
A Properties of the nonconvex lower bound example (4)

We enumerate all relevant properties of Φ and Ψ used in the analysis in the following lemma.
Lemma 6 ([5, Lemma 1]). The functions Φ and Ψ satisfy

i. For all x ≤ 1/2 and k ∈ N, Ψ(k)(x) = 0.

ii. For all x ≥ 1 and |y| < 1, Ψ(x)Φ′(y) > 1.

iii. Both Ψ and Φ are infinitely differentiable. For all k ∈ N, we have

sup
x
|Ψ(k)(x)| ≤ exp

(
5k

2
log(4k)

)
and sup

x
|Φ(k)(x)| ≤ exp

(
3k

2
log

3k

2

)
.

iv. The functions and derivatives Ψ, Ψ′, Φ, Φ′ are non-negative and bounded, with

0 < Ψ < e, 0 < Ψ′ <
√

54/e, 0 < Φ <
√

2πe, 0 < Φ′ <
√
e.

Note that Ψ(0) = Ψ′(0) = 0 by Lemma 6.i. Then it is easy to verify that ∂f̄
nc(x)
∂xi

= 0 if xi = xi−1 =

0. Therefore, if supp(x) ⊂ {1, . . . , i − 1}, i.e., xj = 0 for all j ≥ i, we have ∂f̄ nc(x)
∂xj

= 0 for all
j ≥ i+ 1. Hence, supp(∇f̄ nc) ⊂ {1, . . . , i}, which implies f̄ nc is a zero-chain. Define x0 ≡ 1 for
simplicity. As long as the algorithm has not reached the end of the chain, there must be a phase
transition point 1 ≤ k ≤ T such that |xk| < 1 and |xk−1| ≥ 1. Using Lemma 6.ii, one can bound∥∥∇f̄ nc(xt)

∥∥
2
≥
∣∣∣∂f̄ nc(x)

∂xk

∣∣∣ > 1. By appropriately rescaling f̄ nc so that it meets the requirement of

the function class of interest, Carmon et al. [5] derived a lower bound of Tnc := Ω
(
1/ε2

)
gradient

oracles.

B A Useful lemma

We first present a lemma useful for analyzing the quadratic components in our examples.

Lemma 7. Denote α = 1
n2 and let B = (αIn +A)

−1 where A is the matrix defined in (7). If
n ≥ 10, we have for all 1 ≤ i ≤ n,

0.1n ≤ Bi,1 ≤ 20n.

Proof of Lemma 7. Let M be the cofactor matrix of αIn +A. We have

B =
M>

det (αIn +A)
.

So we only need to compute det (αIn +A) and M1,i for all 1 ≤ i ≤ n. Note that all of them are
determinants of tridiagonal matrices which can be computed using a three-term recurrence relation
[12]. Let

p = 1 +
α

2
+

√
α+

α2

4
, q = 1 +

α

2
−
√
α+

α2

4
be the solutions of the following characteristic equation

x2 − (2 + α)x+ 1 = 0.

By standard calculations, we have

det(αIn +A) =

(
α+ α2

2

) (
pn−1 − qn−1

)
+ α

√
α+ α2

4

(
pn−1 + qn−1

)
2
√
α+ α2

4

,

M1,i =

α
2

(
pn−i − qn−i

)
+
√
α+ α2

4

(
pn−i + qn−i

)
2
√
α+ α2

4

.

14



Define D = pn−1, E = D − 1
D , and F = D + 1

D . We have

0 ≤ pn−i − qn−i ≤ E and 2 ≤ pn−i + qn−i ≤ F.

Therefore

det(αIn +A) =

(
α+ α2

2

)
E + α

√
α+ α2

4 F

2
√
α+ α2

4

,

1 ≤M1,n ≤M1,i ≤M1,1 =

α
2E +

√
α+ α2

4 F

2
√
α+ α2

4

.

Noting α = 1
n2 , we have

D = pn−1 =

(
1 +

1

2n2
+

1

n

√
1 +

1

4n2

)n−1

.

