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Abstract

Private data analysis suffers a costly curse of dimensionality. However, the data1

often has an underlying low-dimensional structure. For example, when optimizing2

via gradient descent, the gradients often lie in or near a low-dimensional subspace.3

If that low-dimensional structure can be identified, then we can avoid paying (in4

terms of privacy or accuracy) for the high ambient dimension.5

We present differentially private algorithms that take input data sampled from6

a low-dimensional linear subspace (possibly with a small amount of error) and7

output that subspace (or an approximation to it). These algorithms can serve as a8

pre-processing step for other procedures.9

1 Introduction10

Differentially private algorithms generally have a poor dependence on the dimensionality of their11

input. That is, their error or sample complexity grows polynomially with the dimension. For12

example, for the simple task of estimating the mean of a distribution supported on [0, 1]d, we have13

per-coordinate error Θ(
√
d/n) to attain differential privacy, where n is the number of samples. In14

contrast, the non-private error is Θ(
√

log(d)/n).15

This cost of dimensionality is inherent [BUV14; SU17; DSSUV15]. Any method with lower error is16

susceptible to tracing attacks (a.k.a. membership inference attacks). However, these lower bounds17

only apply when the data distribution is “high-entropy.” This leaves open the posssibility that we can18

circumvent the curse of dimensionality when the data has an underlying low-dimensional structure.19

Data often does possess an underlying low-dimensional structure. For example, the gradients that20

arise in deep learning tend to be close to a low-dimensional subspace [ACGMMTZ16; LXTSG17;21

GARD18; LFLY18; LGZCB20; ZWB20; FT20]. Low dimensionality can arise from meaningful22

relationships that are at least locally linear, such as income versus tax paid. It can also arise because23

we are looking at a function of data with relatively few attributes.24

A long line of work [BLR08; HT10; HR10; Ull15; BBNS19; BCMNUW20; ZWB20; KRRT20, etc.]25

has shown how to exploit structure in the data to attain better privacy and accuracy. However, these26

approaches assume that this structure is known a priori or that it can be learned from non-private27

sources. This raises the question:28

Can we learn low-dimensional structure from the data subject to differential pri-29

vacy?30

We consider the simple setting where the data lies in Rd but is in, or very close to a linear subspace,31

of dimension k. We focus on the setting where k � d and we develop algorithms whose sample32

complexity does not depend on the ambient dimension d; a polynomial dependence on the true33

dimension k is unavoidable.34
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Our algorithms identify the subspace in question or, if the data is perturbed slightly, an approximation35

to it. Identifying the subspace structure is interesting in its own right, but it also can be used as a36

pre-processing step for further analysis – by projecting to the low-dimensional subspace, we ensure37

subsequent data analysis steps do not need to deal with high-dimensional data.38

1.1 Our Contributions: Privately Learning Subspaces – Exact Case39

We first consider the exact case, where the data X1, · · · , Xn ∈ Rd are assumed to lie in a k-40

dimensional subspace (rather than merely being near to it) – i.e., rank (A) = k, where A =41 ∑n
i XiX

T
i ∈ Rd×d. In this case, we can also recover the subspace exactly.42

However, we must also make some non-degeneracy assumptions. We want to avoid a pathological43

input dataset such as the following. Suppose X1, · · · , Xk are linearly independent, but Xk =44

Xk+1 = Xk+2 = · · · = Xn. While we can easily reveal the repeated data point, we cannot reveal45

anything about the other points due to the privacy constraint.46

A natural non-degeneracy assumption would be to assume that the data points are in “general position”47

– that is, that there are no non-trivial linear dependencies among the data points. This means that every48

set of k data points spans the subspace or, equivalently, no subspace of dimension k − 1 contains49

more than k − 1 data points. This is a very natural assumption – if the data consists of n samples50

from a continuous distribution on the subspace, then this holds with probability 1. We relax this51

assumption slightly and assume that no subspace of dimension k− 1 contains more than ` data points.52

We also assume that all points are non-zero. Note that we define subspaces to pass through the origin;53

our results can easily be extended to affine subspaces.54

Theorem 1.1 (Main Result – Exact Case). For all n, d, k, ` ∈ N and ε, δ > 0 satisfying n ≥55

O
(
`+ log(1/δ)

ε

)
, there exists a randomized algorithm M : Rd×n → Skd satisfying the following.56

Here Skd denotes the set of all k-dimensional subspaces of Rd.57

• M is (ε, δ)-differentially private with respect to changing one column of its input.58

• Let X = (X1, · · · , Xn) ∈ Rd×n. Suppose there exists a k-dimensional subspace S∗ ∈ Skd59

that contains all but ` of the points – i.e., |{i ∈ [n] : Xi ∈ S∗}| ≥ n− `. Further suppose60

that any (k − 1)-dimensional subspace contains at most ` points – i.e., for all S ∈ Sk−1
d ,61

we have |{i ∈ [n] : Xi ∈ S}| ≤ `. Then P [M(X) = S∗] = 1.62

The parameter ` in Theorem 1.1 can be thought of as a robustness parameter. Ideally the data points63

are in general position, in which case ` = k − 1. If a few points are corrupted, then we increase `64

accordingly; our algorithm can tolerate the corruption of a small constant fraction of the data points.65

Theorem 1.1 is optimal in the sense that n ≥ Ω
(
`+ log(1/δ)

ε

)
samples are required.66

1.2 Our Contributions: Privately Learning Subspaces – Approximate Case67

Next we turn to the substantially more challenging approximate case, where the data X1, · · · , Xn ∈68

Rd are assumed to be close to a k-dimensional subspace, but are not assumed to be contained within69

that subspace. Our algorithm for the exact case is robust to changing a few points, but very brittle70

if we change all the points by a little bit. Tiny perturbations of the data points (due to numerical71

errors or measurement imprecision) could push the point outside the subspace, which would cause72

the algorithm to fail. Thus it is important to for us to cover the approximate case and our algorithm73

for the approximate is entirely different from our algorithm for the exact case.74

The approximate case requires us to precisely quantify how close the input data and our output are75

to the subspace and we also need to make quantitative non-degeneracy assumptions. It is easiest to76

formulate this via a distributional assumption. We will assume that the data comes from a Gaussian77

distribution where the covariance matrix has a certain eigenvalue gap. This is a strong assumption78

and we emphasize that this is only for ease of presentation; our algorithm works under weaker79

assumptions. Furthermore, we stress that the differential privacy guarantee is worst-case and does not80

depend on any distributional assumptions.81

We assume that the data is drawn from a multivariate Gaussian N (0,Σ). Let λ1(Σ) ≥ λ2(Σ) ≥82

· · · ≥ λd(Σ) be the eigenvalues of Σ ∈ Rd×d. We assume that there are k large eigenval-83
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ues λ1(Σ), · · · , λk(Σ) – these represent the “signal” we want – and d − k small eigenvalues84

λk+1(Σ), · · · , λd(Σ) – these are the “noise”. Our goal is to recover the subspace spanned by85

the eigenvectors corresponding to the k largest eigenvalues λ1(Σ), · · · , λk(Σ). Our assumption is86

that there is a large multiplicative gap between the large and small eigenvalues. Namely, we assume87
λk+1(Σ)
λk(Σ) ≤

1
poly(d) .88

Theorem 1.2 (Main Result – Approximate Case). For all n, d, k ∈ N and α, γ, ε, δ > 0 satisfying89

n≥Θ

(
k log(1/δ)

ε
+

ln(1/δ) ln(ln(1/δ)/ε)

ε

)
and γ2≤Θ

(
εα2n

d2k3 log(1/δ)
·min

{
1

k
,

1

log(k log(1/δ)/ε)

})
,

there exists an algorithm M : Rd×n → Skd satisfying the following. Here Skd is the set of all90

k-dimensional subspaces of Rd represented as projection matricies – i.e., Skd = {Π ∈ Rd×d : Π2 =91

Π = ΠT , rank(Π) = k}.92

• M is (ε, δ)-differentially private with respect to changing one column of its input.93

• Let X1, · · · , Xn be independent samples from N (0,Σ). Let λ1(Σ) ≥ λ2(Σ) ≥ · · · ≥94

