc\text{-}sg}(\boldsymbol{x},\boldsymbol{z}) \le 12T$$

- ii. $\bar{f}^{nc-sc-sg}$ is ℓ_0 -smooth for some numerical constant ℓ_0 .
- iii. $\bar{f}_m^{nc-sc-sg}$ is ℓ_m -smooth for some numerical constant $\ell_m \geq 1$.
- iv. For all $\boldsymbol{x}, \boldsymbol{z}, \bar{\boldsymbol{y}}, \|\nabla \bar{f}^{nc-sc-sg}(\boldsymbol{x}, \boldsymbol{z}; \bar{\boldsymbol{y}})\|_{\infty} \leq G$ for some numerical constant G.

Proof of Lemma 11. Note that $C_{R_1}^T \times C_{R_1}^{T-1} \subset \mathbb{R}^T \times \mathbb{R}^{T-1}$. Then *i* and *ii* are direct corollaries of Lemma 9. We can prove *iii* in the same way as *ii*. It is also straightforward to verify *iv* given Lemma 6.*iii* and *iv* and noting the infinity norms of x, z, and \bar{y} are all bounded.

The lemma below shows we cannot find a good solution unless the end of the chain is reached. Lemma 12. If $|z_i| < 1$ for some $i \leq T$, then (x, z) is not a 1/3-stationary point of $\bar{f}_m^{nc-sc-sg}$.

Proof of Lemma 12. Let $1 < j \le i$ to be the smallest j for which $|z_j| < 1$. Similar to the proof of Lemma 8, noting $\bar{f}_m^{\text{nc-sc}} = \bar{f}_m^{\text{nc-sc-sg}}$, we have

$$\frac{\partial \bar{f}_m^{\text{nc-sc-sg}}(\boldsymbol{x}, \boldsymbol{z})}{\partial x_{j-1}} = p(x_{j-1}, z_{j-1}) + 12\left(x_{j-1} - \frac{1}{2}z_j\right),$$
$$\frac{\partial \bar{f}_m^{\text{nc-sc-sg}}(\boldsymbol{x}, \boldsymbol{z})}{\partial z_j} = q(x_j, z_j) - 6\left(x_{j-1} - \frac{1}{2}z_j\right),$$

where

$$-5 < p(x_{j-1}, z_{j-1}) < 0, \quad -20 < q(x_j, z_j) < 0.$$

There are two possible cases

1. If
$$|x_{j-1}| < 1$$
, we know $p(x_{j-1}, z_{j-1}) < -1$ by Lemma 6.*ii*. Then

$$\frac{\partial \bar{f}_m^{\text{nc-sc-sg}}(\boldsymbol{x}, \boldsymbol{z})}{\partial x_{j-1}} + 2 \cdot \frac{\partial \bar{f}_m^{\text{nc-sc-sg}}(\boldsymbol{x}, \boldsymbol{z})}{\partial z_j} = p(x_{j-1}, z_{j-1}) + 2q(x_j, z_j) < -1.$$

Therefore we can bound

$$\max\left\{\left|\frac{\partial \bar{f}_{m}^{\text{nc-sc-sg}}(\boldsymbol{x}, \boldsymbol{z})}{\partial x_{j-1}}\right|, \left|\frac{\partial \bar{f}_{m}^{\text{nc-sc-sg}}(\boldsymbol{x}, \boldsymbol{z})}{\partial z_{j}}\right|\right\} > \frac{1}{3}$$

Suppose u is one of x_{j-1} and z_j such that $\left|\frac{\partial \bar{f}_m^{\text{nc-sc-sg}}(\boldsymbol{x},\boldsymbol{z})}{\partial u}\right| > 1/3$. We also know |u| < 1. Let ℓ_m be the smoothness parameter of $\bar{f}_m^{\text{nc-sc-sg}}$ defined in Lemma 11.*iii*. Define

$$u' := u - \frac{1}{\ell_m} \frac{\partial \bar{f}_m^{\text{nc-sc-sg}}(\boldsymbol{x}, \boldsymbol{z})}{\partial u}.$$
 (12)

i. If $|u'| \leq R_1$, we have

$$\ell_m \left| \mathsf{P}_{\mathcal{C}_{R_1}^1}(u') - u \right| = \ell_m \left| u' - u \right| = \left| \frac{\partial f_m^{\text{nc-sc-sg}}(\boldsymbol{x}, \boldsymbol{z})}{\partial u} \right| > 1/3.$$

ii. If $|u'| > R_1$, we know that $\left|\mathsf{P}_{\mathcal{C}^1_{R_1}}(u')\right| = R_1$. Then we have

$$\ell_m \left| \mathsf{P}_{\mathcal{C}^1_{R_1}}(u') - u \right| > \ell_m(R_1 - 1) \ge 1$$

