A Properties of the nonconvex lower bound example (4)

We enumerate all relevant properties of Φ and Ψ used in the analysis in the following lemma.
Lemma 6 ([5, Lemma 1]). The functions Φ and Ψ satisfy
i. For all $x \leq 1 / 2$ and $k \in \mathbb{N}, \Psi^{(k)}(x)=0$.
ii. For all $x \geq 1$ and $|y|<1, \Psi(x) \Phi^{\prime}(y)>1$.
iii. Both Ψ and Φ are infinitely differentiable. For all $k \in \mathbb{N}$, we have

$$
\sup _{x}\left|\Psi^{(k)}(x)\right| \leq \exp \left(\frac{5 k}{2} \log (4 k)\right) \quad \text { and } \quad \sup _{x}\left|\Phi^{(k)}(x)\right| \leq \exp \left(\frac{3 k}{2} \log \frac{3 k}{2}\right) .
$$

$i v$. The functions and derivatives $\Psi, \Psi^{\prime}, \Phi, \Phi^{\prime}$ are non-negative and bounded, with

$$
0<\Psi<e, 0<\Psi^{\prime}<\sqrt{54 / e}, 0<\Phi<\sqrt{2 \pi e}, 0<\Phi^{\prime}<\sqrt{e}
$$

Note that $\Psi(0)=\Psi^{\prime}(0)=0$ by Lemma 6 i. Then it is easy to verify that $\frac{\partial \bar{f}^{\mathrm{nc}}(\boldsymbol{x})}{\partial x_{i}}=0$ if $x_{i}=x_{i-1}=$ 0 . Therefore, if $\operatorname{supp}(\boldsymbol{x}) \subset\{1, \ldots, i-1\}$, i.e., $x_{j}=0$ for all $j \geq i$, we have $\frac{\partial \bar{f}^{\text {nc }}(\boldsymbol{x})}{\partial x_{j}}=0$ for all $j \geq i+1$. Hence, $\operatorname{supp}\left(\nabla \bar{f}^{\text {nc }}\right) \subset\{1, \ldots, i\}$, which implies $\bar{f}^{\text {nc }}$ is a zero-chain. Define $x_{0} \equiv 1$ for simplicity. As long as the algorithm has not reached the end of the chain, there must be a phase transition point $1 \leq k \leq T$ such that $\left|x_{k}\right|<1$ and $\left|x_{k-1}\right| \geq 1$. Using Lemma 6 ii, one can bound $\left\|\nabla \bar{f}^{\mathrm{nc}}\left(\boldsymbol{x}^{t}\right)\right\|_{2} \geq\left|\frac{\bar{\partial} \bar{f}^{\mathrm{nc}}(\boldsymbol{x})}{\partial x_{k}}\right|>1$. By appropriately rescaling \bar{f}^{nc} so that it meets the requirement of the function class of interest, Carmon et al. [5] derived a lower bound of $T_{\mathrm{nc}}:=\Omega\left(1 / \epsilon^{2}\right)$ gradient oracles.

B A Useful lemma

We first present a lemma useful for analyzing the quadratic components in our examples.
Lemma 7. Denote $\alpha=\frac{1}{n^{2}}$ and let $B=\left(\alpha I_{n}+A\right)^{-1}$ where A is the matrix defined in (7). If $n \geq 10$, we have for all $1 \leq i \leq n$,

$$
0.1 n \leq B_{i, 1} \leq 20 n
$$

Proof of Lemma 7. Let M be the cofactor matrix of $\alpha I_{n}+A$. We have

$$
B=\frac{M^{\top}}{\operatorname{det}\left(\alpha I_{n}+A\right)}
$$

So we only need to compute $\operatorname{det}\left(\alpha I_{n}+A\right)$ and $M_{1, i}$ for all $1 \leq i \leq n$. Note that all of them are determinants of tridiagonal matrices which can be computed using a three-term recurrence relation [12]. Let

$$
p=1+\frac{\alpha}{2}+\sqrt{\alpha+\frac{\alpha^{2}}{4}}, \quad q=1+\frac{\alpha}{2}-\sqrt{\alpha+\frac{\alpha^{2}}{4}}
$$

be the solutions of the following characteristic equation

$$
x^{2}-(2+\alpha) x+1=0 .
$$

By standard calculations, we have

$$
\begin{aligned}
\operatorname{det}\left(\alpha I_{n}+A\right) & =\frac{\left(\alpha+\frac{\alpha^{2}}{2}\right)\left(p^{n-1}-q^{n-1}\right)+\alpha \sqrt{\alpha+\frac{\alpha^{2}}{4}}\left(p^{n-1}+q^{n-1}\right)}{2 \sqrt{\alpha+\frac{\alpha^{2}}{4}}} \\
M_{1, i} & =\frac{\frac{\alpha}{2}\left(p^{n-i}-q^{n-i}\right)+\sqrt{\alpha+\frac{\alpha^{2}}{4}}\left(p^{n-i}+q^{n-i}\right)}{2 \sqrt{\alpha+\frac{\alpha^{2}}{4}}}
\end{aligned}
$$

Define $D=p^{n-1}, E=D-\frac{1}{D}$, and $F=D+\frac{1}{D}$. We have

$$
0 \leq p^{n-i}-q^{n-i} \leq E \text { and } 2 \leq p^{n-i}+q^{n-i} \leq F
$$

Therefore

$$
\begin{aligned}
& \operatorname{det}\left(\alpha I_{n}+A\right)=\frac{\left(\alpha+\frac{\alpha^{2}}{2}\right) E+\alpha \sqrt{\alpha+\frac{\alpha^{2}}{4}} F}{2 \sqrt{\alpha+\frac{\alpha^{2}}{4}}}, \\
& 1 \leq M_{1, n} \leq M_{1, i} \leq M_{1,1}=\frac{\frac{\alpha}{2} E+\sqrt{\alpha+\frac{\alpha^{2}}{4}} F}{2 \sqrt{\alpha+\frac{\alpha^{2}}{4}}}
\end{aligned}
$$