We can bound 2 ≤ D ≤ 8 if n ≥ 10. Then it is straightforward to upper and lower bound
det(αIn +A) and M1,i and then obtain the bound of Bi,1. If n ≥ 10, we have

0.1n ≤Bi,1 ≤ 20n, ∀1 ≤ i ≤ n.

C Proofs for the lower bound in the deterministic setting

Proof of Lemma 4. Let B =
(

1
n2 In +A

)−1
where A is the matrix defined in (7). By symmetry, we

have B1,1 = Bn,n and B1,n = Bn,1. Then we have

hm(x, z) =
C

2n

(
B1,1x

2 −Bn,1xz +
B1,1

4
z2

)
.

Let a1 = B1,1/n and a2 = Bn,1/n. By Lemma 7 we know 0.1 ≤ a1, a2 ≤ 20 and complete the
proof.

To prove the main theorem, we need several additional lemmas. The following lemma gives a lower
bound of the gradient norm when the algorithm hasn’t reached the end of the chain.
Lemma 8. If |zi| < 1 for some i ≤ T , then

∥∥∇f̄ nc-sc
m (x, z)

∥∥
2
> 1

3 .

Proof of Lemma 8. We define z1 ≡ 1 for simplicity. Since |zi| < 1 and |z1| ≥ 1, we are able to find
some 1 < j ≤ i to be the smallest j for which |zj | < 1. So we know |zj−1| ≥ 1. We can compute

∂f̄ nc-sc
m (x, z)

∂xj−1
=−Ψ(−zj−1)Φ′(−xj−1)−Ψ(zj−1)Φ′(xj−1) + 12

(
xj−1 −

1

2
zj

)
=: p(xj−1, zj−1) + 12

(
xj−1 −

1

2
zj

)
,

∂f̄ nc-sc
m (x, z)

∂zj
=−Ψ′(−zj)Φ(−xj)−Ψ′(zj)Φ(xj)− 6

(
xj−1 −

1

2
zj

)
=: q(xj , zj)− 6

(
xj−1 −

1

2
zj

)
.

Note that Lemma 6.iv implies for all 2 ≤ i ≤ T ,

−5 < p(xj , zj) < 0, −20 < q(xj , zj) < 0.

There are two possible cases
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1. If |xj−1| < 1, we have p(xj−1, zj−1) < −1 by Lemma 6.ii. Then

∂f̄ nc-sc
m (x, z)

∂xj−1
+ 2 · ∂f̄

nc-sc
m (x, z)

∂zj
= p(xj−1, zj−1) + 2q(xj , zj) < −1.

Therefore we can bound∥∥∇f̄ nc-sc
m (x, z)

∥∥
2
≥ max

{∣∣∣∣∂f̄ nc-sc
m (x, z)

∂xj−1

∣∣∣∣ , ∣∣∣∣∂f̄ nc-sc
m (x, z)

∂zj

∣∣∣∣} >
1

3
.

2. Otherwise if |xj−1| ≥ 1, we have 12
∣∣xj−1 − 1

2zj
∣∣ > 6. Since |p(xj−1, zj−1)| < 5, we

must have ∥∥∇f̄ nc-sc
m (x, z)

∥∥
2
≥
∣∣∣∣∂f̄ nc-sc

m (x, z)

∂xj−1

∣∣∣∣ > 1.

Now we verify the smoothness and boundedness requirements of the function class we consider.

Lemma 9. f̄ nc-sc and f̄ nc-sc
m satisfy the following.

i. f̄ nc-sc
m (0,0)− infx∈RT ,z∈RT−1 f̄ nc-sc

m (x, z) ≤ 12T .

ii. f̄ nc-sc is `0-smooth for some numerical constant `0.

Proof of Lemma 9.

i. First note that f̄ nc-sc
m (0,0) = −Φ(1)Φ(0) ≤ 0. Also, by Lemma 6.iv, we have for all x ∈

RT , z ∈ RT−1,

f̄ nc-sc
m (x, z) ≥ −Ψ(1)Φ(x1)−

T∑
i=2

Ψ(zi)Φ(xi) ≥ −12T.

