
A More on the background

A.1 SVRG and SCSG

Here we provide the pseudocode for SVRG (Algorithm 2) and SCSG (Algorithm 3) seen in Lei et al.
[35]. The idea of SVRG (Algorithm 2) is to reuses past full gradient computations (line 3) to reduce
the variance of the current stochastic gradient estimate (line 7) before the parameter update (line
8). Note that N = 1 corresponds to a GD step (i.e., v(j)

k−1 ← gj in line 7). For N > 1, v(j)
k−1 is the

corrected gradient in SVRG and is an unbiased estimate of the true gradient∇J(θ). SVRG achieves
linear convergence O(1/T) using the semi-stochastic gradient.

Algorithm 2 SVRG

1: Input: Number of stages T , initial iteratre θ̃0, number of gradient steps N , step size η
2: for t = 1 to T do
3: gt ← ∇J(θ̃t−1) = 1

n

∑n
i=1∇Ji(θ̃t−1)

4: θ
(t)
0 ← θ̃t−1

5: for k = 1 to N do
6: Randomly pick ik ∈ [n]

7: v
(t)
k−1 ← ∇Jik(θ

(t)
k−1)−∇Jik(θ

(t)
0) + gt

8: θ
(t)
k ← θ

(t)
k−1 − ηtv

(t)
k−1

9: θ̃t ← θ
(t)
Nt

10: Output: θ̃T (Convex case) or θ̃t uniformly picked from {θ̃t}Tt=1 (Non-Convex case)

More recently, Stochastically Controlled Stochastic Gradient (SCSG) has been proposed [34], to
further reduce the computational cost of SVRG. The key difference is that SCSG (Algorithm 3)
considers a sequence of time-varying batch sizes (Bt and bt) and employs geometric sampling to
generate the number of parameter update steps Nt in each iteration (line 6), instead of fixing the
batch sizes and the number of updates as done in SVRG. Particularly when finding an ε-approximate
solution (Definition 1) for optimizing smooth non-convex objectives, Lei et al. [35] proves that
SCSG is never worse than SVRG in convergence rate and significantly outperforms SVRG when the
required ε is small.

Algorithm 3 SCSG for smooth non-convex objectives

1: Input: Number of stages T , initial iteratre θ̃0, batch size Bt, mini-batch size bt, step size ηt
2: for t = 1 to T do
3: Uniformly sample a batch It ⊂ {1, · · · , n} with |It| = Bt
4: gt ← ∇JIt(θ̃t−1)

5: θ
(t)
0 ← θ̃t−1

6: Generate Nt ∼ Geom(Bt/(Bt + bt))
7: for k = 1 to Nt do
8: Randomly pick Ĩk−1 ⊂ [n] with |Ĩk−1| = bt
9: v

(t)
k−1 ← ∇JĨk−1

(θ
(t)
k−1)−∇JĨk−1

(θ
(t)
0) + gt

10: θ
(t)
k ← θ

(t)
k−1 + ηtv

(t)
k−1

11: θ̃t ← θ
(t)
Nt

12: Output: θ̃T (P-L case) or sample θ̃
∗
T from {θ̃t}Tt=1 with P (θ̃

∗
T = θ̃t) ∝ ηtBt/bt (Smooth case)

As a member of the SVRG-like algorithms, SCSG enjoys the same convergence rate of SVRG while
being computationally cheaper than SVRG for tasks with small ε requirements [34], which is highly
desired in RL, hence the motivation of FedPG-BR to adapt SCSG.

16

A.2 Gradient estimator

Use g(τ |θ) to denote the unbiased estimator to the true gradient J(θ). The common gradient
estimators are the REINFORCE and the GPOMDP estimators, which are considered as baseline
estimators in [18] and [19]. The REINFORCE [39]:

g(τ |θ) =

[
H−1∑
h=0

∇θ log πθ(ah | sh)

][
H−1∑
h=0

γhR(sh, ah)− Cb

]
And the GPOMDP [40]

g(τ |θ) =

H−1∑
h=0

[
h∑
t=0

∇θ log πθ(at | st)

]
(γhr(sh, ah)− Cbh)

where Cb and Cbh are the corresponding baselines. Under Assumption 3, whether we use the
REINFORCE or the GPOMDP estimator, Proposition 4 holds [18, 19].

Algorithm 4 GPOMDP (for federation of K agents)

Input: number of iterations T , batch size B, step size η, initial parameter θ̃0 ∈ Rd
for t = 1 to T do
θt ← θ̃t−1 ; broadcast to agents
for k = 1 to K do

Sample B trajectories {τ (k)
t,i } from p(·|θt)

µ
(k)
t = 1

B

∑B
i=1 g(τ

(k)
t,i |θ

t) ; push µ(k)
t to server

µt = 1
K

∑K
k=1 µ

(k)
t

θ̃t ← θt + ηµt
Output θout: uniformly randomly picked from {θ̃t}Tt=1

A.3 Federated GPOMDP and SVRPG

Closely following the problem setting of FedPG-BR, we adapt both GPOMDP and SVRPG to the
FRL setting. The pseudocode is shown in Algorithm 4 and Algorithm 5.

Algorithm 5 SVRPG (for federation of K agents)

Input: number of epochs T , epoch size N , batch size B, mini-batch size b, step size η, initial
parameter θ̃0 ∈ Rd
for t = 1 to T do
θt0 ← θ̃t−1 ; broadcast to agents
for k = 1 to K do

Sample B trajectories {τ (k)
t,i } from p(·|θt0)

µ
(k)
t = 1

B

∑B
i=1 g(τ

(k)
t,i |θ

t
0) ; push µ(k)

t to server

µt = 1
K

∑K
k=1 µ

(k)
t

for n = 0 to N − 1 do
Sample b trajectories {τ tn,j} from p(·|θtn)

vtn = 1
b

∑b
j=1[g(τ tn,j |θ

t
n)− ω(τ tn,j |θ

t
n,θ

t
0)g(τ tn,j |θ

t
0)] + µt

θtn+1 = θtn + ηvtn
θ̃t ← θtN

Output θout: uniformly randomly picked from {θ̃t}Tt=1

B Proof of Theorem 6

In our proof, we follow the suggestion from Lei et al. [35] to set bt = 1 to derive better theoretical
results. Refer to Section F in this appendix for the value of bt used in our experiments.

