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Abstract

Simulations of complex physical systems are typically realized by discretizing
partial differential equations (PDEs) on unstructured meshes. While neural net-
works have recently been explored for the surrogate and reduced order modeling
of PDE solutions, they often ignore interactions or hierarchical relations between
input features, and process them as concatenated mixtures. We generalize the
idea of conditional parameterization – using trainable functions of input param-
eters to generate the weights of a neural network, and extend them in a flexible
way to encode critical information. Inspired by discretized numerical methods,
choices of the parameters include physical quantities and mesh topology features.
The functional relation between the modeled features and the parameters is built
into the network architecture. The method is implemented on different networks
and applied to frontier scientific machine learning tasks including the discovery
of unmodeled physics, super-resolution of coarse fields, and the simulation of
unsteady flows with chemical reactions. The results show that the conditionally-
parameterized networks provide superior performance compared to their tradi-
tional counterparts. The CP-GNet - an architecture that can be trained on very few
data snapshots - is proposed as the first deep learning model capable of standalone
prediction of reacting flows on irregular meshes.

1 Introduction

Numerical simulations of partial differential equations (PDEs) have become an indispensable tool
in the study of complex physical systems. High-resolution simulations are, however, prohibitively
expensive or intractable in many practical problems. Machine learning techniques have recently
been explored to improve the efficiency and accuracy of traditional numerical methods. Successful
applications include nonlinear model order reduction [1, 2, 3], model augmentation [4, 5, 6], and
super-resolution [7, 8, 9]. Neural networks have also been used to replace traditional PDE-based
solvers, and serve as a standalone prediction tool. Popular approaches include auto-regressive time-
series predictions [10, 11, 12, 13, 14], Physics-Informed Neural Networks (PINNs) [15, 16, 17].

Despite promising results on canonical problems, commonly used network architectures such as au-
toencoders and CNNs have inherent limitations. An autoencoder generates a fixed mapping between
the geometric coordinates and the encoded digits. This limits their portability for new geometries
and dynamic patterns. A CNN requires interpolation of existing data to a structured, Euclidean
space, introducing additional cost and error. Irregular geometry boundaries require constructs such
as elliptic coordinate transformation [18] and Signed Distance Function (SDF) [1]. Moreover, mod-
els often ignore the hierarchical relations between heterogeneous features, and concatenate them
into a single input vector, e.g. the common concatenation of the edge and node features in Graph
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Neural Networks (GNNs). The learning of high-order terms remains mostly unguided – even simple
quadratic terms are often fitted via a number of hidden units in a brute-force manner.

With a focus on mesh-based modeling of physical systems, we use the idea of conditional param-
eterization (CP) to build the hierarchical relations between different physical quantities as well as
numerical discretization information into the network architectures. The key contributions of our
work are as follows 1:

1. We demonstrate that a drop-in CP modification can bring significant improvements for various
existing models on several tasks essential to the modeling of physical systems.

2. We propose a conditionally parameterized graph neural network (CP-GNet), which effectively
models complex physics such as chemical source terms, irregular mesh discretizations, and different
types of boundary conditions.

3. We conduct extensive numerical tests and demonstrate state-of-the-art performances on problems
of different complexities, ranging from the basic viscous Burgers equation to a complex reacting
flow.

2 Methodology

Conditional Parametrization: The idea of conditional parametrization (CP) is to use trainable
functions of input parameters to generate the weights of a neural network. To demonstrate this, we
start from a standard dense (fully connected) layer:

h(u;W,b) = σ(Wu + b), (1)

where u ∈ Rnx is the input feature vector, h ∈ Rnh is the output hidden state vector, W ∈ Rnh×nx
and b ∈ Rnh are the trainable weights and bias, and σ is the activation function. It can be seen
that in the evaluation stage, the values of W and b are fixed regardless of the inputs. Thus the
performance of Eq. (1) is largely limited by the interpolation range of training data.