λd(Σ) be the eigenvalues of Σ ∈ Rd×d. Suppose λk+1(Σ) ≤ γ2 · λk(Σ). Let Π ∈ Skd be95

the projection matrix onto the subspace spanned by the eigenvectors corresponding to the k96

largest eigenvalues of Σ. Then P [‖M(X)−Π‖ ≤ α] ≥ 0.7.97

The sample complexity of our algorithm n = O(k log(1/δ)/ε) is independent of the ambient dimen-98

sion d; this is ideal. We can also boost the accuracy guarantees at a small (dimension independent)99

cost in sample complexity, as shown in Section E. However, there is a polynomial dependence on100

d in γ, which controls the multiplicative eigenvalue gap. This multiplicative eigenvalue gap is a101

strong assumption, but it is also a necessary assumption if we want the sample complexity n to be102

independent of the dimension d. In fact, it is necessary even without the differential privacy constraint103

[CZ16]. That is, if we did not assume an eigenvalue gap that depends polynomially on the ambient104

dimension d, then it would be impossible to estimate the subspace with sample complexity n that is105

independent of the ambient dimension d even in the non-private setting.106

Our algorithm is based on the subsample and aggregate framework [NRS07] and a differentially107

private histogram algorithm. These methods are generally quite robust and thus our algorithm is,108

too. For example, our algorithm can tolerate o(n/k) input points being corrupted arbitrarily. We109

also believe that our algorithm’s utility guarantee is robust to relaxing the Gaussianity assumption.110

All that we require in the analysis is that the empirical covariance matrix of a few samples from the111

distribution is sufficiently close to its expectation Σ with high probability.112

2 Related Work113

To the best of our knowledge, the problem of privately learning subspaces, as we formulate it, has114

not been studied before. However, a closely-related line of work is on Private Principal Component115

Analysis (PCA) and low-rank approximations. We briefly discuss this extensive line of work below,116

but first we note that, in our setting, all of these techniques have a sample complexity n that grows117

polynomially with the ambient dimension d. Thus, they do not evade privacy’s curse of dimensionality.118

However, we make a stronger assumption than these prior works – namely, we assume a large119

multiplicative eigenvalue gap. (Many of the prior works consider an additive eigenvalue gap, which120

is a weaker assumption.)121

There has been a lot of interest in Private PCA, matrix completion, and low-rank approximation. One122

motivation for this is the infamous Netflix prize, which can be interpreted as a matrix completion123

problem. The competition was cancelled after researchers showed that the public training data124

revealed the private movie viewing histories of many of Netflix’s customers [NS06]. Thus privacy is125

a real concern for matrix analysis tasks.126

Many variants of these problems have been considered: Some provide approximations to the data127

matrix X = (X1, · · · , Xn) ∈ Rd×n; others approximate the covariance matrix A =
∑n
i XiX

T
i ∈128

Rd×d (as we do). There are also different forms of approximation – we can either produce a subspace129

or an approximation to the entire matrix, and the approximation can be measured by different norms130

(we consider the operator norm between projection matrices). Importantly, we define differential131
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privacy to allow one data point Xi to be changed arbitrarily, whereas most of the prior work assumes132

a bound on the norm of the change or even assumes that only one coordinate of one vector can be133

changed. In the discussion below we focus on the techniques that have been considered for these134

problems, rather than the specific results and settings.135

Dwork, Talwar, Thakurta, and Zhang [DTTZ14] consider the simple algorithm which adds indepen-136

dent Gaussian noise to each of entries of the covariance matrix A, and then perform analysis on the137

noisy matrix. (In fact, this algorithm predates the development of differential privacy [BDMN05]138

and was also analyzed under differential privacy by McSherry and Mironov [MM09] and Chaudhuri,139

Sarwate, and Sinha [CSS12].) This simple algorithm is versatile and several bounds are provided for140

the accuracy of the noisy PCA. The downside of this is that a polynomial dependence on the ambient141

dimension d is inherent – indeed, they prove a sample complexity lower bound of n = Ω̃(
√
d) for any142

algorithm that identifies a useful approximation to the top eigenvector of A. This lower bound does143

not contradict our results because the relevant inputs do not satisfy our near low-rank assumption.144

Hardt and Roth [HR12] and Arora, Braverman, and Upadhyay [ABU18] apply techniques from145

dimensionality reduction to privately compute a low-rank approximation to the input matrix X . Hardt146

and Roth [HR13] and Hardt and Price [HP13] use the power iteration method with noise injected at147

each step to compute low-rank approximations to the input matrix X . In all of these, the underlying148

privacy mechanism is still noise addition and the results still require the sample complexity to grow149

polynomially with the ambient dimension to obtain interesting guarantees. (However, the results can150

be dimension-independent if we define differential privacy so that only one entry – as opposed to one151

column – of the matrix X can be changed by 1. This is a significantly weaker privacy guarantee.)152

Blocki, Blum, Datta, and Sheffet [BBDS12] and Sheffet [She19] also use tools from dimensionality153

reduction; they approximate the covariance matrix A. However, they show that the dimensionality154

reduction step itself provides a privacy guarantee (whereas the aforementioned results did not exploit155

this and relied on noise added at a later stage). Sheffet [She19] analyzes two additional techniques156

– the addition of Wishart noise (i.e., Y Y T where the columns of Y are independent multivariate157

Gaussians) and sampling from an inverse Wishart distribution (which has a Bayesian interpretation).158

Chaudhuri, Sarwate, and Sinha [CSS12], Kapralov and Talwar [KT13], Wei, Sarwate, Corander,159

Hero, and Tarokh [WSCHT16], and Amin, Dick, Kulesza, Medina, and Vassilvitskii [ADKMV18]160

apply variants of the exponential mechanism [MT07] to privately select a low-rank approximation161

to the covariance matrix A. This method is nontrivial to implement and analyse, but it ultimately162

requires the sample complexity to grow polynomially in the ambient dimension.163

Gonem and Gilad-Bachrach [GGB18] exploit smooth sensitivity [NRS07] to release a low-rank164

approximation to the matrix A. This allows them to add less noise than using worst case sensitivity,165

under an eigenvalue gap assumption. However, the sample complexity n remains polynomial in the166

dimension d.167

2.1 Limitations of Prior Work168

Given the great variety of techniques and analyses that have been applied to differentially private169

matrix analysis problems, what is missing? We see that almost all of these techniques are ultimately170

based on some form of noise addition or the exponential mechanism. With the singular exception171

of the techniques of Sheffet [She19], all of these prior techniques satisfy pure1 or concentrated172

differential privacy [BS16]. This is enough to conclude that these techniques cannot yield the173

dimension-independent guarantees that we seek. No amount of postprocessing or careful analysis can174

avoid this limitation. This is because pure and concentrated differential privacy have strong group175

privacy properties, which means “packing” lower bounds [HT10] apply.176

We briefly sketch why concentrated differential privacy is incompatible with dimension-independent177

guarantees. Let the input be X1 = X2 = · · · = Xn = ξ/
√
d for a uniformly random ξ ∈ {−1,+1}d.178

That is, the input is one random point repeated n times. If M satisfies O(1)-concentrated differential179

privacy, then it satisfies the mutual information bound I(M(X);X) ≤ O(n2) [BS16]. But, if M180

provides a meaningful approximation to X or A = XXT , then we must be able to recover an181

approximation to ξ from its output, whence I(M(X);X) ≥ Ω(d), as the entropy of X is d bits. This182

gives a lower bound of n ≥ Ω(
√
d), even though X and A have rank k = 1.183

1Pure differential privacy (a.k.a. pointwise differential privacy) is (ε, δ)-differential privacy with δ = 0.
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The above example shows that, even under the strongest assumptions (i.e., the data lies exactly in a184

rank-1 subspace), any good approximation to the subspace, to the data matrix X , or to the covariance185

matrix A = XXT must require the sample complexity n to grow polynomially in the ambient186

dimension d if we restrict to techniques that satisfy concentrated differential privacy. Almost all of187

the prior work in this general area is subject to this restriction.188

To avoid a sample complexity n that grows polynomially with the ambient dimension d, we need189

fundamentally new techniques.190

3 Overview of Our Techniques191

For the exact case, we construct a score function for subspaces that has low sensitivity, assigns high192

score to the correct subspace, and assigns a low score to all other subspaces. Then we can simply193

apply a GAP-MAX algorithm to privately select the correct subspace [BDRS18].194

The GAP-MAX algorithm satisfies (ε, δ)-differential privacy and outputs the correct subspace as195

long as the gap between its score and that of any other subspace is larger than O(log(1/δ)/ε). This196

works even though there are infinitely many subspaces to consider, which would not be possible197

under concentrated differential privacy.198

The simplest score function would simply be the number of input points that the subspace contains.199