Noting $\alpha=\frac{1}{n^{2}}$, we have

$$
D=p^{n-1}=\left(1+\frac{1}{2 n^{2}}+\frac{1}{n} \sqrt{1+\frac{1}{4 n^{2}}}\right)^{n-1}
$$

We can bound $2 \leq D \leq 8$ if $n \geq 10$. Then it is straightforward to upper and lower bound $\operatorname{det}\left(\alpha I_{n}+A\right)$ and $M_{1, i}$ and then obtain the bound of $B_{i, 1}$. If $n \geq 10$, we have

$$
0.1 n \leq B_{i, 1} \leq 20 n, \forall 1 \leq i \leq n
$$

C Proofs for the lower bound in the deterministic setting

Proof of Lemma 4 Let $B=\left(\frac{1}{n^{2}} I_{n}+A\right)^{-1}$ where A is the matrix defined in (7). By symmetry, we have $B_{1,1}=B_{n, n}$ and $B_{1, n}=B_{n, 1}$. Then we have

$$
h_{m}(x, z)=\frac{C}{2 n}\left(B_{1,1} x^{2}-B_{n, 1} x z+\frac{B_{1,1}}{4} z^{2}\right) .
$$

Let $a_{1}=B_{1,1} / n$ and $a_{2}=B_{n, 1} / n$. By Lemma 7 we know $0.1 \leq a_{1}, a_{2} \leq 20$ and complete the proof.

To prove the main theorem, we need several additional lemmas. The following lemma gives a lower bound of the gradient norm when the algorithm hasn't reached the end of the chain.
Lemma 8. If $\left|z_{i}\right|<1$ for some $i \leq T$, then $\left\|\nabla \bar{f}_{m}^{n c-s c}(\boldsymbol{x}, \boldsymbol{z})\right\|_{2}>\frac{1}{3}$.
Proof of Lemma 8 We define $z_{1} \equiv 1$ for simplicity. Since $\left|z_{i}\right|<1$ and $\left|z_{1}\right| \geq 1$, we are able to find some $1<j \leq i$ to be the smallest j for which $\left|z_{j}\right|<1$. So we know $\left|z_{j-1}\right| \geq 1$. We can compute

$$
\begin{aligned}
\frac{\partial \bar{f}_{m}^{\mathrm{nc}-\mathrm{sc}}(\boldsymbol{x}, \boldsymbol{z})}{\partial x_{j-1}} & =-\Psi\left(-z_{j-1}\right) \Phi^{\prime}\left(-x_{j-1}\right)-\Psi\left(z_{j-1}\right) \Phi^{\prime}\left(x_{j-1}\right)+12\left(x_{j-1}-\frac{1}{2} z_{j}\right) \\
& =: p\left(x_{j-1}, z_{j-1}\right)+12\left(x_{j-1}-\frac{1}{2} z_{j}\right) \\
& \frac{\partial \bar{f}_{m}^{\mathrm{nc}-\mathrm{sc}}(\boldsymbol{x}, \boldsymbol{z})}{\partial z_{j}}
\end{aligned}=-\Psi^{\prime}\left(-z_{j}\right) \Phi\left(-x_{j}\right)-\Psi^{\prime}\left(z_{j}\right) \Phi\left(x_{j}\right)-6\left(x_{j-1}-\frac{1}{2} z_{j}\right) .
$$

Note that Lemma6 $i v$ implies for all $2 \leq i \leq T$,

$$
-5<p\left(x_{j}, z_{j}\right)<0, \quad-20<q\left(x_{j}, z_{j}\right)<0
$$

There are two possible cases

1. If $\left|x_{j-1}\right|<1$, we have $p\left(x_{j-1}, z_{j-1}\right)<-1$ by Lemma $6 i i$. Then

$$
\frac{\partial \bar{f}_{m}^{\mathrm{nc}-\mathrm{sc}}(\boldsymbol{x}, \boldsymbol{z})}{\partial x_{j-1}}+2 \cdot \frac{\partial \bar{f}_{m}^{\mathrm{nc-sc}}(\boldsymbol{x}, \boldsymbol{z})}{\partial z_{j}}=p\left(x_{j-1}, z_{j-1}\right)+2 q\left(x_{j}, z_{j}\right)<-1
$$

Therefore we can bound

$$
\left\|\nabla \bar{f}_{m}^{\mathrm{nc}-\mathrm{sc}}(\boldsymbol{x}, \boldsymbol{z})\right\|_{2} \geq \max \left\{\left|\frac{\partial \bar{f}_{m}^{\mathrm{nc}-\mathrm{sc}}(\boldsymbol{x}, \boldsymbol{z})}{\partial x_{j-1}}\right|,\left|\frac{\partial \bar{f}_{m}^{\mathrm{nc-sc}}(\boldsymbol{x}, \boldsymbol{z})}{\partial z_{j}}\right|\right\}>\frac{1}{3}
$$

2. Otherwise if $\left|x_{j-1}\right| \geq 1$, we have $12\left|x_{j-1}-\frac{1}{2} z_{j}\right|>6$. Since $\left|p\left(x_{j-1}, z_{j-1}\right)\right|<5$, we must have

$$
\left\|\nabla \bar{f}_{m}^{\mathrm{nc-sc}}(\boldsymbol{x}, \boldsymbol{z})\right\|_{2} \geq\left|\frac{\partial \bar{f}_{m}^{\mathrm{nc}-\mathrm{sc}}(\boldsymbol{x}, \boldsymbol{z})}{\partial x_{j-1}}\right|>1
$$

Now we verify the smoothness and boundedness requirements of the function class we consider.
Lemma 9. $\bar{f}^{n c-s c}$ and $\bar{f}_{m}^{n c-s c}$ satisfy the following.
i. $\bar{f}_{m}^{n c-s c}(\mathbf{0}, \mathbf{0})-\inf _{\boldsymbol{x} \in \mathbb{R}^{T}, \boldsymbol{z} \in \mathbb{R}^{T-1}} \bar{f}_{m}^{n c-s c}(\boldsymbol{x}, \boldsymbol{z}) \leq 12 T$.
ii. $\bar{f}^{n c-s c}$ is ℓ_{0}-smooth for some numerical constant ℓ_{0}.