By introducing a parameter vector p ∈ Rnp and a trainable function f(p) : Rnp → Rnh×nx that
computes the weights W based on p, the conditionally parameterized version of Eq. (1) is given by:

h(u; f(p),b) = σ(f(p)u + b). (2)

An easy way to incorporate the formulation into existing neural network models is by making f a
single-layer MLP, the conditionally parameterized dense (CP-Dense) layer can be represented by:

h(u,p;W,B,b) = σ (σ (〈W,p〉+ B)u + b) . (3)

It should be noted that this would bring a change in the dimensions of weights and biases, which
become W ∈ R(nh×nu)×np , B ∈ Rnh×nu . When the layer width is kept the same, the total
number of trainable parameters increases linearly with the parameter size np. In applications, p
is not limited to an additionally-introduced parameter. When simply taking u as the parameter for
itself, the quadratic terms will be introduced. High-order terms, which are prevalent in physical
systems, can be easily modeled using multiple such layers. In Appendix B, we demonstrate how
certain discretized PDE terms can be fitted exactly with simple conditionally parameterized layers.

2.1 CP-GNet for mesh-based modeling of physical systems

Graph representation of discretized systems: Consider a physical system governed by a set PDEs
for a time-variant vector of variables q(t). Using the popular finite volume discretization, the com-
putational domain is divided into contiguous small cells, indexed by i. The discretized form of
equation can be written as:

dqi(t)

dt
=

1

Ωi

∑
j∈N(i)

f (qi,qj ,nij)Aij + s(qi), (4)

1The source code is released to facilitate future research at https://github.com/
davidxujiayang/cpnets
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where qi is the cell-centered value of cell i, Ωi is the volume (3D)/area (2D) of the cell, and N(i)
is the neighborhood set of cells around i. Between a neighboring pair of cells i and j, Aij is area
(3D)/length (2D) of the shared cell boundary, and nij = (xi − xj)/|xi − xj | is a vector between
the cell center locations xi and xj . In the explicit numerical simulation of Eq. (2.1), solutions are
updated by computing the increment of ∆qki = qk+1

i − qki between discrete time steps indexed by
k, which is determined by two terms. The flux term f computes the exchange of quantity between
neighboring cells, which is a complex function involving both the cell values as well as the vector
between them, e.g. [19]. The source term s computes physics that are local to the cell, such as the
reaction of chemical species.

In our setting, the discretized system is mapped to a graph G(V,E), defined by nodes V of size
|V | = nv connected by edges E ⊂ V × V of size |E| = ne. Each node vi is located at the
corresponding cell center xi, and each edge (i, j) corresponds to a shared boundary between the
finite volume cells. Denoting the sets of mapped quantities on all nodes and edges of G, Q =
{qi, i ∈ V },N = {nij , (i, j) ∈ E}, the target is to develop a graph neural network operator g that
predicts the increment as ∆Qk = g(Qk,N).

CP-GNet architecture: The architecture for the proposed conditionally parameterized graph neural
network, CP-GNet, can be written in an encoder-processor-decoder form. A schematic is provided
in Fig. 1. For clarity of different variables in the description of the network, we use ui for the latent
variables on node i to distinguish from the physical variables qi, and use eij for latent variables on
edge (i, j) to distinguish from the vector nij .

Figure 1: Schematic of CP-GNet architecture

Encoder: Numerical solution of PDEs (e.g., the compressible Navier–Stokes equations) requires
the processing of arbitrarily complex interactions between mesh elements. While large MLP archi-
tectures can represent this complexity, the data requirements to reliably train such networks might
be large. In contrast, our proposed encoder takes two CP-Dense layers, taking the output from the
previous layer as both the input and the conditional parameter. Through the encoder, high-order
interactions can be easily extracted, allowing a degree of extrapolation by virtue of linearity. The
CP-GNet uses two separate, but similarly constructed encoders to process the input node features
qki and edge features nij , respectively.