This assigns high score to the correct subspace, but it also assigns high score to any larger subspace200

that contains the correct subspace. To remedy this, we subtract from the score the number of points201

contained in a strictly smaller subspace. That is, the score of subspace S is the number of points in S202

minus the maximum over all subspaces S′ ( S of the number of points contained in S′.203

This GAP-MAX approach easily solves the exact case, but it does not readily extend to the approxi-204

mate case. If we count points near to the subspace, rather than in it, then (infinitely) many subspaces205

will have high score, which violates the assumptions needed for GAP-MAX to work. Thus we use a206

completely different approach for the approximate case.207

We apply the “subsample and aggregate” paradigm of [NRS07]. That is, we split the dataset208

X1, · · · , Xn into n/O(k) sub-datasets each of size O(k). We use each sub-dataset to compute209

an approximation to the subspace by doing a (non-private) PCA on the sub-dataset. Let Π be the210

projection matrix onto the correct subspace and Π1, · · · ,Πn/O(k) the projection matrices onto the211

approximations derived from the sub-datasets. With high probability ‖Πj − Π‖ is small for most212

j. (Exactly how small depends on the eigengap.) Now we must privately aggregate the projection213

matrices Π1, · · · ,Πn/O(k) into a single projection matrix.214

Rather than directly trying to aggregate the projection matrices, we pick a set of reference points,215

project them onto the subspaces, and then aggregate the projected points. We draw p1, · · · , pO(k)216

independently from a standard spherical Gaussian. Then ‖Πjpi − Πpi‖ ≤ ‖Πj − Π‖ · O(
√
k) is217

also small for all i and most j. We wish to privately approximate Πpi and to do this we have n/O(k)218

points Πjpi most of which are close to Πpi. This is now a location or mean estimation problem,219

which we can solve privately. Thus we obtain points p̂i such that ‖p̂i −Πpi‖ is small for all i. From220

a PCA of these points we can obtain a projection Π̂ with ‖Π̂−Π‖ being small, as required.221

Finally, we discuss how to privately obtain (p̂1, p̂2, · · · , p̂O(k)) from (Π1p1, · · · ,Π1pO(k)), · · · ,222

(Πn/O(k)p1, · · · ,Πn/O(k)pO(k)). It is better here to treat (p̂1, p̂2, · · · , p̂O(k)) as a single vector in223

RO(kd), rather than as O(k) vectors in Rd. We split RO(kd) into cells and then run a differen-224

tially private histogram algorithm. If we construct the cells carefully, for most j we have that225

(Πjp1, · · · ,ΠjpO(k)) is in the same histogram cell as the desired point (Πp1, · · · ,ΠpO(k)). The226

histogram algorithm will thus identify this cell, and we take an arbitrary point from this cell as our227

estimate (p̂1, p̂2, · · · , p̂O(k)). The differentially private histogram algorithm is run over exponentially228

many cells, which is possible under (ε, δ)-differential privacy if n/O(k) ≥ O(log(1/δ)/ε). (Note229

that under concentrated differential privacy the histogram algorithm’s sample complexity n would230

need to depend on the number of cells and, hence, the ambient dimension d.)231

The main technical ingredients in the analysis of our algorithm for the approximate case are matrix232

perturbation and concentration analysis and the location estimation procedure using differentially233

private histograms. Our matrix perturbation analysis uses a variant of the Davis-Kahan theorem to234
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show that if the empirical covariance matrix is close to the true covariance matrix, then the subspaces235

corresponding to the top k eigenvalues of each are also close; this is applied to both the subsamples236

and the projection of the reference points. The matrix concentration results that we use show that the237

empirical covariance matrices in all the subsamples are close to the true covariance matrix. This is238

the only place where the multivariate Gaussian assumption arises. Any distribution that concentrates239

well will work.240

4 Exact case241

Here, we discuss the case, where all n points lie exactly in a subspace s∗ of dimension k of Rd. Our242

goal is to privately output that subspace. We do it under the assumption that all strict subspaces of s∗243

contain at most ` points. If the points are in general position, then ` = k − 1, as any strictly smaller244

subspace has dimension < k and cannot contain more points than its dimension. Let Skd be the set of245

all k-dimensional subspaces of Rd. Let Sd be the set of all subspaces of Rd. We formally define that246

problem as follows.247

Problem 4.1. Assume (i) all but at most `, input points are in some s∗ ∈ Skd , and (ii) every subspace248

of dimension < k contains at most ` points. (If the points are in general position – aside from being249

contained in s∗ – then ` = k − 1.) The goal is to output a representation of s∗.250

We call these ≤ ` points that do not lie in s∗, “adversarial points”.251

We prove Theorem 1.1 by proving the privacy and the accuracy guarantees of Algorithm 1. The252

algorithm performs a GAP-MAX (cf. Lemma A.16). It assigns a score to all the relevant subspaces,253

that is, the subspaces spanned by the points of the dataset X . We show that the only subspace254

that has a high score is the true subspace s∗, and the rest of the subspaces have low scores. Then255

GAP-MAX outputs the true subspace successfully because of the gap between the scores of the best256

subspace and the second to the best one. For GAP-MAX to work all the time, we define a default257

option in the output space that has a high score, which we call NULL. Thus, the output space is now258

Y = Sd ∪ {NULL}. Also, for GAP-MAX to run in finite time, we filter Sd to select finite number of259

subspaces that have at least 0 scores on the basis of X . Note that this is a preprocessing step, and260

does not violate privacy as, we will show, all other subspaces already have 0 probability of getting261

output. We define the score function u : Xn × Y → N as follows.262

u(x, s) :=

{
|x ∩ s| − sup{|x ∩ t| : t ∈ Sd, t ( s} if s ∈ Sd
`+ 4 log(1/δ)

ε + 1 if s = NULL

Note that this score function can be computed in finite time because for any m points and i > 0, if263

the points are contained in an i-dimensional subspace, then the subspace that contains all m points264

must lie within the set of subspaces spanned by
(
m
i+1

)
subsets of points.265

We split the proof of Theorem 1.1 into sections for privacy (Lemma 4.2) and accuracy (Lemma 4.4).266

4.1 Privacy267

Lemma 4.2. Algorithm 1 is (ε, δ)-differentially private.268

The proof of privacy closely follows the privacy analysis of GAP-MAX by [BDRS18]. The only269

novelty is that Algorithm 1 may output NULL in the case that the input is malformed (i.e., doesn’t270

satisfy the assumptions of Problem 4.1).271

The key is that the score u(X, s) is low sensitivity. Thus max{0, u(X, s)− u(X, s2)− 1} also has272

low sensitivity. What we gain from subtracting the second-largest score and taking this maximum is273

that these values are also sparse – only one (s = s1) is nonzero. This means we can add noise to all274

the values without paying for composition. We prove the privacy guarantees in Section B.275

4.2 Accuracy276

We start by showing that the true subspace s∗ has a high score, while the rest of the subspaces have277

low scores.278
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Algorithm 1: DP Exact Subspace Estimator DPESEε,δ,k,`(X)

Input: Samples X ∈ Rd×n. Parameters ε, δ, k, ` > 0.
Output: ŝ ∈ Skd .

Set Y ← {NULL} and sample noise ξ(NULL) from TLap(2, ε, δ).
Set score u(X,NULL) = `+ 4 log(1/δ)

ε + 1.

// Identify candidate outputs.
For each subset S of X of size k

Let s be the subspace spanned by S.
Y ← Y ∪ {s}.
Sample noise ξ(s) from TLap(2, ε, δ).
Set score u(X, s) = |x ∩ s| − sup{|x ∩ t| : t ∈ Sd, t ( s}.