Proof of Lemma 9

i. First note that $\bar{f}_{m}^{\text {nc-sc }}(\mathbf{0}, \mathbf{0})=-\Phi(1) \Phi(0) \leq 0$. Also, by Lemma $6 i v$, we have for all $\boldsymbol{x} \in$ $\mathbb{R}^{T}, \boldsymbol{z} \in \mathbb{R}^{T-1}$,

$$
\bar{f}_{m}^{\mathrm{nc}-\mathrm{sc}}(\boldsymbol{x}, \boldsymbol{z}) \geq-\Psi(1) \Phi\left(x_{1}\right)-\sum_{i=2}^{T} \Psi\left(z_{i}\right) \Phi\left(x_{i}\right) \geq-12 T
$$

Therefore $\bar{f}_{m}^{\mathrm{nc}-\mathrm{sc}}(\mathbf{0}, \mathbf{0})-\inf _{\boldsymbol{x} \in \mathbb{R}^{T}, \boldsymbol{z} \in \mathbb{R}^{T-1}} \bar{f}_{m}^{\mathrm{nc-sc}}(\boldsymbol{x}, \boldsymbol{z}) \leq 12 T$.
ii. Let $\boldsymbol{v}=(\boldsymbol{x}, \boldsymbol{z}, \overline{\boldsymbol{y}})$ be the variable of $\bar{f}^{\mathrm{nc}-\mathrm{sc}}$. We know $\frac{\partial \bar{f}^{\text {nc.sc }}}{\partial v_{i} \partial v j} \neq 0$ only if $i=j$ or v_{i} and v_{j} are directly connected in the chain shown in Figure 1 (c). Therefore the Hessian of $\bar{f} \overline{\mathrm{nc}}^{\mathrm{nc}-\mathrm{sc}}$ is tridiagonal if we rearranging the coordinates of \boldsymbol{v} according to the order of the chain. By Lemma $6 i i i$ and the expression of $\bar{f}{ }^{\mathrm{nc}-\mathrm{sc}}$, it is straightforward to verify that each tridiaognal entry of the Hessian is $\mathcal{O}(1)$. Therefore the ℓ_{2} norm of the Hessian is $\mathcal{O}(1)$, which means $\bar{f}^{\text {nc-sc }}$ is $\mathcal{O}(1)$-smooth.

With all the above properties of $\bar{f}^{\text {nc-sc }}$ and $\bar{f}_{m}^{\text {nc-sc }}$, we are ready to show Theorem 1 .
Proof of Theorem 1] As in [5], we construct the hard instance $f^{\text {nc-sc }}$ by appropriately rescaling $\bar{f}^{\text {nc-sc }}$ defined in (5),

$$
f^{\mathrm{nc}-\mathrm{sc}}(\boldsymbol{x}, \boldsymbol{z} ; \overline{\boldsymbol{y}})=\frac{L \lambda^{2}}{\ell_{0}} \bar{f}^{\mathrm{nc}-\mathrm{sc}}\left(\frac{\boldsymbol{x}}{\lambda}, \frac{\boldsymbol{z}}{\lambda} ; \frac{\overline{\boldsymbol{y}}}{\lambda}\right)
$$

where $\lambda>0$ is some parameter to be determined later and ℓ_{0} is the smoothness parameter defined in Lemma 9 ii. Note that we can show

$$
f_{m}^{\mathrm{nc}-\mathrm{sc}}(\boldsymbol{x}, \boldsymbol{z}):=\max _{\boldsymbol{y} \in \mathbb{R}^{n(T-1)}} f^{\mathrm{nc}-\mathrm{sc}}(\boldsymbol{x}, \boldsymbol{z} ; \overline{\boldsymbol{y}})=\max _{\boldsymbol{u} \in \mathbb{R}^{n(T-1)}} \frac{L \lambda^{2}}{\ell_{0}} \bar{f}^{\mathrm{nc}-\mathrm{sc}}\left(\frac{\boldsymbol{x}}{\lambda}, \frac{\boldsymbol{z}}{\lambda} ; \boldsymbol{u}\right)=\frac{L \lambda^{2}}{\ell_{0}} \bar{f}_{m}^{\mathrm{nc}-\mathrm{sc}}\left(\frac{\boldsymbol{x}}{\lambda}, \frac{\boldsymbol{z}}{\lambda}\right)
$$

which means the order of maximization and rescaling can be interchanged. After the rescaling, $f^{\mathrm{nc}-\mathrm{sc}}$ is still a zero-chain. Also, if $z_{T}=0$ for some $(\boldsymbol{x}, \boldsymbol{z} ; \overline{\boldsymbol{y}})$, Lemma 8 shows that

$$
\left\|\nabla \bar{f}_{m}^{\mathrm{nc}-\mathrm{sc}}\left(\frac{\boldsymbol{x}}{\lambda}, \frac{\boldsymbol{z}}{\lambda}\right)\right\|_{2}>\frac{1}{3} .
$$