17

Proof. From the L-smoothness of the objective function J(θ), we have

Eτtn [J(θtn+1)] ≥ Eτtn

[
J(θtn) + 〈∇J(θtn),θtn+1 − θtn〉 −

L

2
‖θtn+1 − θtn‖2

]
= J(θtn) + ηt〈Eτtn [vtn],∇J(θtn)〉 − Lη2

t

2
Eτtn [‖vtn‖2]

≥ J(θtn) + ηt〈∇J(θtn) + et,∇J(θtn)〉

− Lη2
t

2
[(2Lg + 2C2

gCw)‖θtn − θt0‖2 + 2‖∇J(θtn)‖2 + 2‖et‖2] (4)

= J(θtn) + ηt(1− Lηt)‖∇J(θtn)‖2 + ηt〈et,∇J(θtn)〉
− Lη2

t (Lg + C2
gCw)‖θtn − θt0‖2 − Lη2

t ‖et‖2

where (4) follows from Lemma 11. Use Et to denote the expectation with respect to all trajectories
{τ t1, τ t2, ...}, given Nt. Since {τ t1, τ t2, ...} are independent of Nt, Et is equivalently the expectation
with respect to {τ t1, τ t2, ...}. The above inequality gives

Et[J(θtn+1)] ≥ Et[J(θtn)] + ηt(1− Lηt)Et‖∇J(θtn)‖2 + ηtEt〈et,∇J(θtn)〉
− Lη2

t (Lg + C2
gCw)Et‖θtn − θt0‖2 − Lη2

t ‖et‖2

Taking n = Nt and using ENt to denote the expectation w.r.t. Nt, we have from the above

ENtEt[J(θtNt+1)] ≥ ENtEt[J(θtNt)] + ηt(1− Lηt)ENtEt‖∇J(θtNt)‖
2 + ηtENtEt〈et,∇J(θtNt)〉

− Lη2
t (Lg + C2

gCw)ENtEt‖θ
t
Nt − θt0‖2 − Lη2

t ‖et‖2

Rearrange,

ηt(1− Lηt)ENtEt‖∇J(θtNt)‖
2 ≤ ENtEt[J(θtNt+1)] + Lη2

t (Lg + C2
gCw)ENtEt‖θ

t
Nt − θt0‖2

− ηtENtEt〈et,∇J(θtNt)〉+ Lη2
t ‖et‖2 − ENtEt[J(θtNt)]

=
1

Bt
(EtENt [J(θtNt)]− J(θt0))− ηtENtEt〈et,∇J(θtNt)〉

+ Lη2
t (Lg + C2

gCw)ENtEt
∥∥θtNt − θt0

∥∥2
+ Lη2

t ‖et‖
2 (5)

where (5) follows from Lemma 16 with Fubini’s theorem. Note that θ̃t = θtNt and θ̃t−1 = θt0. If we
take expectation over all the randomness and denote it by E, we get

ηt(1− Lηt)E‖∇J(θ̃t)‖2 =
1

Bt
E
[
J(θ̃t)− J(θ̃t−1)

]
− ηtE

〈
et,∇J(θ̃t)

〉
+ Lη2

t (Lg + C2
gCw)E‖θ̃t − θ̃t−1‖2 + Lη2

tE‖et‖2

=
1

Bt
E
[
J(θ̃t)− J(θ̃t−1)

]
− 1

Bt
E
〈
et, θ̃t − θ̃t−1

〉
+ Lη2

t (Lg + C2
gCw)E‖θ̃t − θ̃t−1‖2 + ηt(1 + Lηt)E ‖et‖2 (6)

≤ 1

Bt
E
[
J(θ̃t)− J(θ̃t−1)

]
+

1

2ηtBt
[− 1

Bt
+ η2

t (2Lg + 2C2
gCw)]E‖θ̃t − θ̃t−1‖2

+
1

Bt
E
〈
∇J(θ̃t), θ̃t − θ̃t−1

〉
+
ηt
Bt

E‖∇J(θ̃t)‖2 +
ηt
Bt

E ‖et‖2

+ Lη2
t (Lg + C2

gCw)E‖θ̃t − θ̃t−1‖2 + ηt(1 + Lηt)E ‖et‖2 (7)

where (6) follows from Lemma 12 and (7) follows from Lemma 13. Rearrange,

ηt(1− Lηt −
1

Bt
)E‖∇J(θ̃t)‖2 +

1− 2η2
t (Lg + C2

gCw)Bt − 2Lη3
t (Lg + C2

gCw)B2
t

2ηtB2
t

E‖θ̃t − θ̃t−1‖2

≤ 1

Bt
E
[
J(θ̃t)− J(θ̃t−1)

]
+

1

Bt
E
〈
∇J(θ̃t), θ̃t − θ̃t−1

〉
+ ηt(1 + Lηt +

1

Bt
)E‖et‖2 (8)