// Apply GAP-MAX.
Let s1 = arg maxs∈Y u(X, s) be the candidate with the largest score.
Let s2 = arg maxs∈Y\{s1} u(X, s) be the candidate with the second-largest score.
Let ŝ = arg maxs∈Y max{0, u(X, s)− u(X, s2)− 1}+ ξ(s).
// Truncated Laplace noise ξ ∼ TLap(2, ε, δ); see Lemma A.14

Return ŝ.

Lemma 4.3. Under the assumptions of Problem 4.1, u(x, s∗) ≥ n − 2` and u(x, s′) ≤ 2` for279

s′ 6= s∗.280

Proof. We have u(x, s∗) = |x ∩ s∗| − |x ∩ s′| for some s′ ∈ Sd with s′ ( s∗. The dimension of s′281

is at most k − 1 and, by the assumption (ii), |x ∩ s′| ≤ `.282

Let s′ ∈ Sd \ {s∗}. There are three cases to analyse:283

1. Let s′ ) s∗. Then u(x, s′) ≤ |x ∩ s′| − |x ∩ s∗| ≤ ` because the ≤ ` adverserial points and284

the ≥ n− ` non-adversarial points may not together lie in a subspace of dimension k.285

2. Let s′ ( s∗. Let k′ be the dimension of s′. Clearly k′ < k. By our assumption (ii),286

|s′ ∩ x| ≤ `. Then u(x, s′) = |x ∩ s′| − |x ∩ t| ≤ ` for some t because the ≤ ` adversarial287

points already don’t lie in s∗, so they will not lie in any subspace of s∗.288

3. Let s′ be incomparable to s∗. Let s′′ = s′ ∩ s∗. Then u(x, s′) ≤ |x ∩ s′| − |x ∩ s′′| ≤ `289

because the adversarial points may not lie in s∗, but could be in s′ \ s′′.290

This completes the proof.291

Now, we show that the algorithm is accurate.292

Lemma 4.4. If n ≥ 3`+ 8 log(1/δ)
ε + 2, then Algorithm 1 outputs s∗ for Problem 4.1.293

Proof. From Lemma 4.3, we know that s∗ has a score of at least n− 2`, and the next best subspace294

can have a score of at most `. Also, the score of NULL is defined to be `+ 4 log(1/δ)
ε + 1. This means295

that the gap satisfies max{0, u(X, s∗)− u(X, s2)− 1} ≥ n− 3`− 4 log(1/δ)
ε − 1. Since the noise is296

bounded by 2 log(1/δ)
ε , our bound on n implies that ŝ = s∗297

5 Approximate Case298

In this section, we discuss the case, where the data “approximately” lies in a k-dimensional subspace299

of Rd. We make a Gaussian distributional assumption, where the covariance is approximately k-300

dimensional, though the results could be extended to distributions with heavier tails using the right301

inequalities. We formally define the problem:302
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Problem 5.1. Let Σ ∈ Rd×d be a symmetric matrix with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λd ≥ 0.303

Fix k ∈ [d] and let 0 < γ � 1, be such that λk+1

λk
≤ γ2. Suppose Π is the projection matrix onto304

the subspace spanned by the eigenvectors of Σ corresponding to the eigenvalues λ1, . . . , λk. Given305

sample access to N (~0,Σ), and 0 < α < 1, output a projection matrix Π̂, such that ‖Π− Π̂‖ ≤ α.306

We solve Problem 5.1 under the constraint of (ε, δ)-differential privacy. Throughout this section, we307

would refer to the subspace spanned by the top k eigenvectors of Σ as the “true” or “actual” subspace.308

Algorithm 2 solves Problem 5.1 and proves Theorem 1.2. Here ‖ · ‖ is the operator norm.309

Remark 5.2. We scale the eigenvalues of Σ so that λk = 1 and λk+1 ≤ γ2. Also, for the purpose310

of the analysis, we will be splitting Σ = Σk + Σd−k, where Σk is the covariance matrix formed by311

the top k eigenvalues and the corresponding eigenvectors of Σ and Σd−k is remainder. We assume312

knowledge of k and (an upper bound on ) γ.313

Algorithm 2 is a type of “Subsample-and-Aggregate” algorithm [NRS07]. We consider multiple314

subspaces, each given by a disjoint subset of the input points which all come from the same multivari-315

ate Gaussian. Our algorithm privately finds a subspace that is close to most of those subspaces. By316

concentration, most of these subspaces will be close to the true subspace, and thus the privately-found317

subspace will also be close to the true subspace.318

A little more formally, we first sample q public data points (called “reference points”) from N (~0, I).319

Next, we divide the original dataset X into disjoint datasets of m samples each, and perform PCA320

on each subset to identify the rank-k subspace that best captures those samples. Then we project321

each of the reference points onto each of the subspaces. Now we have t = n
m projections of each322

reference point, which we will privately aggregate into a single point. Finally, the aggregated points323

can be used to recover an approximation to the true subspace. To perform the aggregation, we use324

a DP histogram over a partition of Rd. Specifically, we randomly partition Rd into cells such that,325

with high probability, most the projections will lie within one histogram cell. Thus we can privately326

identify that cell and output a random point from that histogram cell as the aggregated point.327

5.1 Privacy328

The privacy analysis of our method follows the template of the subsample-and-aggregate framework329

[NRS07] and our privacy guarantee directly follows from that of the DP histogram subroutine.330

Lemma 5.3. Algorithm 2 is (ε, δ)-differentially private.331

Proof. Changing one point in X can change only one of the Xj’s. This can only change one point in332

Q, which in turn can only change the counts in two histogram cells by 1. Therefore, the sensitivity333

is 2. Because the sensitivity of the histogram step is bounded by 2 (Lemma 5.3), an application334

of DP-histogram, by Lemma A.15, is (ε, δ)-DP. Outputting a random point in the privately found335

histogram cell preserves privacy by post-processing (Lemma A.12). Hence, the claim.336

5.2 Accuracy337

The accuracy analysis of Algorithm 2 is relatively complex and is deferred to the full version. The338

key ingredients come from the literature on matrix concentration bounds and matrix perturbation339

inequalities. We briefly outline the key steps: First, we apply matrix concentration to show that340

the empirical covariance matrix Xj(Xj)T of each subsample is, after rescaling, close to the true341

covariance matrix Σ with high probability. Second, we apply matrix perturbation inequalities to show342

that the top-k subspace Πj corresponding to the empirical covariance matrix Xj(Xj)T is close to343

the true top-k subspace Π. It follows that most of the the projected reference points pji are close to344

the desired value Πpi. Third, we show that the aggregated projections p̂i are also close to the true345

projections Πi. Finally, we apply matrix perturbation inequalities again to show that the subspace346

derived from the aggregated projections Π̂ is close to the true subspace Π.347

6 Conclusion, Discussion, & Limitations of Our Work348

We provide algorithms for the problem of privately learning subspaces where the sample complexity349

does not depend on the ambient dimension. This is the first time such results have been given and,350
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Algorithm 2: DP Approximate Subspace Estimator DPASEε,δ,α,γ,k(X)

Input: Samples X1, . . . , Xn ∈ Rd. Parameters ε, δ, α, γ, k > 0.
Output: Projection matrix Π̂ ∈ Rd×d of rank k.

Set parameters: t← C0 ln(1/δ)
ε m← bn/tc q ← C1k `← C2γ

√
dk(
√
k+
√

ln(kt))√
m

Sample reference points p1, . . . , pq from N (~0, I) independently.

// Subsample from X, and form projection matrices.
For j ∈ 1, . . . , t

Let Xj = (X(j−1)m+1, . . . , Xjm) ∈ Rd×m.
Let Πj ∈ Rd×d be the projection matrix onto the subspace spanned by the eigenvectors of
Xj(Xj)T ∈ Rd×d corresponding to the largest k eigenvalues.

For i ∈ 1, . . . , q

pji ← Πjpi

// Create histogram cells with random offset.
Let λ be a random number in [0, 1).
Divide Rqd into Ω = {. . . , [λ`+ i`, λ`+ (i+ 1)`), . . . }qd, for all i ∈ Z.
Let each disjoint cell of length ` be a histogram bucket.