Therefore

$$
\left\|\nabla f_{m}^{\mathrm{nc}-\mathrm{sc}}(\boldsymbol{x}, \boldsymbol{z})\right\|_{2}=\frac{L \lambda}{\ell_{0}}\left\|\nabla \bar{f}_{m}^{\mathrm{nc}-\mathrm{sc}}\left(\frac{\boldsymbol{x}}{\lambda}, \frac{\boldsymbol{z}}{\lambda}\right)\right\|_{2}>\frac{L \lambda}{3 \ell_{0}} .
$$

Choosing $\lambda=\frac{3 \ell_{0} \epsilon}{L}$ garautees $\left\|\nabla f_{m}^{\text {nc-sc }}(\boldsymbol{x}, \boldsymbol{z})\right\|_{2}>\epsilon$.
Now we check $f^{\text {nc-sc }} \in \mathcal{F}(L, \mu, \Delta)$. Note that

$$
\nabla^{2} f^{\mathrm{nc}-\mathrm{sc}}(\boldsymbol{x}, \boldsymbol{z} ; \overline{\boldsymbol{y}})=\frac{L}{\ell_{0}} \nabla^{2} \bar{f}^{\mathrm{nc}-\mathrm{sc}}\left(\frac{\boldsymbol{x}}{\lambda}, \frac{\boldsymbol{z}}{\lambda} ; \frac{\overline{\boldsymbol{y}}}{\lambda}\right) .
$$

Therefore we know the smoothness parameter of $f^{\text {nc-sc }}$ is L and the strong concavity parameter is $\frac{L}{\ell_{0} n^{2}}$. Therefore we should choose

$$
n=\left\lfloor\sqrt{\frac{L}{\mu \ell_{0}}}\right\rfloor
$$

to make $f^{\mathrm{nc} \text {-sc }} \mu$-strongly concave in $\overline{\boldsymbol{y}}$.
Then it suffices to verify $f_{m}^{\mathrm{nc}-\mathrm{sc}}(\mathbf{0}, \mathbf{0})-\inf _{\boldsymbol{x}, \boldsymbol{z}} f_{m}^{\mathrm{nc-sc}}(\boldsymbol{x}, \boldsymbol{z}) \leq \Delta$. By Lemma 9 ,

$$
f_{m}^{\mathrm{nc}-\mathrm{sc}}(\mathbf{0}, \mathbf{0})-\inf _{\boldsymbol{x}, \boldsymbol{z}} f_{m}^{\mathrm{nc}-\mathrm{sc}}(\boldsymbol{x}, \boldsymbol{z})=\frac{L \lambda^{2}}{\ell_{0}}\left(\bar{f}_{m}^{\mathrm{nc}-\mathrm{sc}}(\mathbf{0}, \mathbf{0})-\inf _{\boldsymbol{x}, \boldsymbol{z}} \bar{f}_{m}^{\mathrm{nc}-\mathrm{sc}}(\boldsymbol{x}, \boldsymbol{z})\right) \leq \frac{12 L T \lambda^{2}}{\ell_{0}}
$$

which is less than Δ if choosing

$$
T=\left\lfloor\frac{\ell_{0} \Delta}{12 L \lambda^{2}}\right\rfloor=\left\lfloor\frac{L \Delta}{108 \ell_{0} \epsilon^{2}}\right\rfloor .
$$

Since $z_{T}^{t}=0$ if $t \leq n(T-1)$, we conclude that $\left\|\nabla f_{m}^{\text {nc-sc }}\left(\boldsymbol{x}^{t}, \boldsymbol{z}^{t}\right)\right\|_{2}>\epsilon$ whenever

$$
t \leq n(T-1)=\frac{c_{0} L \Delta \sqrt{\kappa}}{\epsilon^{2}}
$$

for some numerical constant c_{0}.

D Proofs for the lower bound in the stochastic setting

Lemma 10. Let $h_{m}^{s g}(x, z):=\max _{\boldsymbol{y} \in \mathcal{C}_{n R_{2}}^{n}} h^{s g}(x, z ; \boldsymbol{y})$. If $R_{2} \geq 30 R_{1}$, for every x, z such that $|x|,|z| \leq R_{1}$, we have

$$
h_{m}^{s g}(x, z)=h_{m}(x, z),
$$

where h_{m} is the quadratic function defined in (8).
Proof of Lemma 10 Note that

$$
\max _{\boldsymbol{y} \in \mathbb{R}^{n}} h^{\mathrm{sg}}(x, z ; \boldsymbol{y})=\frac{C}{2 n} \boldsymbol{b}_{x, z}^{\top}\left(\frac{1}{n^{2}} I_{n}+A\right)^{-1} \boldsymbol{b}_{x, z}=h_{m}(x, z)
$$

It suffices to verify that

$$
\max _{\boldsymbol{y} \in \mathcal{C}_{n R_{2}}^{n}} h^{\mathrm{sg}}(x, z ; \boldsymbol{y})=\max _{\boldsymbol{y} \in \mathbb{R}^{n}} h^{\mathrm{sg}}(x, z ; \boldsymbol{y}),
$$

i.e.,

$$
\boldsymbol{y}^{*}(x, z):=\underset{\boldsymbol{y} \in \mathbb{R}^{n}}{\operatorname{argmax}} h^{\text {sg }}(x, z ; \boldsymbol{y}) \in \mathcal{C}_{n R_{2}}^{n}
$$