Processor: The flux term f in Eq. (2.1) can be effectively approximated by CP message-passing
(CP-MP) between adjacent nodes on a graph. The source term s, on the other hand, can be modeled
by CP-Dense layers. In CP-GNet the processor consists of multiple identical blocks with inde-
pendent weights. Residual connections are added between the blocks. As shown in Fig. 1, each
block includes a CP-MP based section and a CP-Dense based section to address the two types of
terms. Modified from the Edge Conditioned Convolution (ECC) [20], the CP-MP computation is
formulated as:

Wij = σ
(〈

W, eφij

〉
+ B

)
, ; hi =

∑
j∈N(i)

wijσ (〈Wij , [ui;uj ]〉) , (5)
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where eφij is the output from the edge encoder, ui and uj are the latent node features from the
previous layer, hi is the nodal latent output, and wij = Aij/Ωi is the flux weight from Eq. (2.1).

Decoder: It is common in a PDE solver to use a Jacobian matrix J = ∂u/∂h to transform the
variable increments ∆u = J∆h. The decoder in the GP-GNet serves a similar purpose – to convert
hidden variables to the output on the physical space. Similar to the encoder, the decoder consists
of three conditionally parameterized dense layers. The first two layers can actually be viewed as
a dedicated “encoder” that is similar to the initial node encoder, taking qki as the input, but with
independent weights. The purpose of this “encoder” is to extract a final conditional parameter,
which is used in the third CP-Dense layer in the decoder to determine the weights for the output
node feature uχi from the processor. The third decoder layer is also the final layer of the model,
which outputs ∆qki (with proper scaling). Except for the edge encoder and the last two layers in the
decoder, all dense, CP-Dense, CP-MP layers are appended with LayerNormalization (LN) layers.

Treatments for boundaries: The computational domain of a practical problem includes multiple
types of boundaries, e.g. the case in Sec. 4.3. In classic PDE solvers, they are treated with different
boundary conditions, which define explicit formulations to compute relationships of the domain with
the external world. However, these conditions and formulations are only defined for the physical
quantities, thus cannot be easily transferred for latent variables, especially when multiple message-
passing/convolution steps are used. To enable the GP-GNet to model different types of boundaries
efficiently, special treatments are necessary. For boundaries with known inputs, such as the inlet
and the outlet, their values are directly input to the corresponding nodes at every time step. For the
boundaries imposing certain constraints, instead of a given physical value, such as Neumann and
symmetry boundaries, ghost edges are introduced. For a cell i with a face lying on a boundary,
we introduce a ghost edge vector nig , that points from the corresponding node i to the center of
the boundary face. Ghost edges are processed together with the normal edges in the edge encoder.
However, the CP-MP layer in the processor of the CP-GNet is slightly modified. More specifically,
the concatenation [ui;uj ] in Eq. (5) is replaced with only ui. And for each type of boundary, the
weights for the CP-MP layer are trained independently, to let the model learn different types of
boundary condition for the latent variables. The effectiveness of this treatment is shown in Sec. 4.3
and further discussed in Appendix. A.3.3.

3 Related Work

There have been successful attempts towards making networks directly parametric to certain fea-
tures, such as connectivity patterns [21], layer embedding [22], mean image features [23]. The Con-
ditionally Parameterized Convolution (CondConv) model [23], makes convolution kernel weights
as a linear combination of functions of the input features, and achieves an efficient expansion of the
network capacity. The Hypernetwork [22] uses a single network that takes layer embeddings, e.g.,
layer index, to generate the weights for different layers of the main network, and reduced the total
number of trainable weights. A popular framework to perform convolution on graphs is the message
passing neural network (MPNN) [24], which treats graph convolutions as messages passed between
nodes through edges. In this approach, the node features and edge act on intermediate variables, and
the output is expressed as a linear combination through concatenation. This can fail when the impact
of node features rely on the edge features in a non-linear fashion. To address this, Edge Conditioned
Convolution [20] (ECC) makes the weights for node features dependent on edge features. After the
modification for conditional parametrization, ECC was shown to achieve excellent performance on
irregular point cloud data. In comparison, our method extends the choice of parameters to physical
quantities, hidden inputs themselves, as well as discretization information.