2. If $x_{j-1} \ge 1$, we have $12(x_{j-1} - \frac{1}{2}z_j) > 6$. Since $-5 < p(x_{j-1}, z_{j-1}) < 0$, we must have $\frac{\partial \bar{f}_m^{\text{nc-sc}}(\boldsymbol{x}, \boldsymbol{z})}{\partial x_{j-1}} > 1.$

Similar to case 1, we use u to denote x_{j-1} and define u' as in (12). We know u' < u. Therefore

i. If $|u'| \leq R_1$, we have

$$\ell_m \left| \mathsf{P}_{\mathcal{C}^1_{R_1}}(u') - u \right| = \left| \frac{\partial \bar{f}_m^{\operatorname{nc-sc-sg}}(\boldsymbol{x}, \boldsymbol{z})}{\partial u} \right| > 1.$$

ii. If $u' < -R_1$, we know that $\mathsf{P}_{\mathcal{C}^1_{R_1}}(u') = -R_1$. Then we have

$$\ell_m \left| \mathsf{P}_{\mathcal{C}^1_{R_1}}(u') - u \right| > \ell_m(R_1 + 1) \ge 1$$

3. If $x_{j-1} \leq -1$, we have we have $12(x_{j-1} - \frac{1}{2}z_j) < -6$. Since $-5 < p(x_{j-1}, z_{j-1}) < 0$, we must have

$$\frac{\partial \bar{f}_m^{\text{nc-sc}}(\boldsymbol{x}, \boldsymbol{z})}{\partial x_{j-1}} < -6 < -1$$

Then similar to case 2, we can show $\ell_m \left| \mathsf{P}_{\mathcal{C}_{R_1}^1}(u') - u \right| > \ell_m(R_1 + 1) \ge 1.$

To sum up, we have

$$\ell_m \left\| \mathsf{P}_{\mathcal{C}_{R_1}^T \times \mathcal{C}_{R_1}^{T-1}} \left((\boldsymbol{x}, \boldsymbol{z}) - \frac{1}{\ell_m} \nabla \bar{f}_m^{\mathsf{nc-sc-sg}}(\boldsymbol{x}, \boldsymbol{z}) \right) - (\boldsymbol{x}, \boldsymbol{z}) \right\|_2 \ge \ell_m \left| \mathsf{P}_{\mathcal{C}_{R_1}^1}(u') - u \right| > 1/3,$$

i.e., $(\boldsymbol{x}, \boldsymbol{z})$ is not a 1/3-stationary point of $\bar{f}_m^{\mathsf{nc-sc-sg}}$.

With all the lemmas above, we are ready to prove Theorem 2.

Proof of Theorem 2. Similar to the proof of Theorem 1, we show the lower bound by appropriately rescaling $\bar{f}^{\text{nc-sc-sg}}$ as well as its domain. Formally, define $f^{\text{nc-sc-sg}} : \left(\mathcal{C}_{\lambda R_1}^T \times \mathcal{C}_{\lambda R_1}^{T-1}\right) \times \mathcal{C}_{\lambda R_2}^{n(T-1)} \to \mathbb{R}$ as

$$f^{ ext{nc-sc-sg}}(oldsymbol{x},oldsymbol{z};oldsymbol{ar{y}}) = rac{L\lambda^2}{\ell_0}ar{f}^{ ext{nc-sc-sg}}\left(rac{oldsymbol{x}}{\lambda},rac{oldsymbol{z}}{\lambda};rac{oldsymbol{ar{y}}}{\lambda}
ight),$$

where $\lambda > 0$ is some parameter to be determined later and ℓ_0 is the smoothness parameter defined in Lemma 11.*ii*. Note that we can show

$$\begin{split} f_m^{\text{nc-sc-sg}}(\boldsymbol{x}, \boldsymbol{z}) &\coloneqq \max_{\bar{\boldsymbol{y}} \in \mathcal{C}_{\lambda n R_2}^{n(T-1)}} f^{\text{nc-sc-sg}}(\boldsymbol{x}, \boldsymbol{z}; \bar{\boldsymbol{y}}) \\ &= \frac{L\lambda^2}{\ell_0} \max_{\boldsymbol{u} \in \mathcal{C}_{n R_2}^{n(T-1)}} \bar{f}^{\text{nc-sc-sg}}\left(\frac{\boldsymbol{x}}{\lambda}, \frac{\boldsymbol{z}}{\lambda}; \boldsymbol{u}\right) \\ &= \frac{L\lambda^2}{\ell_0} \bar{f}_m^{\text{nc-sc-sg}}\left(\frac{\boldsymbol{x}}{\lambda}, \frac{\boldsymbol{z}}{\lambda}\right) \end{split}$$