We can compute that

$$
\boldsymbol{y}^{*}(x, z)=\left(\frac{1}{n^{2}} I_{n}+A\right)^{-1} \boldsymbol{b}_{x, z}=B \cdot \boldsymbol{b}_{x, z}
$$

where $B=\left(\frac{1}{n^{2}} I_{n}+A\right)^{-1}$ is the matrix defined in Lemma 7 . Let $y_{i}^{*}(x, z)$ be the i-th coordinate of $\boldsymbol{y}^{*}(x, z)$ for some $1 \leq i \leq n$. By symmetry of B and Lemma 7 , we have

$$
\begin{aligned}
\left|y_{i}^{*}(x, z)\right| & =\left|x B_{i, 1}-\frac{1}{2} z B_{i, n}\right| \\
& =\left|x B_{i, 1}-\frac{1}{2} z B_{n-i, 1}\right| \\
& \leq 30 n R_{1} \leq n R_{2}
\end{aligned}
$$

Therefore $\boldsymbol{y}^{*}(x, z) \in \mathcal{C}_{n R_{2}}^{n}$ and we complete the proof.
Now we analyze the properties of $\bar{f} \mathrm{nc-sc-sg}$ and $\bar{f}_{m}^{\mathrm{nc}-\text { sc-sg }}$.
Lemma 11. $\bar{f}^{n c-s c-s g}$ and $\bar{f}_{m}^{n c-s c-s g}$ satisfy the following.
i. $\bar{f}_{m}^{n c-s c-s g}(\mathbf{0}, \mathbf{0})-\inf _{\boldsymbol{x} \in \mathcal{C}_{R_{1}}^{T}, \boldsymbol{z} \in \mathcal{C}_{R_{1}}^{T-1}} \bar{f}_{m}^{n c-s c-s g}(\boldsymbol{x}, \boldsymbol{z}) \leq 12 T$.
ii. $\bar{f}^{n c-s c-s g}$ is ℓ_{0}-smooth for some numerical constant ℓ_{0}.
iii. $\bar{f}_{m}^{n c-s c-s g}$ is ℓ_{m}-smooth for some numerical constant $\ell_{m} \geq 1$.
iv. For all $\boldsymbol{x}, \boldsymbol{z}, \overline{\boldsymbol{y}},\left\|\nabla \bar{f}^{n c-s c-s g}(\boldsymbol{x}, \boldsymbol{z} ; \overline{\boldsymbol{y}})\right\|_{\infty} \leq G$ for some numerical constant G.

Proof of Lemma 11 Note that $\mathcal{C}_{R_{1}}^{T} \times \mathcal{C}_{R_{1}}^{T-1} \subset \mathbb{R}^{T} \times \mathbb{R}^{T-1}$. Then i and $i i$ are direct corollaries of Lemma 9 . We can prove $i i i$ in the same way as $i i$. It is also straightforward to verify $i v$ given Lemma $6 i i i$ and $i v$ and noting the infinity norms of $\boldsymbol{x}, \boldsymbol{z}$, and $\overline{\boldsymbol{y}}$ are all bounded.

The lemma below shows we cannot find a good solution unless the end of the chain is reached.
Lemma 12. If $\left|z_{i}\right|<1$ for some $i \leq T$, then $(\boldsymbol{x}, \boldsymbol{z})$ is not a $1 / 3$-stationary point of $\bar{f}_{m}^{n c-s c-s g}$.
Proof of Lemma 12 Let $1<j \leq i$ to be the smallest j for which $\left|z_{j}\right|<1$. Similar to the proof of Lemma 8 , noting $f_{m}^{\mathrm{nc}-\mathrm{sc}}=\bar{f}_{m}^{\mathrm{nc}-\mathrm{sc}-\mathrm{sg}}$, we have

$$
\begin{aligned}
& \frac{\partial \bar{f}_{m}^{\mathrm{nc-sc}-\mathrm{sg}}(\boldsymbol{x}, \boldsymbol{z})}{\partial x_{j-1}}=p\left(x_{j-1}, z_{j-1}\right)+12\left(x_{j-1}-\frac{1}{2} z_{j}\right) \\
& \frac{\partial \bar{f}_{m}^{\mathrm{nc-sc-sg}}(\boldsymbol{x}, \boldsymbol{z})}{\partial z_{j}}=q\left(x_{j}, z_{j}\right)-6\left(x_{j-1}-\frac{1}{2} z_{j}\right)
\end{aligned}
$$

where

$$
-5<p\left(x_{j-1}, z_{j-1}\right)<0, \quad-20<q\left(x_{j}, z_{j}\right)<0
$$

There are two possible cases

1. If $\left|x_{j-1}\right|<1$, we know $p\left(x_{j-1}, z_{j-1}\right)<-1$ by Lemma 6 ii. Then

$$
\frac{\partial \bar{f}_{m}^{\mathrm{nc}-\mathrm{cc}-\mathrm{sg}}(\boldsymbol{x}, \boldsymbol{z})}{\partial x_{j-1}}+2 \cdot \frac{\partial \bar{f}_{m}^{\mathrm{nc-sc}-\mathrm{sg}}(\boldsymbol{x}, \boldsymbol{z})}{\partial z_{j}}=p\left(x_{j-1}, z_{j-1}\right)+2 q\left(x_{j}, z_{j}\right)<-1
$$

Therefore we can bound

$$
\max \left\{\left|\frac{\partial \bar{f}_{m}^{\mathrm{nc-sc}-\mathrm{sg}}(\boldsymbol{x}, \boldsymbol{z})}{\partial x_{j-1}}\right|,\left|\frac{\partial \bar{f}_{m}^{\mathrm{nc-sc}-\mathrm{sg}}(\boldsymbol{x}, \boldsymbol{z})}{\partial z_{j}}\right|\right\}>\frac{1}{3}
$$