18

Now we can apply Lemma 17 on E
〈
∇J(θ̃t), θ̃t − θ̃t−1

〉
using a = θ̃t − θ̃t−1, b = ∇J(θ̃t), and

β =
1−2η2t (Lg+C2

gCw)Bt−2Lη3t (Lg+C2
gCw)B2

t

ηtBt
to get

1

Bt
E
〈
∇J(θ̃t), θ̃t − θ̃t−1

〉
≤

1− 2η2
t (Lg + C2

gCw)Bt − 2Lη3
t (Lg + C2

gCw)B2
t

2ηtB2
t

E‖θ̃t − θ̃t−1‖2

+
ηt

2[1− 2η2
t (Lg + C2

gCw)Bt − 2Lη3
t (Lg + C2

gCw)B2
t]
E‖∇J(θ̃t)‖2

(9)

Combining (8) and (9) and rearrange, we have

ηt(1−Lηt −
1

Bt
− 1

2[1− 2η2
t (Lg + C2

gCw)Bt − 2Lη3
t (Lg + C2

gCw)B2
t]

)E‖∇J(θ̃t)‖2

≤ 1

Bt
E
[
J(θ̃t)− J(θ̃t−1)

]
+ ηt(1 + Lηt +

1

Bt
)E‖et‖2

≤ 1

Bt
E
[
J(θ̃t)− J(θ̃t−1)

]
+ ηt(1 + Lηt +

1

Bt
)

[
4σ2

(1− α)2KBt
+

48α2σ2V

(1− α)2Bt

]
(10)

where (10) follows from Lemma 15. We want to choose ηt such that 1 − 2η2
t (Lg + C2

gCw)Bt −
2Lη3

t (Lg + C2
gCw)B2

t > 0. Denoting Φ = Lg + C2
gCw, we have

1− 2η2
tΦBt − 2Lη3

tΦB2
t ≥ 0

2η2
tΦBt + 2Lη3

tΦB2
t ≤ 1

We can then choose ηt to have 2η2
tΦBt ≤ 1

2 and 2Lη3
tΦB2

t ≤ 1
2 , which implies:

(i) ηt ≤ 1
(4ΦBt)1/2

(ii) ηt ≤ 1
(4LΦB2

t)1/3

Therefore, we can choose ηt ≤ 1
2(LΦB2

t)1/3
< 1

(4LΦB2
t)1/3

, and set Bt ≥ 4ΦL−2 to ensure both

condition (i) and (ii) are satisfied, together with 1
(4LΦB2

t)1/3
≤ 1

(4ΦBt)1/2
, and Lηt + 1

Bt
≤ 1. Thus,

by choosing ηt ≤ 1

2ΨB
2/3
t

, where Ψ = (LΦ)1/3 = (L(Lg +C2
gCw))1/3, we can obtain the following

from (10):

ηtE‖∇J(θ̃t)‖2 ≤
1

Bt
E
[
J(θ̃t)− J(θ̃t−1)

]
+ 2ηt

[
4σ2

(1− α)2KBt
+

48α2σ2V

(1− α)2Bt

]
Replacing ηt = 1

2ΨB
2/3
t

and rearranging, we have

E‖∇J(θ̃t)‖2 ≤
1

Btηt
E
[
J(θ̃t)− J(θ̃t−1)

]
+ 2

[
4σ2

(1− α)2KBt
+

48α2σ2V

(1− α)2Bt

]

≤
2ΨE

[
J(θ̃t)− J(θ̃t−1)

]
B

1/3
t

+
8σ2

(1− α)2KBt
+

96α2σ2V

(1− α)2Bt

Replacing Bt with constant batch size B and telescoping over t = 1, 2, ..., T , we have for θ̃a from
our algorithm:

E‖∇J(θ̃a)‖2 ≤
2ΨE

[
J(θ̃T)− J(θ̃0)

]
TB1/3

+
8σ2

(1− α)2KB
+

96α2σ2V

(1− α)2B

≤
2Ψ
[
J(θ̃

∗
)− J(θ̃0)

]
TB1/3

+
8σ2

(1− α)2KB
+

96α2σ2V

(1− α)2B

which completes the proof.

19

C Proof of Corollary 7

Proof. Recall Ψ = (L(Lg + C2
gCw))1/3. From Theorem 6, we have

E‖∇J(θ̃a)‖2 ≤
2ΨE

[
J(θ̃

∗
)− J(θ̃0)

]
TB1/3︸ ︷︷ ︸

T=O(1

εB1/3
)

+
8σ2

(1− α)2KB︸ ︷︷ ︸
BK=O(1

εK)

+
96α2σ2V

(1− α)2B︸ ︷︷ ︸
Bα=O(α

2

ε)

To guarantee that the output of Algorithm 1 is ε-approximate, i.e., E‖∇J(θ̃a)‖2 ≤ ε, we need the
number of rounds T and the batch size B to meet the following:

(i)T = O(
1

εB1/3
), (ii)BK = O(

1

εK
), and (iii)Bα = O(

α2

ε
)

By union bound and using E[Traj(ε)] to denote the total number of trajectories required by each
agent to sample, the above implies that

E[Traj(ε)] ≤ TBK + TBα

≤ O(
1

ε5/3K2/3
+
α4/3

ε5/3
)

in order to obtain an ε-approximate policy, which completes the proof for Corollary 7 (i). Note that
the total number of trajectories generated across the whole FRL system, denoted by E[Trajtotal(ε)]
is thus bounded by:

E[Trajtotal(ε)] ≤ O(
K1/3

ε5/3
+
Kα4/3

ε5/3
)

Now for an ideal system where α = 0:

E[Traj(ε)] ≤ O(
1

ε5/3K2/3
)

E[Trajtotal(ε)] ≤ O(
K1/3

ε5/3
)

which completes the proof for Corollary 7 (ii). Moreover, when K = 1, the number of trajectories
required by the agent using FedPG-BR is

E[Traj(ε)] ≤ O(
1

ε5/3
)

which is Corollary 7 (iii) and is coherent with the recent analysis of SVRPG [19].