which means the order of maximization and rescaling can be interchanged. After the rescaling, $f^{\text{nc-sc-sg}}$ is still a zero-chain. Note that $f_m^{\text{nc-sc-sg}}$ is $\ell_m L/\ell_0$ -smooth. When $z_T = 0$, by Lemma 12,

$$\begin{split} & \frac{\ell_m L}{\ell_0} \left\| \mathsf{P}_{\mathcal{C}_{\lambda R_1}^T \times \mathcal{C}_{\lambda R_1}^{T-1}} \left((\boldsymbol{x}, \boldsymbol{z}) - \frac{\ell_0}{\ell_m L} \nabla f_m^{\text{nc-sc-sg}}(\boldsymbol{x}, \boldsymbol{z}) \right) - (\boldsymbol{x}, \boldsymbol{z}) \right\|_2 \\ &= \frac{\ell_m L}{\ell_0} \left\| \mathsf{P}_{\mathcal{C}_{\lambda R_1}^T \times \mathcal{C}_{\lambda R_1}^{T-1}} \left(\lambda \left(\frac{\boldsymbol{x}}{\lambda}, \frac{\boldsymbol{z}}{\lambda} \right) - \frac{\lambda}{\ell_m} \nabla f_m^{\text{nc-sc-sg}} \left(\frac{\boldsymbol{x}}{\lambda}, \frac{\boldsymbol{z}}{\lambda} \right) \right) - \lambda \left(\frac{\boldsymbol{x}}{\lambda}, \frac{\boldsymbol{z}}{\lambda} \right) \right\|_2 \\ &= \frac{L\lambda}{\ell_0} \ell_m \left\| \mathsf{P}_{\mathcal{C}_{R_1}^T \times \mathcal{C}_{R_1}^{T-1}} \left(\left(\frac{\boldsymbol{x}}{\lambda}, \frac{\boldsymbol{z}}{\lambda} \right) - \frac{1}{\ell_m} \nabla \bar{f}_m^{\text{nc-sc-sg}} \left(\frac{\boldsymbol{x}}{\lambda}, \frac{\boldsymbol{z}}{\lambda} \right) \right) - \left(\frac{\boldsymbol{x}}{\lambda}, \frac{\boldsymbol{z}}{\lambda} \right) \right\|_2 \\ &> \frac{L\lambda}{3\ell_0}. \end{split}$$

Choosing $\lambda = \frac{6\ell_0\epsilon}{L}$ guarantees such $(\boldsymbol{x}, \boldsymbol{z})$ is not a 2ϵ -stationary point of $f^{\text{nc-sc-sg}}$. Now we check $f^{\text{nc-sc-sg}} \in \mathcal{F}(L, \mu, \Delta)$. Note that

$$abla^2 f^{ ext{nc-sc-sg}}\left(oldsymbol{x},oldsymbol{z};oldsymbol{ar{y}}
ight) = rac{L}{\ell_0}
abla^2 ar{f^{ ext{nc-sc-sg}}}\left(rac{oldsymbol{x}}{\lambda},rac{oldsymbol{z}}{\lambda};rac{oldsymbol{ar{y}}}{\lambda}
ight)$$

We know the smoothness parameter of $f^{\text{nc-sc-sg}}$ is L and the strong concavity parameter is $\frac{L}{\ell_0 n^3}$. Therefore we should choose

$$n = \left\lfloor \left(\frac{L}{\mu\ell_0}\right)^{1/3} \right\rfloor$$

to make $f_m^{\text{nc-sc-sg}} \mu$ -strongly concave in \bar{y} . Then it suffices to show $f_m^{\text{nc-sc-sg}}(\mathbf{0},\mathbf{0}) - \inf_{\boldsymbol{x},\boldsymbol{z}} f_m^{\text{nc-sc-sg}}(\boldsymbol{x},\boldsymbol{z}) \leq \Delta$. By Lemma 9,

$$f_m^{\text{nc-sc-sg}}(\boldsymbol{0},\boldsymbol{0}) - \inf_{\boldsymbol{x},\boldsymbol{z}} f_m^{\text{nc-sc-sg}}(\boldsymbol{x},\boldsymbol{z}) = \frac{L\lambda^2}{\ell_0} \left(\bar{f}_m^{\text{nc-sc-sg}}(\boldsymbol{0},\boldsymbol{0}) - \inf_{\boldsymbol{x},\boldsymbol{z}} \bar{f}_m^{\text{nc-sc-sg}}\left(\frac{\boldsymbol{x}}{\lambda},\frac{\boldsymbol{z}}{\lambda}\right) \right) \leq \frac{12LT\lambda^2}{\ell_0},$$

which is no greater than Δ if choosing

$$T = \left\lfloor \frac{\ell_0 \Delta}{12L\lambda^2} \right\rfloor = \left\lfloor \frac{L\Delta}{432\ell_0 \epsilon^2} \right\rfloor.$$