Suppose u is one of x_{j-1} and z_{j} such that $\left|\frac{\partial \bar{f}_{m}^{\text {ne.se-sg }}(\boldsymbol{x}, \boldsymbol{z})}{\partial u}\right|>1 / 3$. We also know $|u|<1$. Let ℓ_{m} be the smoothness parameter of $\bar{f}_{m}^{\text {nc-sc-sg }}$ defined in Lemma 11 iii. Define

$$
\begin{equation*}
u^{\prime}:=u-\frac{1}{\ell_{m}} \frac{\partial \bar{f}_{m}^{\mathrm{nc-sc}-\mathrm{sg}}(\boldsymbol{x}, \boldsymbol{z})}{\partial u} \tag{12}
\end{equation*}
$$

i. If $\left|u^{\prime}\right| \leq R_{1}$, we have

$$
\ell_{m}\left|\mathrm{P}_{\mathcal{C}_{R_{1}}^{1}}\left(u^{\prime}\right)-u\right|=\ell_{m}\left|u^{\prime}-u\right|=\left|\frac{\partial \bar{f}_{m}^{\mathrm{nc}-\mathrm{sc}-\mathrm{sg}}(\boldsymbol{x}, \boldsymbol{z})}{\partial u}\right|>1 / 3
$$

ii. If $\left|u^{\prime}\right|>R_{1}$, we know that $\left|\mathrm{P}_{\mathcal{C}_{R_{1}}^{1}}\left(u^{\prime}\right)\right|=R_{1}$. Then we have

$$
\ell_{m}\left|\mathrm{P}_{\mathcal{C}_{R_{1}}^{1}}\left(u^{\prime}\right)-u\right|>\ell_{m}\left(R_{1}-1\right) \geq 1
$$

2. If $x_{j-1} \geq 1$, we have $12\left(x_{j-1}-\frac{1}{2} z_{j}\right)>6$. Since $-5<p\left(x_{j-1}, z_{j-1}\right)<0$, we must have

$$
\frac{\partial \bar{f}_{m}^{\mathrm{nc}-\mathrm{sc}}(\boldsymbol{x}, \boldsymbol{z})}{\partial x_{j-1}}>1
$$

Similar to case 1 , we use u to denote x_{j-1} and define u^{\prime} as in 12 . We know $u^{\prime}<u$. Therefore
i. If $\left|u^{\prime}\right| \leq R_{1}$, we have

$$
\ell_{m}\left|\mathrm{P}_{\mathcal{C}_{R_{1}}^{1}}\left(u^{\prime}\right)-u\right|=\left|\frac{\partial \bar{f}_{m}^{\mathrm{nc} \mathrm{cc}-\mathrm{sg}}(\boldsymbol{x}, \boldsymbol{z})}{\partial u}\right|>1
$$

ii. If $u^{\prime}<-R_{1}$, we know that $\mathrm{P}_{\mathcal{C}_{R_{1}}^{1}}\left(u^{\prime}\right)=-R_{1}$. Then we have

$$
\ell_{m}\left|\mathrm{P}_{\mathcal{C}_{R_{1}}^{1}}\left(u^{\prime}\right)-u\right|>\ell_{m}\left(R_{1}+1\right) \geq 1
$$

3. If $x_{j-1} \leq-1$, we have we have $12\left(x_{j-1}-\frac{1}{2} z_{j}\right)<-6$. Since $-5<p\left(x_{j-1}, z_{j-1}\right)<0$, we must have

$$
\frac{\partial \bar{f}_{m}^{\mathrm{nc}-\mathrm{sc}}(\boldsymbol{x}, \boldsymbol{z})}{\partial x_{j-1}}<-6<-1
$$

Then similar to case 2, we can show $\ell_{m}\left|P_{\mathcal{C}_{R_{1}}^{1}}\left(u^{\prime}\right)-u\right|>\ell_{m}\left(R_{1}+1\right) \geq 1$.
To sum up, we have

$$
\ell_{m}\left\|\mathrm{P}_{\mathcal{C}_{R_{1}}^{T} \times \mathcal{C}_{R_{1}}^{T-1}}\left((\boldsymbol{x}, \boldsymbol{z})-\frac{1}{\ell_{m}} \nabla \bar{f}_{m}^{\mathrm{nc-sc}-\mathrm{sg}}(\boldsymbol{x}, \boldsymbol{z})\right)-(\boldsymbol{x}, \boldsymbol{z})\right\|_{2} \geq \ell_{m}\left|\mathrm{P}_{\mathcal{C}_{R_{1}}^{1}}\left(u^{\prime}\right)-u\right|>1 / 3
$$

i.e., $(\boldsymbol{x}, \boldsymbol{z})$ is not a $1 / 3$-stationary point of $\bar{f}_{m}^{\text {nc-sc-sg }}$.

With all the lemmas above, we are ready to prove Theorem 2 .
Proof of Theorem 2. Similar to the proof of Theorem 1, we show the lower bound by appropriately rescaling $\bar{f}^{\overline{\text { nc-sc-sg}}}$ as well as its domain. Formally, define $f^{\text {nc-sc-sg }}:\left(\mathcal{C}_{\lambda R_{1}}^{T} \times \mathcal{C}_{\lambda R_{1}}^{T-1}\right) \times \mathcal{C}_{\lambda n R_{2}}^{n(T-1)} \rightarrow \mathbb{R}$ as

$$
f^{\mathrm{nc}-\mathrm{sc}-\mathrm{sg}}(\boldsymbol{x}, \boldsymbol{z} ; \overline{\boldsymbol{y}})=\frac{L \lambda^{2}}{\ell_{0}} \bar{f}^{\mathrm{nc}-\mathrm{sc}-\mathrm{sg}}\left(\frac{\boldsymbol{x}}{\lambda}, \frac{\boldsymbol{z}}{\lambda} ; \frac{\overline{\boldsymbol{y}}}{\lambda}\right)
$$