Therefore f̄ nc-sc
m (0,0)− infx∈RT ,z∈RT−1 f̄ nc-sc

m (x, z) ≤ 12T .

ii. Let v = (x, z, ȳ) be the variable of f̄ nc-sc. We know ∂f̄ nc-sc

∂vi∂vj
6= 0 only if i = j or vi and

vj are directly connected in the chain shown in Figure 1 (c). Therefore the Hessian of f̄ nc-sc

is tridiagonal if we rearranging the coordinates of v according to the order of the chain. By
Lemma 6.iii and the expression of f̄ nc-sc, it is straightforward to verify that each tridiaognal entry
of the Hessian is O(1). Therefore the `2 norm of the Hessian is O(1), which means f̄ nc-sc is
O(1)-smooth.

With all the above properties of f̄ nc-sc and f̄ nc-sc
m , we are ready to show Theorem 1.

Proof of Theorem 1. As in [5], we construct the hard instance f nc-sc by appropriately rescaling f̄ nc-sc

defined in (5),

f nc-sc(x, z; ȳ) =
Lλ2

`0
f̄ nc-sc

(
x

λ
,
z

λ
;
ȳ

λ

)
,

where λ > 0 is some parameter to be determined later and `0 is the smoothness parameter defined in
Lemma 9.ii. Note that we can show

f nc-sc
m (x, z) := max

ȳ∈Rn(T−1)
f nc-sc(x, z; ȳ) = max

u∈Rn(T−1)

Lλ2

`0
f̄ nc-sc

(x
λ
,
z

λ
;u
)

=
Lλ2

`0
f̄ nc-sc
m

(x
λ
,
z

λ

)
,
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which means the order of maximization and rescaling can be interchanged. After the rescaling, f nc-sc

is still a zero-chain. Also, if zT = 0 for some (x, z; ȳ), Lemma 8 shows that∥∥∥∇f̄ nc-sc
m

(x
λ
,
z

λ

)∥∥∥
2
>

1

3
.

Therefore

‖∇f nc-sc
m (x, z)‖2 =

Lλ

`0

∥∥∥∇f̄ nc-sc
m

(x
λ
,
z

λ

)∥∥∥
2
>
Lλ

3`0
.

Choosing λ = 3`0ε
L garautees ‖∇f nc-sc

m (x, z)‖2 > ε.

Now we check f nc-sc ∈ F(L, µ,∆). Note that

∇2f nc-sc (x, z; ȳ) =
L

`0
∇2f̄ nc-sc

(
x

λ
,
z

λ
;
ȳ

λ

)
.

Therefore we know the smoothness parameter of f nc-sc is L and the strong concavity parameter is
L

`0n2 . Therefore we should choose

n =

⌊√
L

µ`0

⌋
to make f nc-sc µ-strongly concave in ȳ.

Then it suffices to verify f nc-sc
m (0,0)− infx,z f

nc-sc
m (x, z) ≤ ∆. By Lemma 9,

f nc-sc
m (0,0)− inf

x,z
f nc-sc
m (x, z) =

Lλ2

`0

(
f̄ nc-sc
m (0,0)− inf

x,z
f̄ nc-sc
m (x, z)

)
≤ 12LTλ2

`0
,

which is less than ∆ if choosing

T =

⌊
`0∆

12Lλ2

⌋
=

⌊
L∆

108`0ε2

⌋
.

Since ztT = 0 if t ≤ n(T − 1), we conclude that ‖∇f nc-sc
m (xt, zt)‖2 > ε whenever

t ≤ n(T − 1) =
c0L∆

√
κ

ε2

for some numerical constant c0.

D Proofs for the lower bound in the stochastic setting

Lemma 10. Let hsg
m(x, z) := maxy∈CnnR2

hsg(x, z;y). If R2 ≥ 30R1, for every x, z such that
|x|, |z| ≤ R1, we have

hsg
m(x, z) = hm(x, z),

where hm is the quadratic function defined in (8).