Multiple architectures in the family of GNNs have shown successes in processing irregular, non-
Euclidean features. Applications include cloud classification [25, 26], action recognition [27] and
control [28], traffic forecasting [29, 30], quantum chemistry [24]. Attempts on using GNNs in scien-
tific computation are relatively limited and are mostly focusing on particle-based methods [31, 32].
Recently, pioneering work has demonstrated the potential of using GNNs for mesh-based scientific
computation. CFD-GCN [33] coupled a GNN with an existing PDE solver to perform hybrid-fidelity
prediction and achieved higher efficiency than traditional high-fidelity solvers. MeshGraphNets [34]
extends the encoder-processor-decoder structure from Graph Network-based Simulators (GNS) [32],
and demonstrated impressive performance on mesh-based simulations for a wide range of physical
systems. Compared to these approaches, our method with CP models the high-order terms and irreg-
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ular discretizations more effectively. Appendix C compares our method with the MeshGraphNets
on flow simulation tasks.

4 Numerical Tests

We applied conditional parametrization to network architectures for three distinct, but important
tasks in scientific computing. The first two tasks are on uniform Euclidean grids, and the discretiza-
tion information is directly included in the conditional parameters such as the differential terms
and the local Reynolds number. Comparisons between appropriate baseline models and their CP
modifications are performed. The third task uses an irregular mesh with complex boundaries and is
conducted with the CP-GNet model we proposed. The non-CP modification, which takes standard
dense and message passing layers with more units, is used as the baseline. Appendix A.1 provides
more details on the studied system and the generation of data; A.2 provides details on network
training; A.3 provides additional results and analysis. An additional test for the flow over a cylinder
is performed in the comparison against the MeshGraphNets in Appendix C.

4.1 Discovery and solution of coarse-grained models

In many practical problems, high-fidelity simulations are not affordable. Instead, computations are
performed using coarse-grained models, e.g. the Large Eddy Simulation [35]. In such models,
the small-scale physics are unresolved, and are approximated using additional closure terms in the
PDEs, the development of which constitutes an important area of research. In fact, even for the
seemingly simple (yet richly non-linear) equation presented below, a perfect closure model is un-
known. In this work, we demonstrate how CP models can be used to develop a closure model for the
coarse-grained 1D viscous Burgers equation that is often used in the study of shock formation, traffic
flows, and turbulent interactions, etc. For the unknown spatio-temporal field u(x, t) on a spatially
periodic domain x ∈ [0, L], the original equation is given by:

∂u

∂t
+ u

∂u

∂x
− ν ∂

2u

∂x2
= 0, (6)

where ν is a diffusion coefficient and u(x, 0) is a random initial condition (See Appendix A.1.1).

When this equation is solved on a finely discretized mesh, the dynamics can be regarded as fully
resolved. However, if a solution is attempted on a coarse mesh with Eq. (6) without any additional
treatments, the solution becomes inaccurate and numerically unstable, thus a closure operator C(·)
is needed. Representing the quantity on the lower resolution mesh by ū, the “closed” equation is:

∂ū

∂t
+ ū

∂ū

∂x
− ν ∂

2ū

∂x2
+ C = 0. (7)

In this experiment, two baseline models for C and their CP developments are compared. The first
model is 2-layer CNN with a dense layer with ReLU activation, followed by a 1D convolution layer.
This model assumes the closure term to be a function of convection term ū∂ū∂x and the diffusion term
ν ∂

2ū
∂x2 , and takes their concatenation q = [ū∂ū∂x , ν

∂2ū
∂x2 ] as the input. Its CP variant, CP-CNN, replaces

the first layer with a CP-Dense layer that takes q as the parameter for its own weights. The second
baseline model is a reference Data-Driven Parameterization (DDP) model [36]. The model takes C
as a function of the filtered variable ū, which is modeled by an 8-layer MLP with swish activation.
Similarly, the CP variant, CP-DDP replaces the first layer with a CP-Dense layer that takes q as the
parameter for the weights for ū. The network architectures are presented in Fig. 2.

Two sets of data are used. The high resolution runs are solved with Eq. (6) from two different initial
conditions (ICs) on a shared 2048-grid-node mesh. The low resolution solutions are obtained by
applying a box filter to each step of the high resolution solutions onto a 32-grid-node mesh. The
ground truth for C is then computed based on the low resolution data. Each set of data consists of
267 time steps, spanning a period of 2 s. The first 0.2 s of data for one IC is used for training.