D More on the Byzantine Filtering Step

In this section, we continue our discussion on our Byzantine Filtering Step in Section 3.3. We include
the pseudocode for the subroutine FedPG-Aggregate below for ease of reference:

As discussed in Section 3.3, R2 (line 8 in Algorithm 1.1) ensures that Gt always include all good
agents and for any Byzantine agents being included, their impact on the convergence of Algorithm 1
is limited since their maximum distance to ∇J(θt0) is bounded by 3σ. Here we give proofs for the
claims.

Claim D.1. Under Assumption 2 and ∀α < 0.5, the filtering rule R2 in Algorithm 1.1 ensures
that, in any round t, all gradient estimates sent from non-Byzantine agents are included in Gt, i.e.,
|Gt| ≥ (1− α)K.

Proof. First, from Assumption 2:

‖µ(k)
t −∇J(θt0)‖ ≤ σ, ∀k ∈ G

20

Algorithm 1.1 FedPG-Aggregate

1: Input: Gradient estimates from K agents in round t: {µ(k)
t }kk=1, Variance Bound σ, filtering

threshold Tµ , 2σ
√

V
Bt

, where V , 2 log(2K
δ) and δ ∈ (0, 1)

2: S1 , {µ(k)
t } where k ∈ [K] s.t.

∣∣∣{k′ ∈ [K] :
∥∥∥µ(k′)

t − µ(k)
t

∥∥∥ ≤ Tµ

}∣∣∣ > K
2

3: µmom
t ← argmin

µ
(k̃)
t

‖µ(k̃)
t −mean(S1)‖ where k̃ ∈ S1

4: R1: Gt ,
{
k ∈ [K] :

∥∥∥µ(k)
t − µmom

t

∥∥∥ ≤ Tµ

}
5: if |Gt| < (1− α)K then
6: S2 , {µ(k)

t } where k ∈ [K] s.t.
∣∣∣{k′ ∈ [K] :

∥∥∥µ(k′)
t − µ(k)

t

∥∥∥ ≤ 2σ
}∣∣∣ > K

2

7: µmom
t ← argmin

µ
(k̃)
t

‖µ(k̃)
t −mean(S2)‖ where k̃ ∈ S2

8: R2: Gt ,
{
k ∈ [K] :

∥∥∥µ(k)
t − µmom

t

∥∥∥ ≤ 2σ
}

9: Return: µt , 1
|Gt|
∑
k∈Gt µ

(k)
t

it implies that ‖µ(k1)
t − µ(k2)

t ‖ ≤ 2σ, ∀k1, k2 ∈ G. So, for any value of the vector median [46] in S2
= {µ(k)

t } (defined in line 6):

‖µ(k)
t −∇J(θt0)‖ ≤ 3σ, ∀µ(k)

t ∈ S2

An intuitive illustration is provided in Fig. 4. Next, consider the worst case where all values sent by
the K agents are included in S2: for all (1− α)K good agents, they send the same value µ(k)

t , s.t.,
‖∇J(θt0)− µ(k)

t ‖ = σ, ∀k ∈ G; and for all αK Byzantine agents, they send the same value µ(k′)
t s.t.,

‖∇J(θt0)− µ(k′)
t ‖ = 3σ, ∀k′ ∈ S2 \ G. Then the mean of values in S2 satisfies:

‖µmean
t −∇J(θt0)‖ =

(1− α)K · σ + αK · 3σ
K

= (1− α)σ + 3ασ

= σ + 2ασ

< 2σ

where the last inequality holds for α < 0.5 which is our assumption. Then the value µmom
t of

Algorithm 1 will be set to any µ(k)
t from S2, of which is the closet to µmean

t .

The selection of µmom
t implies ‖µmom

t −∇J(θt0)‖ ≤ σ. Therefore, by constructing a region of Gt
that is centred at µmom

t and 2σ in radius (line 8), Gt can cover all estimates from non-Byzantine
agents and hence ensure |Gt| ≥ (1− α)K.

Claim D.2. Under Assumption 2 and α < 0.5, the filtering rule R2 in Algorithm 1.1 ensures that, in
any round t, ‖µ(k)

t −∇J(θt0)‖ ≤ 3σ, ∀k ∈ Gt.

Proof. This lemma is a straightforward result following the proof of Claim D.1.

Remark. Claim D.2 implies that, in any round t, if an estimate sent from Byzantine agent is included
in Gt, then its impact on the convergence of Algorithm 1 is limited since its distance to ∇J(θt0) is
bounded by 3σ. Fig. 4 provides an intuitive illustration for this claim.

21

Figure 4: Graphical illustration of the Byzantine filtering strategy where µ(k1)
t , µ

(k2)
t are two good

gradients while the red cross represents one Byzantine gradient which falls within S2. µmom
t will be

chosen at the red diamond.

As discussed above, R2 ensures that all good agents are included in Gt, i.e., a region in which all
good agents are concentrated. R1 (lines 2-4) is designed in a similar way and aims to improve the
practical performance of FedPG-BR by exploiting Lemma 14: all good agents are highly likely to be
concentrated in a much smaller region.

Claim D.3. Define V , 2 log(2K/δ) and δ ∈ (0, 1), the filtering R1 in Algorithm 1 ensure

‖µ(k)
t −∇J(θt0)‖ ≤ σ

√
V

Bt
,∀k ∈ G

with probability of at least 1− δ.