// Perform private aggregation of subspaces.
For each i ∈ [q], let Qi ∈ Rd×t be the dataset, where column j is pji .
Let Q ∈ Rqd×t be the vertical concatenation of all Qi’s in order.
Run (ε, δ)-DP histogram over Ω using Q to get ω ∈ Ω that contains at least t2 points.
If no such ω exists

Return ⊥
// Return the subspace.
Let p̂ = (p̂1, . . . , p̂d, . . . , p̂(q−1)d+1, . . . , p̂qd) be a random point in ω.
For each i ∈ [q]

Let p̂i = (p̂(i−1)d+1, . . . , p̂id) ∈ Rd.
Let Π̂ be the projection matrix onto the subspace spanned by the eigenvectors corresponding to

the k largest eigenvalues of
∑q
i=1 p̂ip̂

T
i .

Return Π̂.

as discussed in §2.1, prior work in the general area of private matrix analysis uses techniques that351

fundamentally cannot achieve sample complexity that is independent of the ambient dimension.352

To achieve dimension-independent sample complexity, we must make strong assumptions about353

the data. Specifically, we must assume that the data points lie in or very near to a low-dimensional354

subspace. This is a limitation of our work. However, we emphasize that such assumptions are355

necessary to obtain dimension-independent sample complexity even in the non-private setting [CZ16].356

We believe that the specific parameters in our results can be improved. We conjecture that the γ2357

parameter in Theorem 1.2 (which controls the eigenvalue gap) can be improved. Specifically, the358

exponent on the ambient dimension d seems like it could be improved. (Although we know that it359

cannot be eliminated entirely.)360

Our eigenvalue gap assumption could also be relaxed – rather than requiring a gap between λk and361

λk+1, we could require a gap between λk and λk+`. However, this would require changing other362

aspects of the problem formulation.363

We hope that our work inspires further work. Generally, we believe that exploiting structure in the364

data to avoid privacy’s curse of dimensionality is a fruitful and valuable research direction.365
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Appendix539

A Notations, Definitions, and Background Results540

A.1 Linear Algebra and Probability Preliminaries541

Here, we mention a few key technical results that we will be using to prove the main theorem for542

the approximate case. Throughout this document, we assume that the dimension d is larger than543

some absolute constant, and adopt the following notation: for a matrix A of rank r, we use s1(A) ≥544

· · · ≥ sr(A) to denote the singular values of A in decreasing order, and use λ1(A) ≥ · · · ≥ λr(A) to545

denote the eigenvalues of A in decreasing order; let smin(A) denote the least, non-zero singular value546

of A. We omit the parentheses when the context is clear. We begin by stating two results about matrix547

perturbation theory. The first result says that if two matrices are close to one another in operator548

norm, then their corresponding singular values are also close to one another.549

Define550

‖M‖ := sup{‖Mx‖2 : x ∈ Rd, ‖x‖2 ≤ 1}
to be the operator norm with respect to the Euclidean vector norm.551

Lemma A.1 (Singular Value Inequality). Let A,B ∈ Rd×n and let r = min{d, n}. Then for
1 ≤ i, j ≤ r,

si+j−1(A+B) ≤ si(A) + sj(B).

The following result gives a lower bound on the least singular value of sum of two matrices.552

Lemma A.2 (Least Singular Value of Matrix Sum). Let A,B ∈ Rd×n. Then

smin(A+B) ≥ smin(A)− ‖B‖.

The next result bounds the angle between the subspaces spanned by two matrices that are close to
one another. Let X ∈ Rd×n have the following SVD.

X = [U U⊥] ·
[
Σ1 0
0 Σ2

]
·
[
V T

V T⊥

]
In the above, U,U⊥ are orthonormal matrices such that U ∈ Rd×r and U⊥ ∈ Rd×(d−r), Σ1,Σ2

are diagonal matrices, such that Σ1 ∈ Rr×r and Σ2 ∈ R(d−r)×(n−r), and V, V⊥ are orthonormal
matrices, such that V ∈ Rn×r and V⊥ ∈ Rn×(n−r). Let Z ∈ Rd×n be a perturbation matrix, and
X̂ = X + Z, such that X̂ has the following SVD.

X̂ =
[
Û Û⊥

]
·
[
Σ̂1 0

0 Σ̂2

]
·
[
V̂ T

V̂ T⊥

]
In the above, Û , Û⊥, Σ̂1, Σ̂2, V̂ , V̂⊥ have the same structures as U,U⊥,Σ1,Σ2, V, V⊥ respectively.553

Let Z21 = U⊥U
T
⊥ZV V

T and Z12 = UUTZV⊥V
T
⊥ . Suppose σ1 ≥ · · · ≥ σr ≥ 0 are the singular554

values of UT Û . Let Θ(U, Û) ∈ Rr×r be a diagonal matrix, such that Θii(U, Û) = cos−1(σi).555

Lemma A.3 (Sin(Θ) Theorem [CZ16]). Let X, X̂, Z, Z12, Z21 be defined as above. Denote
α = smin(UT X̂V ) and β = ‖UT⊥X̂V⊥‖. If α2 > β2 + min{‖Z12‖2, ‖Z21‖2}, then we have
the following.

‖Sin(Θ)(U, Û)‖ ≤ α‖Z21‖+ β‖Z12‖
α2 − β2 −min{‖Z12‖2, ‖Z21‖2}

The next result bounds ‖Sin(Θ)(U, Û)‖ in terms of the distance between UUT and Û ÛT .556

Lemma A.4 (Property of ‖Sin(Θ)‖ [CZ16]). Let U, Û ∈ Rd×r be orthonormal matrices, and let
Θ(U, Û) be defined as above in terms of Û , U . Then we have the following.

‖Sin(Θ)(U, Û)‖ ≤ ‖Û ÛT − UUT ‖ ≤ 2‖Sin(Θ)(U, Û)‖

The next result bounds the singular values of a matrix, whose columns are independent vectors from a557

mean zero, isotropic distribution in Rd. We first define the sub-Gaussian norm of a random variable.558
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Definition A.5. Let X be a sub-Gaussian random variable. The sub-Gaussian norm of X , denoted
by ‖X‖ψ2 , is defined as,

‖X‖ψ2 = inf{t > 0 : E
[
exp(X2/t2)

]
≤ 2}.

Lemma A.6 (Theorem 4.6.1 [Ver18]). LetA be an n×m matrix, whose columnsAi are independent,
mean zero, sub-Gaussian isotropic random vectors in Rn. Then for any t ≥ 0, we have√

m− CK2(
√
n+ t) ≤ sn(A) ≤ s1(A) ≤

√
m+ CK2(

√
n+ t)

with probability at least 1− 2exp(−t2). Here, K = maxi ‖A‖ψ2 (sub-Gaussian norm of A).559

In the above, ‖A‖ψ2 ∈ O(1) if the distribution in question is N (~0, I). The following corollary560

generalises the above result for arbitrary Gaussians.561

Corollary A.7. Let A be an n×m matrix, whose columns Ai are independent, random vectors in
Rn from N (~0,Σ). Then for any t ≥ 0, we have

(
√
m− CK2(

√
n+ t))

√
sn(Σ) ≤ sn(A) ≤ (

√
m+ CK2(

√
n+ t))

√
sn(Σ)

and
s1(A) ≤ (

√
m+ CK2(

√
n+ t))

√
s1(Σ)

with probability at least 1− 2exp(−t2). Here, K = maxi ‖A‖ψ2 (sub-Gaussian norm of A).562

Proof. First, we prove the lower bound on sn(A). Note that sn(A) = min
‖x‖>0

‖Ax‖
‖x‖ , and that the563

columns of Σ−
1
2A are distributed as N (~0, I). Therefore, we have the following.564

min
‖x‖>0

‖Ax‖
‖x‖

= min
‖x‖>0

‖Σ 1
2 Σ−

1
2Ax‖

‖x‖

= min
‖x‖>0

‖Σ 1
2 Σ−

1
2Ax‖

‖Σ− 1
2Ax‖

‖Σ− 1
2Ax‖
‖x‖

≥ min
‖x‖>0

‖Σ 1
2 Σ−

1
2Ax‖

‖Σ− 1
2Ax‖

min
‖x‖>0

‖Σ− 1
2Ax‖
‖x‖

≥ min
‖y‖>0

‖Σ 1
2 y‖
‖y‖

min
‖x‖>0

‖Σ− 1
2Ax‖
‖x‖

≥ (
√
m− CK2(

√
n+ t))