Online testing computations are then carried out from the filtered, low resolution ICs using Eq. (7),
with C computed based on the online solution at every time step. x-t contours are present in Fig. 3
to compare the evolution of ū. Spatial profiles are also plotted at a few steps to provide more
details. Despite a small time step (CFL number< 0.5, without any closure term, the computation
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(a) CNN (b) CP-CNN (c) DDP (d) CP-DDP

Figure 2: Closure modeling network architectures. Solid arrow: input feature; dashed arrow: condi-
tion parameter; numbers: layer width.

Table 1: Closure model MAE. ū Avg.: averaged over all steps for online prediction for ū; ū final:
for the final step of online prediction; Inf.: Unbounded cases.

Training IC Testing IC
ū Avg. ū final ū Avg. ū final

CNN 0.23 0.41 0.16 0.23
CP-CNN 0.15 0.21 0.09 0.13

DDP Inf. Inf. Inf. Inf.
CP-DDP 0.42 0.89 0.3 0.41

is numerically unstable and the error grows unbounded. The baseline CNN model is able to keep
the solution stable within the period studied, and the CP-CNN improves the accuracy noticeably.
The baseline DDP model is only able to postpone the “blow-up” to slightly later. The solution with
CP-DDP closure is bounded throughout the period. The improvements are also valid for both the
unseen IC. The Mean Absolute Error (MAE) for ū is provided in Table. 1.

(a) Training IC (b) Testing IC

Figure 3: Closure modeling results. The first t ≤ 0.2 s for the left case is used for training, marked
by the black dashed line in the first contour. The x-t contours show the evolution of ū. The reference
DDP model solution grows into infinity, shown as white areas in the contour. The gaps between
models are more visible in the spatial profiles at time steps marked by the cyan lines.

4.2 Super-resolution of chaotic flows

In this experiment, we perform enrichment of low-resolution snapshots of turbulent flow fields. In an
enrichment/super-resolution process, one inputs a low-resolution snapshot of the solution, and seeks
a snapshot with better resolution. One way to achieve different resolutions on a given mesh is to use
Discontinuous Galerkin (DG) projection [37]. In this method, the solution within a mesh element i
is represented by coefficients ai for a set of polynomial bases, of which the size is determined by the
polynomial order P . The final resolution of the solution is jointly determined by P and the element
widthL. More specifically, wall-parallel snapshots from the solution of a turbulent channel flow [38]
is studied, and the task is to recover high-order (P = 3) DG coefficients ahi ∈ R9 for the x-velocity
from lower-order (P = 1) ones ali ∈ R4. 5 snapshots are generated in total at different normalized
wall-normal heights z+ ∈ {650, 700, 750, 800, 850}, as illustrated in Fig. 4. Each snapshot spans an
area ofX×Y = 2π×π, and is projected onto a shared set of uniform meshes with 6 different widths
L ∈ {π/4, π/8, π/12, π/16, π/24, π/32}, for the two studied polynomial orders P ∈ {1, 3}. Thus,
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Table 2: Average and maximum absolute errors in the integral of super-resolved energy spectra.
Training Testing

Ex Avg. Ex Max. Ey Avg. Ey Max. Ex Avg. Ex Max. Ey Avg. Ey Max.
MLP 0.0145 0.0391 0.0272 0.0609 0.0098 0.0364 0.0184 0.0675

CP-MLP 0.0120 0.0328 0.0217 0.0429 0.0081 0.0260 0.0158 0.0519

for each z+, 12 sets of data, each for one combination of L and P , are provided. Fig. 4 shows a few
example contours at different combinations for z+ = 800. The data for z+ ∈ 700, 800 is used for
training. It should be noted that the coefficients are computed independently for each mesh element,
thus the total number of training points is a few thousand, instead of 24 (which should be multiplied
by the number of elements). More details on the data generation are provided in Appendix A.1.2.

Figure 4: Snapshots for super-resolution

(a) MLP (b) CP-MLP

Figure 5: Super-resolution network architec-
tures Solid arrow: input feature; dashed arrow:
condition parameter; numbers: layer width.