Proof. From Assumption 2, ‖µ(k)
t −∇J(θt0)‖ ≤ σ, ∀k ∈ G. We have

‖µ(k)
t −∇J(θt0)‖ =

∥∥∥∥∥ 1

Bt

Bt∑
i=1

g(τ
(k)
t,i |θ

t
0)−∇J(θt0)

∥∥∥∥∥
=

1

Bt

√√√√∥∥∥∥∥
Bt∑
i=1

g(τ
(k)
t,i |θ

t
0)−∇J(θt0)

∥∥∥∥∥
2

(11)

Consider Xi , g(τ
(k)
t,i)−∇J(θt0) and apply Lemma 14 on (11), we have

Pr

∥∥∥∥∥
Bt∑
i=1

Xi

∥∥∥∥∥
2

≤ 2 log(
2

δ
)σ2Bt

 ≥ 1− δ

Pr

 1

Bt

√√√√∥∥∥∥∥
Bt∑
i=1

Xi

∥∥∥∥∥
2

≤ 1

Bt

√
2 log(

2

δ
)σ2Bt

 ≥ 1− δ

With V , 2 log(2K/δ) and δ ∈ (0, 1), the above inequality yields the Claim.

Therefore, the first filtering R1 (lines 2-4) of FedPG-BR constructs a region of Gt centred at µmom
t

with radius of 2σ
√

V
Bt

, which ensures in any round t that, with probability ≥ 1 − δ, (a) all good
agents are included in Gt, and (b) if gradients from Byzantine agents are included in Gt, their impact is

limited since their maximum distance to ∇J(θt0) is bounded by 3σ
√

V
Bt

(The proof is similar to that
of Claim D.2). Compared to R2, R1 can construct a smaller region that the server believes contains
all good agents. If any Byzantine agent is included, their impact is also smaller, with probability of at
least 1− δ. Therefore, R1 is applied first such that if R1 fails (line 5) which happens with probability
< δ, R2 is then employed as a backup to ensure that Gt always includes all good agents.

22

E Useful technical lemmas

Lemma 8 (Unbiaseness of importance sampling).
Eτ∼p(·|θn)[ω(τ |θn,θ0)g(τ |θ0)] = Eτ∼p(·|θ0)[g(τ |θ0)]

= ∇J(θ0)

Proof. Drop t from notation and use τn to denote trajectories sampled from θn at step n. From the
definition of gradient estimation, we have

g(τn|θ0) = Eτ∼p(·|θn)[∇θ0
p(θ0)r(τ)]

=

∫
p(·|θn)∇θ0

p(θ0)r(τ)dτ

=

∫
p(·|θ0)

p(·|θ0)
p(·|θn)∇θ0

p(θ0)r(τ)dτ

=

∫
p(·|θ0)

p(·|θn)

p(·|θ0)
∇θ0

p(θ0)r(τ)dτ

= Eτ∼p(·|θ0)

[
p(·|θn)

p(·|θ0)
∇θ0p(θ0)r(τ)

]
=
p(·|θn)

p(·|θ0)
g(τ0|θ0)

Then,

ω(τ |θn,θ0)g(τn|θ0) =
p(·|θ0)

p(·|θn)
g(τn|θ0)

= g(τ0|θ0)

which gives the lemma.

Lemma 9 (Adapted from [19]). Let ω(τ |θ1,θ2) = p(τ |θ1)/p(τ |θ2), under Assumptions 3 and 5, it
holds that

V ar(ω(τ |θ1,θ2)) ≤ Cw‖θ1 − θ2‖2

where Cw = H(2HG2 +M)(W + 1). Furthermore, we have

Eτtn‖1− ω(τ tn|θ
t
n,θ

t
0)‖2

= V arθtn,θt0(ω(τ tn|θ
t
n,θ

t
0))

≤ Cw‖θtn − θt0‖2

Proof. The proof can be found in Xu et al. [19].

Lemma 10. For X1, X2 ∈ Rd, we have

‖X1 +X2‖2 ≤ 2‖X1‖2 + 2‖X2‖2

Lemma 11.
Eτtn [‖vtn‖2] ≤ (2Lg + 2C2

gCw)
∥∥θtn − θt0

∥∥2
+ 2

∥∥∇J(θtn)
∥∥2

+ 2 ‖et‖2

Proof. We follow the suggestion of Lei et al. [35] to set bt = 1 to deliver better theoretical results.
However in our experiments, we do allow bt to be sampled from different values. With bt = 1 and
µt = 1

|Gt|
∑
k∈Gt µ

(k)
t , we have the flowing definition according to Algorithm 1:

vtn , g(τ tn | θ
t
n)− ω(τ tn | θ

t
n,θ

t
0)g(τ tn | θ

t
0) + ut (11-12)

which is the SCSG update step. Define et , ut −∇J
(
θt0
)
, we then have

Eτtn [vtn] = ∇J(θtn)−∇J(θt0) + et +∇J(θt0)

= ∇J(θtn) + et (11-13)

23

Note that ∇J(θtn) − ∇J(θt0) = Eτtn [g(τ tn | θ
t
n) − ω(τ tn | θ

t
n,θ

t
0)g(τ tn | θ

t
0)] as we have showed

that the importance weighting term results in unbiased estimation of the true gradient in Lemma 8.
Then from E‖X‖2 = E‖X − EX‖2 + ‖EX‖2,

Eτtn [‖vtn‖2] = Eτtn
∥∥vtn − Eτtn [vtn]

∥∥2
+
∥∥Eτtn [vtn]

∥∥2

= Eτtn
∥∥g(τ tn | θ

t
n)− ω(τ tn | θ

t
n,θ

t
0)g(τ tn | θ

t
0) + ut − (∇J(θtn) + et)

∥∥2
+
∥∥Eτtn [vtn

]
‖2

= Eτtn
∥∥g(τ tn | θ

t
n)− ω(τ tn | θ

t
n,θ

t
0)g(τ tn | θ

t
0)− (∇J(θtn)−∇J(θt0))

∥∥2
+
∥∥∇J(θtn) + et

∥∥2

≤ Eτtn
∥∥g(τ tn | θ

t
n)− ω(τ tn | θ

t
n,θ

t
0)g(τ tn | θ

t
0)
∥∥2

+ 2
∥∥∇J(θtn)