where $\lambda>0$ is some parameter to be determined later and ℓ_{0} is the smoothness parameter defined in Lemma 11]i. Note that we can show

$$
\begin{aligned}
f_{m}^{\mathrm{nc}-\mathrm{sc}-\mathrm{sg}}(\boldsymbol{x}, \boldsymbol{z}) & :=\max _{\overline{\boldsymbol{y}} \in \mathcal{C}_{\lambda n R_{2}}^{n(T-1)}} f^{\mathrm{nc}-\mathrm{sc}-\mathrm{sg}}(\boldsymbol{x}, \boldsymbol{z} ; \overline{\boldsymbol{y}}) \\
& =\frac{L \lambda^{2}}{\ell_{0}} \max _{\boldsymbol{u} \in \mathcal{C}_{n R_{2}}^{n(T-1)}} \bar{f}^{\mathrm{nc}-\mathrm{sc}-\mathrm{sg}}\left(\frac{\boldsymbol{x}}{\lambda}, \frac{\boldsymbol{z}}{\lambda} ; \boldsymbol{u}\right) \\
& =\frac{L \lambda^{2}}{\ell_{0}} \bar{f}_{m}^{\mathrm{nc} \text { ccc-sg }}\left(\frac{\boldsymbol{x}}{\lambda}, \frac{\boldsymbol{z}}{\lambda}\right)
\end{aligned}
$$

which means the order of maximization and rescaling can be interchanged. After the rescaling, $f^{\text {nc-sc-sg }}$ is still a zero-chain. Note that $f_{m}^{\text {nc-sc-sg }}$ is $\ell_{m} L / \ell_{0}$-smooth. When $z_{T}=0$, by Lemma 12 ,

$$
\begin{aligned}
& \frac{\ell_{m} L}{\ell_{0}}\left\|\mathrm{P}_{\mathcal{C}_{\lambda R_{1}}^{T} \times \mathcal{C}_{\lambda R_{1}}^{T-1}}\left((\boldsymbol{x}, \boldsymbol{z})-\frac{\ell_{0}}{\ell_{m} L} \nabla f_{m}^{\mathrm{nc-sc}-\mathrm{sg}}(\boldsymbol{x}, \boldsymbol{z})\right)-(\boldsymbol{x}, \boldsymbol{z})\right\|_{2} \\
= & \frac{\ell_{m} L}{\ell_{0}}\left\|\mathrm{P}_{\mathcal{C}_{\lambda R_{1}}^{T} \times \mathcal{C}_{\lambda R_{1}}^{T-1}}\left(\lambda\left(\frac{\boldsymbol{x}}{\lambda}, \frac{\boldsymbol{z}}{\lambda}\right)-\frac{\lambda}{\ell_{m}} \nabla \bar{f}_{m}^{\mathrm{nc}-\mathrm{sc}-\mathrm{sg}}\left(\frac{\boldsymbol{x}}{\lambda}, \frac{\boldsymbol{z}}{\lambda}\right)\right)-\lambda\left(\frac{\boldsymbol{x}}{\lambda}, \frac{\boldsymbol{z}}{\lambda}\right)\right\|_{2} \\
= & \frac{L \lambda}{\ell_{0}} \ell_{m}\left\|\mathrm{P}_{\mathcal{C}_{R_{1}}^{T} \times \mathcal{C}_{R_{1}}^{T-1}}\left(\left(\frac{\boldsymbol{x}}{\lambda}, \frac{\boldsymbol{z}}{\lambda}\right)-\frac{1}{\ell_{m}} \nabla \bar{f}_{m}^{\mathrm{nc-sc-sg}}\left(\frac{\boldsymbol{x}}{\lambda}, \frac{\boldsymbol{z}}{\lambda}\right)\right)-\left(\frac{\boldsymbol{x}}{\lambda}, \frac{\boldsymbol{z}}{\lambda}\right)\right\|_{2} \\
> & \frac{L \lambda}{3 \ell_{0}} .
\end{aligned}
$$

Choosing $\lambda=\frac{6 \ell_{0} \epsilon}{L}$ guarantees such $(\boldsymbol{x}, \boldsymbol{z})$ is not a 2ϵ-stationary point of $f^{\mathrm{nc} \text {-sc-sg }}$.
Now we check $f^{\text {nc-sc-sg }} \in \mathcal{F}(L, \mu, \Delta)$. Note that

$$
\nabla^{2} f^{\mathrm{nc}-\mathrm{sc}-\mathrm{sg}}(\boldsymbol{x}, \boldsymbol{z} ; \overline{\boldsymbol{y}})=\frac{L}{\ell_{0}} \nabla^{2} \bar{f}^{\mathrm{nc}-\mathrm{sc}-\mathrm{sg}}\left(\frac{\boldsymbol{x}}{\lambda}, \frac{\boldsymbol{z}}{\lambda} ; \frac{\overline{\boldsymbol{y}}}{\lambda}\right) .
$$

We know the smoothness parameter of $f^{\text {nc-sc-sg }}$ is L and the strong concavity parameter is $\frac{L}{\ell_{0} n^{3}}$. Therefore we should choose

$$
n=\left\lfloor\left(\frac{L}{\mu \ell_{0}}\right)^{1 / 3}\right\rfloor
$$

to make $f^{\text {nc-sc-sg }} \mu$-strongly concave in $\overline{\boldsymbol{y}}$. Then it suffices to show $f_{m}^{\text {nc-sc-sg }}(\mathbf{0}, \mathbf{0})-$ $\inf _{\boldsymbol{x}, \boldsymbol{z}} f_{m}^{\text {nc-sc-sg }}(\boldsymbol{x}, \boldsymbol{z}) \leq \Delta$. By Lemma 9 .