Proof of Lemma 10. Note that

max
y∈Rn

hsg(x, z;y) =
C

2n
b>x,z

(
1

n2
In +A

)−1

bx,z = hm(x, z).

It suffices to verify that

max
y∈CnnR2

hsg(x, z;y) = max
y∈Rn

hsg(x, z;y),

i.e.,

y∗(x, z) := argmax
y∈Rn

hsg(x, z;y) ∈ CnnR2
.
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We can compute that

y∗(x, z) =

(
1

n2
In +A

)−1

bx,z = B · bx,z,

where B =
(

1
n2 In +A

)−1
is the matrix defined in Lemma 7. Let y∗i (x, z) be the i-th coordinate of

y∗(x, z) for some 1 ≤ i ≤ n. By symmetry of B and Lemma 7, we have

|y∗i (x, z)| =
∣∣∣∣xBi,1 − 1

2
zBi,n

∣∣∣∣
=

∣∣∣∣xBi,1 − 1

2
zBn−i,1

∣∣∣∣
≤30nR1 ≤ nR2.

Therefore y∗(x, z) ∈ CnnR2
and we complete the proof.

Now we analyze the properties of f̄ nc-sc-sg and f̄ nc-sc-sg
m .

Lemma 11. f̄ nc-sc-sg and f̄ nc-sc-sg
m satisfy the following.

i. f̄ nc-sc-sg
m (0,0)− infx∈CTR1

,z∈CT−1
R1

f̄ nc-sc-sg
m (x, z) ≤ 12T .

ii. f̄ nc-sc-sg is `0-smooth for some numerical constant `0.

iii. f̄ nc-sc-sg
m is `m-smooth for some numerical constant `m ≥ 1.

iv. For all x, z, ȳ,
∥∥∇f̄ nc-sc-sg(x, z; ȳ)

∥∥
∞ ≤ G for some numerical constant G.

Proof of Lemma 11. Note that CTR1
× CT−1

R1
⊂ RT × RT−1. Then i and ii are direct corollaries

of Lemma 9. We can prove iii in the same way as ii. It is also straightforward to verify iv given
Lemma 6.iii and iv and noting the infinity norms of x, z, and ȳ are all bounded.

The lemma below shows we cannot find a good solution unless the end of the chain is reached.
Lemma 12. If |zi| < 1 for some i ≤ T , then (x, z) is not a 1/3-stationary point of f̄ nc-sc-sg

m .

Proof of Lemma 12. Let 1 < j ≤ i to be the smallest j for which |zj | < 1. Similar to the proof of
Lemma 8, noting f̄ nc-sc

m = f̄ nc-sc-sg
m , we have

∂f̄ nc-sc-sg
m (x, z)

∂xj−1
=p(xj−1, zj−1) + 12

(
xj−1 −

1

2
zj

)
,

∂f̄ nc-sc-sg
m (x, z)

∂zj
=q(xj , zj)− 6

(
xj−1 −

1

2
zj

)
,

where
−5 < p(xj−1, zj−1) < 0, −20 < q(xj , zj) < 0.

There are two possible cases

1. If |xj−1| < 1, we know p(xj−1, zj−1) < −1 by Lemma 6.ii. Then

∂f̄ nc-sc-sg
m (x, z)

∂xj−1
+ 2 · ∂f̄

nc-sc-sg
m (x, z)

∂zj
= p(xj−1, zj−1) + 2q(xj , zj) < −1.

Therefore we can bound

max

{∣∣∣∣∂f̄ nc-sc-sg
m (x, z)

∂xj−1

∣∣∣∣ , ∣∣∣∣∂f̄ nc-sc-sg
m (x, z)

∂zj

∣∣∣∣} >
1

3
.