√
sn(Σ) (Lemma A.6)

Next, we prove the upper bound on sn(A). For this, we first show that forX ∈ Rm×d and Y ∈ Rd×n,565

smin(XY ) ≤ smin(X) · ‖Y ‖.566

smin(XY ) = min
‖z‖=1

‖XY z‖

≤ min
‖z‖=1

‖X‖‖Y z‖

= ‖X‖ · min
‖z‖=1

‖Y z‖

= ‖X‖ · smin(Y )

Now, smin(XY ) = smin(Y TXT ) ≤ ‖Y ‖ · smin(X) by the above reasoning. Using this results, we567

have the following.568

sn(A) = sn(Σ1/2 · Σ−1/2A)

≤ sn(Σ1/2)‖Σ−1/2A‖

≤ (
√
m+ CK2(

√
n+ t))

√
sn(Σ) (Lemma A.6)

Now, we show the upper bound on s1(A). Note that s1(A) = ‖A‖.569

‖A‖ = ‖Σ 1
2 Σ−

1
2A‖

≤ ‖Σ 1
2 ‖ · ‖Σ− 1

2A‖

≤ (
√
m+ CK2(

√
n+ t))

√
s1(Σ) (Lemma A.6)

This completes the proof.570
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Now, we state a concentration inequality for χ2 random variables.571

Lemma A.8. Let X be a χ2 random variable with k degrees of freedom. Then,

P
[
X > k + 2

√
kt+ 2t

]
≤ e−t.

Next, we state the well-known Bernstein’s inequality for sums of independent Bernoulli random572

variables.573

Lemma A.9 (Bernstein’s Inequality). Let X1, . . . , Xm be independent Bernoulli random variables
taking values in {0, 1}. Let p = E [Xi]. Then for m ≥ 5p

2ε2 ln(2/β) and ε ≤ p/4,

P
[∣∣∣∣ 1

m

∑
Xi − p

∣∣∣∣ ≥ ε] ≤ 2e−ε
2m/2(p+ε) ≤ β.

We finally state a result about the norm of a vector sampled from N (~0, I).574

Lemma A.10. Let X1, . . . , Xq ∼ N (~0,Σ) be vectors in Rd, where Σ is the projection of Id×d on to
a subspace of Rd of rank k. Then

P
[
∀i, ‖Xi‖2 ≤ k + 2

√
kt+ 2t

]
≥ 1− qe−t.

Proof. Since Σ is of rank k, we can directly use Lemma A.8 for a fixed i ∈ [q], and the union bound575

over all i ∈ [q] to get the required result. This is because for any i, ‖Xi‖2 is a χ2 random variable576

with k degrees of freedom.577

A.2 Privacy Preliminaries578

Definition A.11 (Differential Privacy (DP) [DMNS06]). A randomized algorithm M : Xn → Y
satisfies (ε, δ)-differential privacy ((ε, δ)-DP) if for every pair of neighboring datasets X,X ′ ∈ Xn
(i.e., datasets that differ in exactly one entry),

∀Y ⊆ Y P [M(X) ∈ Y ] ≤ eε · P [M(X ′) ∈ Y ] + δ.

When δ = 0, we say that M satisfies ε-differential privacy or pure differential privacy.579

Neighbouring datasets are those that differ by the replacement of one individual’s data. In our setting,580

each individual’s data is assumed to correspond to one point in X = Rd, so neighbouring means one581

point is changed arbitrarily.582

Throughout the document, we will assume that ε is smaller than some absolute constant less than583

1 for notational convenience, but note that our results still hold for general ε. Now, this privacy584

definition is closed under post-processing.585

Lemma A.12 (Post Processing [DMNS06]). If M : Xn → Y is (ε, δ)-DP, and P : Y → Z is any586

randomized function, then the algorithm P ◦M is (ε, δ)-DP.587

A.3 Basic Differentially Private Mechanisms.588

We first state standard results on achieving privacy via noise addition proportional to sensitiv-589

ity [DMNS06].590

Definition A.13 (Sensitivity). Let f : Xn → Rd be a function, its `1-sensitivity and `2-sensitivity
are

∆f,1 = max
X∼X′∈Xn

‖f(X)− f(X ′)‖1 and ∆f,2 = max
X∼X′∈Xn

‖f(X)− f(X ′)‖2,

respectively. Here, X ∼ X ′ denotes that X and X ′ are neighboring datasets (i.e., those that differ in591

exactly one entry).592

One way of introducing (ε, δ)-differential privacy is via adding noise sampled from the truncated593

Laplace distribution, proportional to the `1 sensitivity.594
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Lemma A.14 (Truncated Laplace Mechanism [GDGK20]). Define the probability density function595

(p) of the truncated Laplace distribution as follows.596

p(x) =

{
Be−

|x|
λ if x ∈ [−A,A]

0 otherwise

In the above,

λ =
∆

ε
, A =

∆

ε
log

(
1 +

eε − 1

2δ

)
, B =

1

2λ(1− e−Aλ )
.

Let TLap(∆, ε, δ) denote a draw from the above distribution.597

Let f : Xn → Rd be a function with sensitivity ∆. Then the truncated Laplace mechanism

M(X) = f(X) + TLap(∆, ε, δ)

satisfies (ε, δ)-DP.598

In the above A ≤ ∆f,1

ε log(1/δ) since ε is smaller than some absolute constant less than 1. Now, we599

introduce differentially private histograms.600

Lemma A.15 (Private Histograms). Let n ∈ N, ε, δ, β > 0, andX a set. There existsM : Xn → RX601

which is (ε, δ)-differentially private and, for all x ∈ Xn, we have602

P
M

[
sup
y∈X

∣∣∣∣M(x)y −
1

n
|{i ∈ [n] : xi = y}|

∣∣∣∣ ≤ O( log(1/δβ)

εn

)]
≥ 1− β.

The above holds due to [BNS16; Vad17]. Finally, we introduce the GAP-MAX algorithm from603

[BDRS18] that outputs the element from the output space that has the highest score function, given604

that there is a significant gap between the scores of the highest and the second to the highest elements.605

Lemma A.16 (GAP-MAX Algorithm [BDRS18]). Let SCORE : Xn × Y → R be a score function
with sensitivity 1 in its first argument, and let ε, δ > 0. Then there exists a (ε, δ)-differentially
private algorithm M : Xn → Y and α = Θ(log(1/δ)/εn) with the following property. Fix an input
X ∈ Xn. Let

y∗ = arg max
y∈Y

{SCORE(X, y)}.

Suppose
∀y ∈ Y, y 6= y∗ =⇒ SCORE(X, y) < SCORE(X, y∗)− αn.

Then M outputs y∗ with probability 1.606

B Proof of Privacy of Algorithm 1607

Proof of Lemma 4.2. First, we argue that the sensitivity of u is 1. The quantity |X ∩ s| has sensitivity608

1 and so does sup{|X ∩ t| : t ∈ Sd, t ( s}. This implies sensitivity 2 by the triangle inequality.609

However, we see that it is not possible to change one point that simultaneously increases |X ∩ s| and610

decreases sup{|X ∩ t| : t ∈ Sd, t ( s} or vice versa. Thus the sensitivity is actually 1.611

We also argue that u(X, s2) has sensitivity 1, where s2 is the candidate with the second-largest score.612

Observe that the second-largest score is a monotone function of the collection of all scores – i.e.,613

increasing scores cannot decrease the second-largest score and vice versa. Changing one input point614

can at most increase all the scores by 1, which would only increase the second-largest score by 1.615

This implies that max{0, u(X, s)− u(X, s2)− 1} has sensitivity 2 by the triangle inequality and the616

fact that the maximum does not increase the sensitivity.617

Now we observe that for any input X there is at most one s such that max{0, u(X, s)− u(X, s2)−618

1} 6= 0, namely s = s1. We can say something even stronger: LetX andX ′ be neighbouring datasets619

with s1 and s2 the largest and second-largest scores on X and s′1 and s′2 the largest and second-620

largest scores on X ′. Then there is at most one s such that max{0, u(X, s)− u(X, s2)− 1} 6= 0 or621

max{0, u(X ′, s)−u(X ′, s′2)−1} 6= 0. In other words, we cannot have both u(X, s1)−u(X, s2) > 1622

and u(X ′, s′1)−u(X ′, s′2) > 1 unless s1 = s′1. This holds because u(X, s)−u(X, s2) has sensitivity623