$$
f_{m}^{\mathrm{nc}-\mathrm{sc}-\mathrm{sg}}(\mathbf{0}, \mathbf{0})-\inf _{\boldsymbol{x}, \boldsymbol{z}} f_{m}^{\mathrm{nc}-\mathrm{sc}-\mathrm{sg}}(\boldsymbol{x}, \boldsymbol{z})=\frac{L \lambda^{2}}{\ell_{0}}\left(\bar{f}_{m}^{\mathrm{nc}-\mathrm{sc}-\mathrm{sg}}(\mathbf{0}, \mathbf{0})-\inf _{\boldsymbol{x}, \boldsymbol{z}} \bar{f}_{m}^{\mathrm{nc}-\mathrm{sc}-\mathrm{sg}}\left(\frac{\boldsymbol{x}}{\lambda}, \frac{\boldsymbol{z}}{\lambda}\right)\right) \leq \frac{12 L T \lambda^{2}}{\ell_{0}}
$$

which is no greater than Δ if choosing

$$
T=\left\lfloor\frac{\ell_{0} \Delta}{12 L \lambda^{2}}\right\rfloor=\left\lfloor\frac{L \Delta}{432 \ell_{0} \epsilon^{2}}\right\rfloor .
$$

Now we construct the stochastic gradient oracle in the same way as [3]. We perturb the gradient only on the next coordinate to discover, so that we reveal its value with probability p. Let $i^{*}(\boldsymbol{x}, \boldsymbol{z} ; \overline{\boldsymbol{y}})$ denote the next coordinate to discover in the zero-chain in Figure 1.c). Precisely, we set the stochastic gradient to be

$$
\boldsymbol{g}(\boldsymbol{x}, \boldsymbol{z} ; \overline{\boldsymbol{y}} ; \xi)_{i}= \begin{cases}\frac{\xi}{p} \nabla_{i} f^{\mathrm{nc}-\text { sc-sg }}(\boldsymbol{x}, \boldsymbol{z} ; \overline{\boldsymbol{y}}) & \text { if } i=i^{*}(\boldsymbol{x}, \boldsymbol{z} ; \overline{\boldsymbol{y}}) \\ \nabla_{i} f^{\text {nc-sc-sg }}(\boldsymbol{x}, \boldsymbol{z} ; \overline{\boldsymbol{y}}) & \text { otherwise },\end{cases}
$$

where $\xi \sim \operatorname{Bernoulli}(p)$. By Lemma 5 , $f^{\text {nc-sc-sg }}$ is a probability- p zero-chain with this oracle which has variance bounded by

$$
\mathbb{E}\left[\left\|\boldsymbol{g}(\boldsymbol{x}, \boldsymbol{z} ; \overline{\boldsymbol{y}} ; \xi)-\nabla f^{\mathrm{nc}-\mathrm{sc}-\mathrm{sg}}(\boldsymbol{x}, \boldsymbol{z} ; \overline{\boldsymbol{y}})\right\|_{2}^{2}\right] \leq\left(\frac{G L \lambda}{\ell_{0}}\right)^{2} \frac{1-p}{p}=36 \epsilon^{2} G^{2} \frac{1-p}{p}
$$

Hence, the variance is no greater than σ^{2} if $p=\min \left\{1, \frac{36 \epsilon^{2} G^{2}}{\sigma^{2}}\right\}$. By Lemma 3, with probability $1-\delta, z_{T}^{t}=0$ for all

$$
t \leq \frac{n(T-1)-\log (1 / \delta)}{2 p}
$$

Then taking $\delta=1 / 2$ yields that whenever

$$
t \leq \frac{n(T-1)-1}{2 \frac{36 \epsilon^{2} G^{2}}{\sigma^{2}}}=\frac{c^{\prime} n T \sigma^{2}}{\epsilon^{2} G^{2}}=\frac{c_{0}^{\prime} L \Delta \sigma^{2} \kappa^{1 / 3}}{\epsilon^{4}}
$$

for some constant $c^{\prime}, c_{0}>0$, we have

$$
\mathbb{E}\left[\frac{\ell_{m} L}{\ell_{0}}\left\|\mathrm{P}_{\mathcal{C}_{\lambda R_{1}}^{T} \times \mathcal{C}_{\lambda R_{1}}^{T-1}}\left((\boldsymbol{x}, \boldsymbol{z})-\frac{\ell_{0}}{\ell_{m} L} \nabla f_{m}^{\mathrm{nc}-\mathrm{sc}-\mathrm{sg}}(\boldsymbol{x}, \boldsymbol{z})\right)-(\boldsymbol{x}, \boldsymbol{z})\right\|_{2}\right] \geq \frac{1}{2} \cdot 2 \epsilon=\epsilon
$$

That is, $\left(\boldsymbol{x}^{t}, \boldsymbol{z}^{t}\right)$ is not an ϵ-stationary point. So far we have derived a lower bound of $\Omega\left(\frac{L \Delta \sigma^{2} \kappa^{1 / 3}}{\epsilon^{4}}\right)$. Note that the deterministic lower bound is $\Omega\left(\frac{L \Delta \sqrt{\kappa}}{\epsilon^{2}}\right)$ which is a special case of the stochastic setting. Therefore we derive a lower bound of

$$
\Omega\left(L \Delta \max \left\{\frac{\sqrt{\kappa}}{\epsilon^{2}}, \frac{\kappa^{1 / 3} \sigma^{2}}{\epsilon^{4}}\right\}\right)=\Omega\left(L \Delta\left(\frac{\sqrt{\kappa}}{\epsilon^{2}}+\frac{\kappa^{1 / 3} \sigma^{2}}{\epsilon^{4}}\right)\right) .
$$