∥∥2
+ 2 ‖et‖2 (11-14)

where (11-14) follows from E‖X − EX‖2 ≤ E‖X‖2 and Lemma 10. Note that

Eτtn
∥∥g(τ tn | θ

t
n)− ω(τ tn | θ

t
n,θ

t
0)g(τ tn | θ

t
0)
∥∥2

= Eτtn‖g(τ tn | θ
t
n) + g(τ tn | θ

t
0)− g(τ tn | θ

t
0)− ω(τ tn | θ

t
n,θ

t
0)g(τ tn | θ

t
0)‖2

= Eτtn‖g(τ tn | θ
t
n)− g(τ tn | θ

t
0) + (1− ω(τ tn | θ

t
n,θ

t
0))g(τ tn | θ

t
0)‖2

≤ 2Eτtn
∥∥g(τ tn | θ

t
n)− g(τ tn | θ

t
0)
∥∥2

+ 2Eτtn
∥∥(1− ω(τ tn | θ

t
n,θ

t
0))g(τ tn | θ

t
0)
∥∥2

(11-15)
where (11-15) follows from Lemma 10. Combining (11-14) and (11-15), we have

Eτtn [‖vtn‖2] ≤ 2Eτtn
∥∥g(τ tn | θ

t
n)− g(τ tn | θ

t
0)
∥∥2

+ 2Eτtn
∥∥(1− ω(τ tn|θ

t
n,θ

t
0))g(τ tn | θ

t
0)
∥∥2

+ 2
∥∥∇J(θtn)

∥∥2
+ 2 ‖et‖2

≤ 2Lg
∥∥θtn − θt0

∥∥2
+ 2C2

gEτtn‖(1− ω(τ tn|θ
t
n,θ

t
0))‖2 + 2

∥∥∇J(θtn)
∥∥2

+ 2 ‖et‖2 (11-16)

≤ 2Lg
∥∥θtn − θt0

∥∥2
+ 2C2

gCw
∥∥θtn − θt0

∥∥2
+ 2

∥∥∇J(θtn)
∥∥2

+ 2‖et‖2 (11-17)

= (2Lg + 2C2
gCw)

∥∥θtn − θt0
∥∥2

+ 2
∥∥∇J(θtn)

∥∥2
+ 2 ‖et‖2 (11-18)

where (11-16) is from Lemma 4 and (11-17) follows from Lemma 9

Lemma 12.

ηtE
〈
et,E∇J(θ̃t)

〉
=

1

Bt
E
〈
et, θ̃t − θ̃t−1

〉
− ηtE ‖et‖2

Proof. Consider M t
n = 〈et,θtn − θt0〉. We have

M t
n+1 −M t

n = 〈et,θtn+1 − θtn〉 = ηt〈et, vtn〉

Taking expectation with respect to τ tn, we have
Eτtn

[
M t
n+1 −M t

n

]
= ηt

〈
et,Eτtn [vtn]

〉
= ηt

〈
et,∇J(θtn)

〉
+ ηt ‖et‖2

following from (11-13). Use Et to denote the expectation with respect to all trajectories {τ t1, τ t2, ...},
given Nt. Since {τ t1, τ t2, ...} are independent of Nt, Et is equivalently the expectation with respect to
{τ t1, τ t2, ...}. We have

Et[M t
n+1 −M t

n] = ηt
〈
et,Et∇J(θtn)

〉
+ ηt ‖et‖2

Taking n = Nt and denoting ENt the expectation w.r.t. Nt, we have

ENtEt(M t
Nt+1 −M t

Nt) = ηt〈et,ENtEt∇J(θtNt)〉+ ηt ‖et‖2 .

Using Fubini’s theorem, Lemma 16 and using the fact θtNt = θ̃t and θt0 = θ̃t−1,

ENtEt(M t
Nt+1 −M t

Nt) = −EtENt(M t
Nt −M

t
Nt+1)

= −(
1

Bt/(Bt + 1)
− 1)(M t

0 − ENtEtM t
Nt)

=
1

Bt
ENtEt

〈
et, θ̃t − θ̃t−1

〉
= ηt

〈
et,ENtEt∇J(θtNt)

〉
+ ηt ‖et‖2

Taking expectation with respect to the whole past yields the lemma.

24

Lemma 13.

−2ηtE〈et, θ̃t − θ̃t−1〉 ≤
[
− 1

Bt
+ η2

t (2Lg + 2C2
gCw)

]
E‖θ̃t − θ̃t−1‖2 + 2η2

tE‖et‖2

+2ηtE〈∇J(θ̃t, θ̃t − θ̃t−1〉+ 2η2
tE‖∇J(θ̃t)‖2

Proof. We have from the update equation θtn+1 = θtn + ηtv
t
n, then,

Eτtn‖θ
t
n+1 − θt0‖2 = Eτtn‖θ

t
n + ηtv

t
n − θt0‖2

= ‖θtn − θt0‖2 + η2
tEτtn‖v

t
n‖2 + 2ηt〈Eτtn [vtn],θtn − θt0〉

≤ ‖θtn − θt0‖2 + η2
t [(2Lg + 2C2

gCw)‖θtn − θt0‖2 + 2‖∇J(θtn)‖2 + 2‖et‖2]

+ 2ηt〈et,θtn − θt0〉+ 2ηt〈∇J(θtn),θtn − θt0〉 (13-19)

= [1 + η2
t (2Lg + 2C2

gCw)]‖θtn − θt0‖2 + 2ηt〈∇J(θtn),θtn − θt0〉
+ 2ηt〈et,θtn − θt0〉+ 2η2

t ‖∇J(θtn)‖2 + 2η2
t ‖et‖2

where (13-19) follows the result of (11-18). Use Et to denote the expectation with respect to all
trajectories {τ t1, τ t2, ...}, given Nt. Since {τ t1, τ t2, ...} are independent of Nt, Et is equivalently the
expectation with respect to {τ t1, τ t2, ...}. We have