In this task, the baseline model is from the compact super-resolution model by Pradhan and Du-
raisamy [8]. It takes ahi as a function of two inputs. The first input is a concatenation of normalized
low-order basis coefficients for i and its neighbors N(i):

[ac]i = [{acj − āc; j ∈ N(i) ∪ i}]/uRMS
i , (8)

where [{·}] denotes the concatenation of all elements in a set, and āc is the mean of the set. In our
case, we include all immediate neighbors, including corner ones in N(i), thus [ac]i ∈ R36. The
second input to the model is an indicator li = log(ReLi ) for the loss of information in the low-order

projection process. ReLi =
uRMS
i L
ν is the local Reynolds number. The indicator reflects that the loss

is a function of the kinetic energy, measured by uRMS
i , mesh resolution L, and fluid viscosity ν.

Because ReLi can vary by orders of magnitude across elements, log scaling is used. The two inputs
are first concatenated and then processed in a 4-layer MLP in the baseline model. In contrast, the
conditionally parameterized model CP-MLP processes only the first input [ac]i in the dense layers.
The second dense layer is replaced by a CP-Dense layer, where the second input li is instead taken
as a conditional parameter for the weights for the latent output of the first layer. A comparison of
the model architectures is provided in Fig. 5.

Results for two sample testing cases, (z+ = 650, L = π/4) and (z+ = 750, L = π/8) are shown
in Fig. 6. It can be observed that the CP-MLP is able to reconstruct more small scale structures
compared with the MLP. The performance can be qualified by the stream-wise and span-wise energy
spectra, ex and ey (see Appendix A.3.2 for definitions). ex for different stream-wise wave numbers
kx is shown in Fig. 6. It can be observed that for high-order projection or super-resolution, the high-
wave-number spectra are much richer than those for the low-order projection. The CP-MLP plots
follow the truth noticeably better than the MLP baseline, which confirms our observation from the
contours. Absolute error in the integrals of energy spectra, Ex =

∫
kx
exdkx and Ey =

∫
ky
eydky

are computed for the 24 training and 36 testing sets and summarized in Table 2. Both training and
testing errors are reduced significantly when CP is applied.

4.3 Simulation of reacting flows in a rocket engine injector

We use a highly complex public dataset [39] as a model of combustion processes in a rocket
engine injector [40]. The dataset includes solutions on a 2D finite-volume mesh with 308184
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Figure 6: Super-resolved flow field and stream-wise energy spectra ex for example test cases
(z+ = 650, L = π/4) and (z+ = 750, L = π/8). The CP-MLP shows finer details on the
edge of elements (adjacent squares), showing a better prediction of high-order coefficients. The
observation is proved by a richer high kx energy spectra in the right plot.

unknowns at every time instant. This includes eight variables at each discretized cell: q =
[p, u, v, T, YCH4, YO2, YH2O, YCO4]T , where p is the pressure, u and v are the x and y velocity com-
ponents, T is the temperature and {YCH4, YO2, YH2O, YCO4} are the mass fractions for the chemical
species involved in the combustion process. The injector is outlined in Fig. 7, where the oxidizer
(O2 diluted in H2O vapor) and fuel (CH4) are injected from two inlets, respectively, into a tube-like
combustion chamber in which they mix and react. The products are exhausted through an outlet. A
probe monitor is placed inside the physics-intensive area, which is also marked in the figure. The
strong instabilities in the simulation is triggered by a strong 2000 Hz pressure perturbation at the
outlet. Fig. 7 shows the responses for p and T at the probe. It should be noted that, although the
pressure perturbation at the outlet is periodic, the upstream behavior is affected by complex coupled
physics and is not as periodic, especially for other variables such as T . Fig. 8 shows the graph gen-
erated following the method in Sec. 2.1, where special nodes and edges, as well as irregular local
structures, are provided in zoomed-in views. Two groups of ghost edges are used, corresponding to
two types of wall boundary conditions in the simulation: no-slip and symmetry, respectively.

Figure 7: Injector outline and probed response
for p and T . Orange marker: probe location.
L/S: long (0.2 s)/short (0.02 s) training period
(0.2 s); P: prediction period (0.2 s).