Now we construct the stochastic gradient oracle in the same way as [3]. We perturb the gradient only on the next coordinate to discover, so that we reveal its value with probability p. Let $i^*(x, z; \bar{y})$ denote the next coordinate to discover in the zero-chain in Figure 1(c). Precisely, we set the stochastic gradient to be

$$\boldsymbol{g}(\boldsymbol{x}, \boldsymbol{z}; \bar{\boldsymbol{y}}; \xi)_i = \begin{cases} rac{\xi}{p}
abla_i f^{ ext{nc-sc-sg}}(\boldsymbol{x}, \boldsymbol{z}; \bar{\boldsymbol{y}}) & ext{if } i = i^*(\boldsymbol{x}, \boldsymbol{z}; \bar{\boldsymbol{y}}) \\
abla_i f^{ ext{nc-sc-sg}}(\boldsymbol{x}, \boldsymbol{z}; \bar{\boldsymbol{y}}) & ext{otherwise,} \end{cases}$$

where $\xi \sim \text{Bernoulli}(p)$. By Lemma 5, $f^{\text{nc-sc-sg}}$ is a probability-p zero-chain with this oracle which has variance bounded by

$$\mathbb{E}\left[\left\|\boldsymbol{g}(\boldsymbol{x},\boldsymbol{z};\bar{\boldsymbol{y}};\xi)-\nabla f^{\text{nc-sc-sg}}(\boldsymbol{x},\boldsymbol{z};\bar{\boldsymbol{y}})\right\|_{2}^{2}\right] \leq \left(\frac{GL\lambda}{\ell_{0}}\right)^{2}\frac{1-p}{p} = 36\epsilon^{2}G^{2}\frac{1-p}{p}.$$

Hence, the variance is no greater than σ^2 if $p = \min\{1, \frac{36\epsilon^2 G^2}{\sigma^2}\}$. By Lemma 3, with probability $1 - \delta$, $z_T^t = 0$ for all

$$t \le \frac{n(T-1) - \log(1/\delta)}{2p}.$$

Then taking $\delta = 1/2$ yields that whenever

$$t \leq \frac{n(T-1)-1}{2\frac{36\epsilon^2 G^2}{\sigma^2}} = \frac{c'nT\sigma^2}{\epsilon^2 G^2} = \frac{c'_0 L\Delta\sigma^2 \kappa^{1/3}}{\epsilon^4},$$

for some constant $c', c_0 > 0$, we have

$$\mathbb{E}\left[\frac{\ell_m L}{\ell_0} \left\| \mathsf{P}_{\mathcal{C}_{\lambda R_1}^T \times \mathcal{C}_{\lambda R_1}^{T-1}} \left((\boldsymbol{x}, \boldsymbol{z}) - \frac{\ell_0}{\ell_m L} \nabla f_m^{\text{nc-sc-sg}}(\boldsymbol{x}, \boldsymbol{z}) \right) - (\boldsymbol{x}, \boldsymbol{z}) \right\|_2 \right] \geq \frac{1}{2} \cdot 2\epsilon = \epsilon.$$

That is, $(\boldsymbol{x}^t, \boldsymbol{z}^t)$ is not an ϵ -stationary point. So far we have derived a lower bound of $\Omega(\frac{L\Delta\sigma^2\kappa^{1/3}}{\epsilon^4})$. Note that the deterministic lower bound is $\Omega(\frac{L\Delta\sqrt{\kappa}}{\epsilon^2})$ which is a special case of the stochastic setting. Therefore we derive a lower bound of

$$\Omega\left(L\Delta \max\left\{\frac{\sqrt{\kappa}}{\epsilon^2}, \frac{\kappa^{1/3}\sigma^2}{\epsilon^4}\right\}\right) = \Omega\left(L\Delta\left(\frac{\sqrt{\kappa}}{\epsilon^2} + \frac{\kappa^{1/3}\sigma^2}{\epsilon^4}\right)\right).$$