Et‖θtn+1 − θt0‖2 ≤ [1 + η2
t (2Lg + 2C2

gCw)]Et‖θtn − θt0‖2 + 2ηtEt〈∇J(θtn),θtn − θt0〉
+2ηtEt〈et,θtn − θt0〉+ 2η2

tEt‖∇J(θtn)‖2 + 2η2
t ‖et‖2

Now taking n = Nt and denoting ENt the expectation w.r.t. Nt we have

− 2ηtENtEt
〈
et,θ

t
Nt − θt0

〉
≤ [1 + η2

t (2Lg + 2C2
gCw)]ENtEt

∥∥θtNt − θt0
∥∥2 − ENtEt

∥∥θtNt+1 − θt0
∥∥2

+ 2ηtENtEt
〈
∇J(θtNt),θ

t
Nt − θt0

〉
+ 2η2

tENtEt
∥∥∇J(θtNt)

∥∥2
+ 2η2

t ‖et‖
2

=

[
− 1

Bt
+ η2

t (2Lg + 2C2
gCw)

]
ENtEt

∥∥θtNt − θt0
∥∥2

+ 2ηtENtEt
〈
∇J(θtNt),θ

t
Nt − θt0

〉
+ 2η2

tENtEt
∥∥∇J(θtNt)

∥∥2
+ 2η2

t ‖et‖
2 (13-20)

where (13-20) follows Lemma 16 using Fubini’s theorem. Rearranging, replacing θtNt = θ̃t and
θt0 = θ̃t−1 and taking expectation w.r.t the whole past yields the lemma.

Lemma 14 (Pinelis’ inequality [76]; Lemma 2.4 [46]). Let the sequence of random variables
X1, X2, ..., XN ∈ Rd represent a random process such that we have E[Xn|X1, ..., Xn−1] and
‖Xn‖ ≤M . Then,

P
[
‖X1 + . . .+XN‖2 ≤ 2 log(2/δ)M2N

]
≥ 1− δ

Lemma 15 (Adapted from [48]). If we choose δ and Bt in Algorithm 1 such that:

(i) e
δBt

2(1−2δ) ≤ 2K
δ ≤ e

Bt
2

(ii) δ ≤ 1
5KBt

then we have the following bound for E‖et‖2:

E ‖et‖2 ≤
4σ2

(1− α)2KBt
+

48α2σ2V

(1− α)2Bt

Proof. The proof of this lemma is similar to that of Lemma 7 of Khanduri et al. [48]. The key
difference lays on the base conditions used to define the probabilistic events.

In FedPG-BR, the following refined conditions (results of Claims D.1 and D.2) are used,

‖µmom
t −∇J(θ)‖ ≤ σ, ‖µ(k)

t − µmom
t ‖ ≤ 2σ, ‖µ(k)

t −∇J(θ)‖ ≤ 3σ, ∀k ∈ Gt

25

whereas Khanduri et al. [48] needs the following:

‖µmed
t −∇J(θ)‖ ≤ 3σ, ‖µ(k)

t − µmed
t ‖ ≤ 4σ, ‖µ(k)

t −∇J(θ)‖ ≤ 7σ, ∀k ∈ Gt

The detailed proof of Lemma 15 can be obtained following the derivation of Lemma 7 of Khanduri
et al. [48] by modifying the base conditions.

Lemma 16. If N ∼ Geom(Γ) for Γ > 0. Then for any sequence D0, D1, ... with E‖DN‖ ≤ ∞,
we have

E [DN −DN+1] = (
1

Γ
− 1)(D0 − EDN)

Proof. The proof can be found in Lei et al. [35].

Lemma 17 (Young’s inequality (Peter-Paul inequality)). For all real numbers a and b and all β > 0,
we have

ab ≤ a2

2β
+
βb2

2

F Experimental details

F.1 Hyperparameters

We follow the setups of SVRPG [18] to parameterize the policies using neural networks. For all
the algorithms under comparison in the experiments (Section 5), Adam[77] is used as the gradient
optimizer. The 10 random seeds are [0−9]. All other hyperparameters used in all the experiments are
reported in Table 2.

Table 2: Hyperparameters used in the experiments.

Hyperparameters Algorithms CartPole-v1 LunarLander-v2 HalfCheetach-v2
NN policy - Categorical MLP Categorical MLP Gaussian MLP

NN hidden weights - 16,16 64,64 64,64
NN activation - ReLU Tanh Tanh

NN output activation - Tanh Tanh Tanh
Step size (Adam) η - 1e-3 1e-3 8e-5
Discount factor γ - 0.999 0.990 0.995

Maximum trajectories - 5000 10000 10000
Task horizon H (for training) - 500 1000 500

Task horizon H (for test) - 500 1000 1000
α (for practical setup) - 0.3 0.3 0.3

Number of runs - 10 10 10

Batch size Bt

GPOMDP 16 32 48
SVRPG 16 32 48

FedPG-BR sampled from [12, 20] sampled from [26, 38] sampled from [46, 50]

Mini-Batch size bt
GPOMDP - - -
SVRPG 4 8 16

FedPG-BR 4 8 16

Number of steps Nt

GPOMDP 1 1 1
SVRPG 3 3 3

FedPG-BR Nt ∼ Geom(Bt
Bt+bt

) Nt ∼ Geom(Bt
Bt+bt

) Nt ∼ Geom(Bt
Bt+bt

)

Variance bound σ
(Estimated by server)

GPOMDP - - -
SVRPG - - -

FedPG-BR 0.06 0.07 0.9

Confidence parameter δ
GPOMDP - - -
SVRPG - - -

FedPG-BR 0.6 0.6 0.6

26

0 1000 2000 3000 4000 5000
Trajectories

0

100

200

300

400

500

Re
tu

rn

Random Noise

0 1000 2000 3000 4000 5000
Trajectories

0

100

200

300

400

500

Re
tu

rn

Random Action

0 1000 2000 3000 4000 5000
Trajectories

0

100

200

300

400

500

Re
tu

rn

Sign Flipping

GPOMDP (K=10 B=3)
GPOMDP (K=1)

SVRPG (K=10 B=3)
SVRPG (K=1)

FedPG-BR (K=10 B=3)
FedPG-BR (K=1)

Figure 5: Performance of FedPG-BR in practical systems with α > 0 for CartPole. Each subplot
corresponds to a different type of Byzantine failure exercised by the 3 Byzantine agents.