Suppose u is one of xj−1 and zj such that
∣∣∣∂f̄ nc-sc-sg

m (x,z)
∂u

∣∣∣ > 1/3. We also know |u| < 1. Let

`m be the smoothness parameter of f̄ nc-sc-sg
m defined in Lemma 11.iii. Define

u′ := u− 1

`m

∂f̄ nc-sc-sg
m (x, z)

∂u
. (12)
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i. If |u′| ≤ R1, we have

`m

∣∣∣PC1R1
(u′)− u

∣∣∣ = `m |u′ − u| =
∣∣∣∣∂f̄ nc-sc-sg

m (x, z)

∂u

∣∣∣∣ > 1/3.

ii. If |u′| > R1, we know that
∣∣∣PC1R1

(u′)
∣∣∣ = R1. Then we have

`m

∣∣∣PC1R1
(u′)− u

∣∣∣ > `m(R1 − 1) ≥ 1.

2. If xj−1 ≥ 1, we have 12(xj−1 − 1
2zj) > 6. Since −5 < p(xj−1, zj−1) < 0, we must have

∂f̄ nc-sc
m (x, z)

∂xj−1
> 1.

Similar to case 1, we use u to denote xj−1 and define u′ as in (12). We know u′ < u.
Therefore

i. If |u′| ≤ R1, we have

`m

∣∣∣PC1R1
(u′)− u

∣∣∣ =

∣∣∣∣∂f̄ nc-sc-sg
m (x, z)

∂u

∣∣∣∣ > 1.

ii. If u′ < −R1, we know that PC1R1
(u′) = −R1. Then we have

`m

∣∣∣PC1R1
(u′)− u

∣∣∣ > `m(R1 + 1) ≥ 1.

3. If xj−1 ≤ −1, we have we have 12(xj−1 − 1
2zj) < −6. Since −5 < p(xj−1, zj−1) < 0,

we must have
∂f̄ nc-sc

m (x, z)

∂xj−1
< −6 < −1.

Then similar to case 2, we can show `m

∣∣∣PC1R1
(u′)− u

∣∣∣ > `m(R1 + 1) ≥ 1.

To sum up, we have

`m

∥∥∥∥PCTR1
×CT−1

R1

(
(x, z)− 1

`m
∇f̄ nc-sc-sg

m (x, z)

)
− (x, z)

∥∥∥∥
2

≥ `m
∣∣∣PC1R1

(u′)− u
∣∣∣ > 1/3,

i.e., (x, z) is not a 1/3-stationary point of f̄ nc-sc-sg
m .

With all the lemmas above, we are ready to prove Theorem 2.

Proof of Theorem 2. Similar to the proof of Theorem 1, we show the lower bound by appropriately
rescaling f̄ nc-sc-sg as well as its domain. Formally, define f nc-sc-sg :

(
CTλR1

× CT−1
λR1

)
× Cn(T−1)

λnR2
→ R

as

f nc-sc-sg(x, z; ȳ) =
Lλ2

`0
f̄ nc-sc-sg

(
x

λ
,
z

λ
;
ȳ

λ

)
,

where λ > 0 is some parameter to be determined later and `0 is the smoothness parameter defined in
Lemma 11.ii. Note that we can show

f nc-sc-sg
m (x, z) := max

ȳ∈Cn(T−1)
λnR2

f nc-sc-sg(x, z; ȳ)

=
Lλ2

`0
max

u∈Cn(T−1)
nR2

f̄ nc-sc-sg
(x
λ
,
z

λ
;u
)

=
Lλ2

`0
f̄ nc-sc-sg
m

(x
λ
,
z

λ

)
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which means the order of maximization and rescaling can be interchanged. After the rescaling,
f nc-sc-sg is still a zero-chain. Note that f nc-sc-sg

m is `mL/`0-smooth. When zT = 0, by Lemma 12,

`mL

`0

∥∥∥∥PCTλR1
×CT−1

λR1

(
(x, z)− `0

`mL
∇f nc-sc-sg

m (x, z)

)
− (x, z)

∥∥∥∥
2

=
`mL

`0

∥∥∥∥PCTλR1
×CT−1

λR1

(
λ
(x
λ
,
z

λ

)
− λ

`m
∇f̄ nc-sc-sg

m

(x
λ
,
z

λ

))
− λ

(x
λ
,
z

λ

)∥∥∥∥
2

=
Lλ

`0
`m

∥∥∥∥PCTR1
×CT−1

R1

((x
λ
,
z

λ

)
− 1

`m
∇f̄ nc-sc-sg

m

(x
λ
,
z

λ

))
−
(x
λ
,
z

λ

)∥∥∥∥
2

>
Lλ

3`0
.