2.624
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With these observations in hand, we can delve into the privacy analysis. LetX andX ′ be neighbouring625

datasets with s1 and s2 the largest and second-largest scores on X and s′1 and s′2 the largest and626

second-largest scores on X ′. Let Y be the set of candidates from X and let Y ′ be the set of candidates627

from X ′. Let Y̌ = Y ∪ Y ′ and Ŷ = Y ∩ Y ′.628

We note that, for s ∈ Y̌ , if u(X, s) ≤ `, then there is no way that ŝ = s. This is because629

|ξ(s)| ≤ 2 log(1/δ)
ε for all s and hence, there is no way we could have arg maxs∈Y max{0, u(X, s)−630

u(X, s2)− 1}+ ξ(s) ≥ arg maxs∈Y max{0, u(X,NULL)− u(X, s2)− 1}+ ξ(NULL).631

If s ∈ Y̌ \ Ŷ , then u(X, s) ≤ |X ∩ s| ≤ k + 1 ≤ ` and u(X ′, s) ≤ `. This is because s /∈ Ŷ implies632

|X ∩ s| < k or |X ′ ∩ s| < k, but |X ∩ s| ≤ |X ′ ∩ s| + 1. Thus, there is no way these points are633

output and, hence, we can ignore these points in the privacy analysis. (This is the reason for adding634

the NULL candidate.)635

Now we argue that the entire collection of noisy values max{0, u(X, s) − u(X, s2) − 1} + ξ(s)636

for s ∈ Ŷ is differentially private. This is because we are adding noise to a vector where (i) on the637

neighbouring datasets only 1 coordinate is potentially different and (ii) this coordinate has sensitivity638

2.639

C Lower Bound for Exact Case640

Here, we show that our upper bound is optimal up to constants for the exact case.641

Theorem C.1. Any (ε, δ)-DP algorithm that takes a dataset of n points satisfying the conditions in642

Problem 4.1 and outputs s∗ with probability > 0.5 requires n ≥ Ω
(
`+ log(1/δ)

ε

)
.643

Proof. First, n ≥ `+ k. This is because we need at least k points to span the subspace, and ` points644

could be corrupted. Second, n ≥ Ω(log(1/δ)/ε) by group privacy. Otherwise, the algorithm is645

(10, 0.1)-differentially private with respect to changing the entire dataset and it is clearly impossible646

to output the subspace under this condition.647

D Proof of Accuracy of Algorithm 2648

Now we delve into the utility analysis of the algorithm. For 1 ≤ j ≤ t, let Xj be the subsets of X649

as defined in Algorithm 2, and Πj be the projection matrices of their respective subspaces. We now650

show that Πj and the projection matrix of the subspace spanned by Σk are close in operator norm.651

Lemma D.1. Let Π be the projection matrix of the subspace spanned by the vectors of Σk, and for
each 1 ≤ j ≤ t, let Πj be the projection matrix as defined in Algorithm 2. If m ≥ O(k + ln(qt)),
then

P

[
∀j, ‖Π−Πj‖ ≤ O

(
γ
√
d√
m

)]
≥ 0.95

Proof. We show that the subspaces spanned byXj and the true subspace spanned by Σ are close. For-652

mally, we invoke Lemmata A.3 and A.4. This closeness follows from standard matrix concentration653

inequalities.654

Fix a j ∈ [t]. Note that Xj can be written as Y j +H , where Y j is the matrix of vectors distributed655

as N (~0,Σk), and H is a matrix of vectors distributed as N (~0,Σd−k), where Σk and Σd−k are656

defined as in Remark 5.2. By Corollary A.7, with probability at least 1− 0.02
t , sk(Y j) ∈ Θ((

√
m+657 √

k)(
√
sk(Σk))) = Θ(

√
m+

√
k) > 0. Therefore, the subspace spanned by Y j is the same as the658

subspace spanned by Σk. So, it suffices to look at the subspace spanned by Y j .659

Now, by Corollary A.7, we know that with probability at least 1 − 0.02
t , ‖Xj − Y j‖ = ‖H‖ ≤660

O((
√
m+

√
d)
√
s1(Σd−k)) ≤ O(γ(

√
m+

√
d)
√
sk(Σk)) ≤ O(γ(

√
m+

√
d)).661

We wish to invoke Lemma A.3. Let UDV T be the SVD of Y j , and let ÛD̂V̂ T be the SVD of Xj .662

Now, for a matrix M , let ΠM denote the projection matrix of the subspace spanned by the columns663
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of M . Define quantities a, b, z12, z21 as follows.664

a = smin(UTXjV )

= smin(UTY jV + UTHV )

= smin(UTY jV ) (Columns of U are orthogonal to columns of H)

= sk(Y j)

∈ Θ(
√
m+

√
k)

∈ Θ(
√
m)

b = ‖UT⊥XjV⊥‖
= ‖UT⊥Y jV⊥ + UT⊥HV⊥‖
= ‖UT⊥HV⊥‖ (Columns of U⊥ are orthogonal to columns of Y j)
≤ ‖H‖

≤ O(γ(
√
m+

√
d))

z12 = ‖ΠUHΠV⊥‖
= 0

z21 = ‖ΠU⊥HΠV ‖

= ‖ΠU⊥Σ
1/2
d−k(Σ

−1/2
d−k H)ΠV ‖

Now, in the above, Σ
−1/2
d−k H ∈ Rd×m, such that each of its entry is an independent sample from

N (0, 1). Right-multiplying it by ΠV makes it a matrix in a k-dimensional subspace of Rm, such that
each row is an independent vector from a spherical Gaussian. Using Corollary A.7, ‖Σ−1/2

d−k H‖ ≤
O(
√
d+
√
k) ≤ O(

√
d) with probability at least 1− 0.01

t . Also, ‖ΠU⊥Σ
1/2
d−k‖ ≤ O(γ

√
sk(Σk)) ≤

O(γ). This gives us:

z21 ≤ O(γ
√
d).

Since a2 > 2b2, we get the following by Lemma A.3.665

‖Sin(Θ)(U, Û)‖ ≤ az21 + bz12

a2 − b2 −min{z2
12, z

2
21}

≤ O

(
γ
√
d√
m

)

Therefore, using Lemma A.4, and applying the union bound over all j, we get the required result.666

Let ξ = O
(
γ
√
d√
m

)
. We show that the projections of any reference point are close.667

Corollary D.2. Let p1, . . . , pq be the reference points as defined in Algorithm 2, and let Π and Πj

(for 1 ≤ j ≤ t) be projections matrices as defined in Lemma D.1. Then

P
[
∀i, j, ‖(Π−Πj)pi‖ ≤ O(ξ(

√
k +

√
ln(qt)))

]
≥ 0.9.

Proof. We know from Lemma D.1 that ‖Π− Πj‖ ≤ ξ for all j with probability at least 0.95. For668

j ∈ [t], let Π̂j be the projection matrix for the union of the jth subspace and the subspace spanned by669

Σk. Lemma A.10 implies that with probability at least 0.95, for all i, j, ‖Π̂jpi‖ ≤ O(
√
k+
√

ln(qt)).670

Therefore,671

‖(Π−Πj)pi‖ = ‖(Π−Πj)Π̂jpi‖ ≤ ‖Π−Πj‖ · ‖Π̂jpi‖ ≤ O(ξ(
√
k +

√
ln(qt))).

Hence, the claim.672
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The above corollary shows that the projections of each reference point lie in a ball of radius673

O(ξ
√
k). Next, we show that for each reference point, all the projections of the point lie in-674

side a histogram cell with high probability. For notational convenience, since each point in Q is a675

concatenation of the projection of all reference points on a given subspace, for all i, j, we refer to676

(0, . . . , 0, Qj(i−1)d+1, . . . , Q
j
id, 0, . . . , 0) ∈ Rqd (where there are (i− 1)d zeroes behind Qj(i−1)d+1,677

and (q − i)d zeroes after Qjid) as pji .678

Lemma D.3. Let ` and λ be the length of a histogram cell and the random offset respectively, as
defined in Algorithm 2. For each 1 ≤ i ≤ q, define the following event.