Figure 8: Graph details. Black dots: standard
nodes; black lines: standard edges; red dots: in-
let/outlet nodes; green/blue lines: two groups of
ghost edges (extruded for visualization).

In this experiment, we attempt to predict the future states of q using the CP-GNet introduced in
Sec. 2.1. Two CP-GNets of two different depths, with a 5-block and a 10-block processor respec-
tively, are tested. Both CP-GNets work with an encoded node feature size of 36, and an encoded
edge feature size of 4. The baseline model for comparison replaces all CP layers with standard
dense layers of 128 units. More specifically, after the replacement, the layers taking node features
as conditional parameters will retain the original input. The layers originally taking edge features as
conditional parameters will take a concatenation of the original inputs and the edge features as the
new input. The non-CP model is referred to as the GNet. GNets, with a 10-block and a 15-block
processor respectively, are studied.

The simulation results sampled at a time interval of 5 × 10−4 ms are used as the ground truth.
Tests are conducted on two different lengths of training data. The long period consists of 400 steps,
spanning 0.2 ms, the last 10% of which is used as the short training period. Thus, both periods end
at the same point, and rollout prediction is carried out from the end of training for another 0.2 ms.
These periods are illustrated in Fig. 7. For simplicity, we add the number of processor blocks and L
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(long) or S (short) as suffixes to the model names to distinguish them. For example, “CP-GNet10L”
refers to the CP-GNet with 10 processor blocks trained on the long period. The predictions for 4
representative variables, p, u, T, YCH4, from the two deeper models, CP-GNet10L and GNet15L, are
visualized in Fig. 9 at 4 steps evenly spanned over the prediction period. The probed results are
also plotted, which also covers the other models tested. It is notable that a small phase shift in the
resolved structures can cause a high level of deviation in the probe measurements, and thus the flow
field contours should be viewed as broader indicators of the performance.

Figure 9: Predicted reacting flow. From top to bottom: pressure p, velocity u, temperature T ,
mass fraction YCH4. CP-GNET maintains a high level of accuracy over multiple scales of mesh
resolution and near complex geometry boundaries.

It is seen that the CP-GNET predicts the evolution of the reacting flow accurately over hundreds of
prediction steps. In comparison, the non-CP model deviates quickly from the ground truth within
100 steps. Even with a smaller model (CP-GNet5L, 1.3M parameters), or a small fraction of training
data (CP-GNet10S), the CP models still show comparable or even better performances compared
with the largest baseline (GNet15L, 1.8M parameters). There is no significant difference in the level
of error across the predicted field from our model, in spite of the vast changes in mesh density and
distortion, whereas the GNets clearly suffer from more errors around the inner corners, where the
mesh is the most irregular. This shows that, by combining CP with graph, discretization information
can be efficiently processed. The proposed boundary treatment is also proven successful even in
such a complex case with multiple types of boundaries (see Appendix A.3.3 for results without
ghost edges).

5 Summary

This work draws inspiration from discretized numerical methods, and generalizes the idea of con-
ditional parametrization for mesh-based models. Conditionally-parameterized networks can flex-
ibly incorporate physical quantities as well as numerical discretization information into trainable
weights, leading to efficient learning of high-order and unstructured features. Drop-in modifications
are demonstrated on different architectures for several important tasks related to mesh-based mod-
eling of physical systems. Considerable performance improvements are achieved in the numerical
tests compared with the traditional counterparts. In the coarse-graining and super-resolution tasks,
a small network with a simple CP-Dense layer is capable of stabilizing or improving numerical so-
lutions. In a test of future state prediction of a rocket injector, the CP-GNet is shown to be capable
of predicting the flow with a complex combustion process for a few hundred steps on an irregular
mesh. Although a direct CP modification will cause a linear increase in the number of parameters
w.r.t. the chosen parameter, such an increase can be compensated by reducing the size of the latent
vectors. Indeed, the CP-GNet is more efficient than the non-CP variant with only a fraction of the
training data or with a more shallow architecture. In the appendix, we compare the CP-GNet with
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the MeshGraphNet on two flow simulation tasks. Overall, the proposed architecture improves the
potential for incorporating physical intuition as well as knowledge of numerical discretization.
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