Choosing λ = 6`0ε
L guarantees such (x, z) is not a 2ε-stationary point of f nc-sc-sg.

Now we check f nc-sc-sg ∈ F(L, µ,∆). Note that

∇2f nc-sc-sg (x, z; ȳ) =
L

`0
∇2f̄ nc-sc-sg

(
x

λ
,
z

λ
;
ȳ

λ

)
.

We know the smoothness parameter of f nc-sc-sg is L and the strong concavity parameter is L
`0n3 .

Therefore we should choose

n =

⌊(
L

µ`0

)1/3
⌋

to make f nc-sc-sg µ-strongly concave in ȳ. Then it suffices to show f nc-sc-sg
m (0,0) −

infx,z f
nc-sc-sg
m (x, z) ≤ ∆. By Lemma 9,

f nc-sc-sg
m (0,0)− inf

x,z
f nc-sc-sg
m (x, z) =

Lλ2

`0

(
f̄ nc-sc-sg
m (0,0)− inf

x,z
f̄ nc-sc-sg
m

(x
λ
,
z

λ

))
≤ 12LTλ2

`0
,

which is no greater than ∆ if choosing

T =

⌊
`0∆

12Lλ2

⌋
=

⌊
L∆

432`0ε2

⌋
.

Now we construct the stochastic gradient oracle in the same way as [3]. We perturb the gradient
only on the next coordinate to discover, so that we reveal its value with probability p. Let i∗(x, z; ȳ)
denote the next coordinate to discover in the zero-chain in Figure 1(c). Precisely, we set the stochastic
gradient to be

g(x, z; ȳ; ξ)i =

{
ξ
p∇if

nc-sc-sg(x, z; ȳ) if i = i∗(x, z; ȳ)
∇if nc-sc-sg(x, z; ȳ) otherwise,

where ξ ∼ Bernoulli(p). By Lemma 5, f nc-sc-sg is a probability-p zero-chain with this oracle which
has variance bounded by

E
[
‖g(x, z; ȳ; ξ)−∇f nc-sc-sg(x, z; ȳ)‖22

]
≤
(
GLλ

`0

)2
1− p
p

= 36ε2G2 1− p
p

.

Hence, the variance is no greater than σ2 if p = min{1, 36ε2G2

σ2 }. By Lemma 3, with probability
1− δ, ztT = 0 for all

t ≤ n(T − 1)− log(1/δ)

2p
.

Then taking δ = 1/2 yields that whenever

t ≤ n(T − 1)− 1

2 36ε2G2

σ2

=
c′nTσ2

ε2G2
=
c′0L∆σ2κ1/3

ε4
,
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for some constant c′, c0 > 0, we have

E
[
`mL

`0

∥∥∥∥PCTλR1
×CT−1

λR1

(
(x, z)− `0

`mL
∇f nc-sc-sg

m (x, z)

)
− (x, z)

∥∥∥∥
2

]
≥ 1

2
· 2ε = ε.

That is, (xt, zt) is not an ε-stationary point. So far we have derived a lower bound of Ω(L∆σ2κ1/3

ε4 ).
Note that the deterministic lower bound is Ω(L∆

√
κ

ε2 ) which is a special case of the stochastic setting.
Therefore we derive a lower bound of

Ω

(
L∆ max

{√
κ

ε2
,
κ1/3σ2

ε4

})
= Ω

(
L∆

(√
κ

ε2
+
κ1/3σ2

ε4

))
.
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