0 2000 4000 6000 8000 10000
Trajectories

−1500

−1000

−500

0

Re
tu

rn

Random Noise

0 2000 4000 6000 8000 10000
Trajectories

−1500

−1000

−500

0

Re
tu

rn

Random Action

0 2000 4000 6000 8000 10000
Trajectories

−1500

−1000

−500

0

Re
tu

rn

Sign Flipping

GPOMDP (K=10 B=3)
GPOMDP (K=1)

SVRPG (K=10 B=3)
SVRPG (K=1)

FedPG-BR (K=10 B=3)
FedPG-BR (K=1)

Figure 6: Performance of FedPG-BR in practical systems with α > 0 for LunarLander. Each subplot
corresponds to a different type of Byzantine failure exercised by the 3 Byzantine agents.

F.2 Computing Infrastructure

All experiments are conducted on a computing server without GPUs. The server is equipped with 14
cores (28 threads) Intel(R) Core(TM) i9-10940X CPU @ 3.30GHz and 64G memory. The average
runtime for each run of FedPG-BR (K=10 B=3) is 2.5 hours for the CartPole task, 4 hours for the
HalfCheetah task, and 12 hours for the LunarLander task.

G Additional experiments

G.1 Performance of FedPG-BR in practical systems with α > 0 for the CartPole and the
LunarLander tasks

The results for the CartPole and the LunarLander tasks which yield the same insights as discussed in
experiments (Section 5) are plotted in Figure 5 and Figure 6. As discussed earlier, for both GPOMDP
and SVRPG, the federation of more agents in practical systems which are subject to the presence
of Byzantine agents, i.e., random failures or adversarial attacks, causes the performance of their
federation to be worse than that in the single-agent setting. In particular, RA agents (middle figure)
and SF agents (right figure) render GPOMDP and SVRPG unlearnable, i.e., unable to converge at
all. This is in contrast to the performance of FedPG-BR. That is, FedPG-BR (K = 10B = 3) is
able to deliver superior performances even in the presence of Byzantine agents for all three tasks:
CartPole (Figure 5), LunarLander (Figure 6), and HalfCheetah (Figure 2 in Section 5). This provides
an assurance on the reliability of our FedPG-BR algorithm to promote its practical deployment, and
significantly improves the practicality of FRL.

G.2 Performance of FedPG-BR against the Variance Attack

We have discussed in Section 3.2 where the high variance in PG estimation renders the FRL system
vunlnerable to variance-based attacks such as the Variance Attack (VA) proposed by Baruch et al.
[47]. The VA attackers collude together to estimate the population mean and the standard-deviation
of gradients at each round, and move the mean by the largest value such that their values are still
within the population variance. Intuitively, this non-omniscient attack works by exploiting the high
variance in gradient estimation of the population and crafting values that contribute most to the
population variance, hence gradually shifting the population mean. According to Cao et al. [20],

27

0 1000 2000 3000 4000 5000
Trajectories

0

100

200

300

400

500

Re
tu

rn

CartPole-v1

0 2000 4000 6000 8000 10000
Trajectories

1500

1000

500

0

Re
tu

rn

LunarLander-v2

0 2000 4000 6000 8000 10000
Trajectories

0

1000

2000

3000

Re
tu

rn

HalfCheetah-v2

FedPG-BR (K=1) FedPG-BR (K=10 B=3) FedPG-BR (K=10)

Figure 7: Performance of FedPG-BR in practical systems with α > 0 for CartPole. Among the
K = 10 participating agents, 3 Byzantine agents are colluding together to launch the VA attack.

existing defenses will fail to remove those non-omniscient attackers and the convergence will be
significantly worsened if the population variance is large enough.

We are thus motivated to look for solutions that theoretically reduce the variance in policy gradient
estimation. Inspired by the variance-reduced policy gradient works [e.g., 18, 19], we adapt the SCSG
optimization [35] to our federated policy gradient framework for a refined control over the estimation
variance. Through our adaptation, we are able to control the variance by the semi-stochastic gradient
(line 11 in Algorithm 1), hence resulting in the fault-tolerant FRL system that can defend the VA
attackers. Each plot in Figure 7 shows the experiment for each of the three tasks correspondingly,
where 3 Byzantine agents are implemented as the VA attackers [20] (zmax is 0.18 in our setup). We
again include the corresponding single-agent performance (K = 1) and the federation of 10 good
agents (K = 10) in the plots for reference. The results show that in all three tasks, FedPG-BR
(K = 10B = 3) still manages to significantly outperform FedPG-BR (K = 1) in the single-agent
setting. Furthermore, the performance of FedPG-BR (K = 10B = 3) is barely worsened compared
with FedPG-BR (K = 10) with 10 good agents. This shows that, with the adaptation of SCSG,
our fault-tolerant FRL system can perfectly defend the VA attack from the literature, which further
corroborates our analysis on our Byzantine filtering step (Section 3.3) showing that if gradients from
Byzantine agents are not filtered out, their impact is limited since their maximum distance to∇J(θt0)
is bounded by 3σ (Claim D.2).

28