Ei ≡ ∃ω ∈ Ω :
∣∣ω ∩ {p1

i , . . . , p
t
i}
∣∣ = t

Then P [Ei ∩ · · · ∩ Eq] ≥ 0.8. Thus there exists ω ∈ Ω that, such that all points in Q lie within ω.679

Proof. Let r = O(ξ(
√
k +

√
ln(qt))). This implies that ` = 20rq. The random offset could also be

viewed as moving along a diagonal of a cell by λ`
√
dq. We know that with probability at least 0.8,

for each i, all projections of reference point pi lie in a ball of radius r. Fix an i ∈ [q]. Then

P
[
Ei
]
≤ P

[
1

20q
≥ λ ∨ λ ≥ 19

20q

]
=

1

10q
.

Taking the union bound over all q and the failure of the event in Corollary D.2, we get the first part of680

the claim. Since pji ’s are non-zero in disjoints sets of coordinates, the second part follows.681

Now, we analyse the sample complexity due to the private algorithm, that is, DP-histograms.682

Lemma D.4. For each 1 ≤ i ≤ q, let ωi be the histogram cell as defined in Algorithm 2. If683

t ≥ O
(

log(1/δ)
ε

)
, then P

[
∀i,
∣∣ωi ∩ {p1

i , . . . , p
t
i}
∣∣ = t

]
≥ 0.75.684

Proof. Lemma D.3 implies that with probability at least 0.8, for each i, all projections of pi lie in685

a histogram cell, that is, all points of Q lie in a histogram cell in Ω. Because of the error bound686

in Lemma A.15 and our bound on t, we see at least q2 points in that cell with probability at least687

1− 0.05. Therefore, by taking the union bound, the proof is complete.688

We finally show that the error of the projection matrix that is output by Algorithm 2 is small.689

Lemma D.5. Let Π̂ be the projection matrix as defined in Algorithm 2, and n be the total number of
samples. If

γ2 ∈ O
(

εα2n

d2k3 ln(1/δ)
·min

{
1

k
,

1

ln(k ln(1/δ)/ε)

})
,

n ≥ O(k log(1/δ)
ε + ln(1/δ) ln(ln(1/δ)/ε)

ε ), and q ≥ O(k) the with probability at least 0.7, ‖Π̂−Π‖ ≤ α.690

Proof. For each i ∈ [q], let p∗i be the projection of pi on to the subspace spanned by Σk, p̂i be as691

defined in the algorithm, and pji be the projection of pi on to the subspace spanned by the jth subset692

of X . From Lemma D.4, we know that all pji ’s are contained in a histogram cell of length `. This693

implies that ‖pji − p̂i‖ ≤ `
√
dq. Since pji ’s and p∗i are contained in a ball of radius ξ

√
3d, it must be694

the case that ‖p̂i − p∗i ‖ ≤ 2`
√
dq.695

Now, let P = (p∗1, . . . , p
∗
q) and P̂ = (p̂1, . . . , p̂q). Then by above, P̂ = P + E, where ‖E‖F ≤696

2`
√
dq. Therefore, ‖E‖ ≤ 2`

√
dq. Let E = EP + EP , where EP is the component of E in the697

subspace spanned by P , and EP be the orthogonal component. Let P ′ = P + EP . We will be698

analysing P̂ with respect to P ′.699

Now, with probability at least 0.95, sk(P ) ∈ Θ(
√
k) due to our choice of q and using Corollary A.7,700

and sk+1(P ) = 0. So, sk+1(P ′) = 0 because EP is in the same subspace as P . Now, using701

Lemma A.2, we know that sk(P ′) ≥ sk(P )− ‖EP ‖ ≥ Ω(
√
k) > 0. This means that P ′ has rank k,702

so the subspaces spanned by Σk and P ′ are the same.703
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As before, we will try to bound the distance between the subspaces spanned by P ′ and P̂ . Note that704

using Lemma A.1, we know that sk(P ′) ≤ sk(P ) + ‖EP ‖ ≤ O(
√
k).705

We wish to invoke Lemma A.3 again. Let UDV T be the SVD of P ′, and let ÛD̂V̂ T be the SVD706

of P̂ . Now, for a matrix M , let ΠM denote the projection matrix of the subspace spanned by the707

columns of M . Define quantities a, b, z12, z21 as follows.708

a = smin(UT P̂ V )

= smin(UTP ′V + UTEPV )

= smin(UTP ′V ) (Columns of U are orthogonal to columns of EP )

= sk(P ′)

∈ Θ(
√
k)

b = ‖UT⊥ P̂ V⊥‖
= ‖UT⊥P ′V⊥ + UT⊥EPV⊥‖
= ‖UT⊥EPV⊥‖ (Columns of U⊥ are orthogonal to columns of P ′)
≤ ‖EP ‖

≤ O(`
√
dq)

z12 = ‖ΠUEPΠV⊥‖
= 0

z21 = ‖ΠU⊥EPΠV ‖
≤ ‖EP ‖

≤ O(`
√
dq)

Using Lemma A.3, we get the following.709

‖Sin(Θ)(U, Û)‖ ≤ az21 + bz12

a2 − b2 −min{z2
12, z

2
21}

≤ O
(
`
√
dk
)

≤ α

This completes our proof.710

E Boosting711

In this section, we discuss boosting of error guarantees of Algorithm 2. The approach we use is712

very similar to the well-known Median-of-Means method: we run the algorithm multiple times, and713

choose an output that is close to all other “good” outputs. We formalise this in Algorithm 3.714

Now, we present the main result of this section.715

Theorem E.1. Let Σ ∈ Rd×d be an arbitrary, symmetric, PSD matrix of rank ≥ k ∈ {1, . . . , d},
and let 0 < γ < 1. Suppose Π is the projection matrix corresponding to the subspace spanned by the
vectors of Σk. Then given

γ2 ∈ O
(

εα2n

d2k3 ln(1/δ)
·min

{
1

k
,

1

ln(k ln(1/δ)/ε)

})
,

such that λk+1(Σ) ≤ γ2λk(Σ), for every ε, δ > 0, and 0 < α, β < 1, there exists and (ε, δ)-DP
algorithm that takes

n ≥ O
(
k log(1/δ) log(1/β)

ε
+

log(1/δ) log(log(1/δ)/ε) log(1/β)

ε

)
samples from N (~0,Σ), and outputs a projection matrix Π̂, such that ‖Π− Π̂‖ ≤ α with probability716

at least 1− β.717
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Algorithm 3: DP Approximate Subspace Estimator Boosted DPASEBε,δ,α,β,γ,k(X)

Input: Samples X1, . . . , Xn ∈ Rd. Parameters ε, δ, α, β, γ, k > 0.
Output: Projection matrix Π̂ ∈ Rd×d of rank k.

Set parameters: t← C3 log(1/β) m← bn/tc
Split X into t datasets of size m: X1, . . . , Xt.

// Run DPASE t times to get multiple projection matrices.
For i← 1, . . . , t

Π̂i ← DPASEε,δ,α,γ,k(Xi)

// Select a good subspace.
For i← 1, . . . , t

ci ← 0
For j ∈ [t] \ {i}

If ‖Π̂i − Π̂j‖ ≤ 2α
ci ← ci + 1

If ci ≥ 0.6t− 1

Return Π̂i.

// If there were not enough good subspaces, return ⊥.
Return ⊥.

Proof. Privacy holds trivially by Theorem 1.2.718

We know by Theorem 1.2 that for each i, with probability at least 0.7, ‖Π̂i −Π‖ ≤ α. This means719

that by Lemma A.9, with probability at least 1 − β, at least 0.6t of all the computed projection720

matrices are accurate.721

This means that there has to be at least one projection matrix that is close to 0.6t− 1 > 0.5t of these722

accurate projection matrices. So, the algorithm cannot return ⊥.723

Now, we want to argue that the returned projection matrix is accurate, too. Any projection matrix that724

is close to at least 0.6t− 1 projection matrices must be close to at least one accurate projection matrix725

(by pigeonhole principle). Therefore, by triangle inequality, it will be close to the true subspace.726

Therefore, the returned projection matrix is also accurate.727
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