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Abstract

In this work, we propose a unified framework, called Visual Reasoning with Differ-
entiable Physics (VRDP) 1, that can jointly learn visual concepts and infer physics
models of objects and their interactions from videos and language. This is achieved
by seamlessly integrating three components: a visual perception module, a concept
learner, and a differentiable physics engine. The visual perception module parses
each video frame into object-centric trajectories and represents them as latent scene
representations. The concept learner grounds visual concepts (e.g., color, shape,
and material) from these object-centric representations based on the language,
thus providing prior knowledge for the physics engine. The differentiable physics
model, implemented as an impulse-based differentiable rigid-body simulator, per-
forms differentiable physical simulation based on the grounded concepts to infer
physical properties, such as mass, restitution, and velocity, by fitting the simulated
trajectories into the video observations. Consequently, these learned concepts and
physical models can explain what we have seen and imagine what is about to
happen in future and counterfactual scenarios. Integrating differentiable physics
into the dynamic reasoning framework offers several appealing benefits. More
accurate dynamics prediction in learned physics models enables state-of-the-art
performance on both synthetic and real-world benchmarks while still maintaining
high transparency and interpretability; most notably, VRDP improves the accuracy
of predictive and counterfactual questions by 4.5% and 11.5% compared to its
best counterpart. VRDP is also highly data-efficient: physical parameters can be
optimized from very few videos, and even a single video can be sufficient. Finally,
with all physical parameters inferred, VRDP can quickly learn new concepts from
few examples.

1 Introduction

Dynamic visual reasoning about objects, relations, and physics is essential for human intelligence.
Given a raw video, humans can easily use their common sense of intuitive physics to explain what has
happened, predict what will happen next, and infer what would happen in counterfactual situations.
Such human-like physical scene understanding capabilities are also of great importance in practical
applications such as industrial robot control [2, 53].

1Project page: http://vrdp.csail.mit.edu/
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Previous works have made great efforts to build artificial intelligence (AI) models with such physical
reasoning capabilities. One popular strategy is to develop pure neural-network-based models [63, 19,
40]. These methods typically leverage end-to-end neural networks [32, 35] with powerful attention
modules such as Transformer [69, 21] to extract attended features from both video frames and question
words, based on which they answer questions directly. Despite their high question-answering accuracy
on CLEVRER [79], a challenging dynamic visual question-answering benchmark, these black-box
models neither learn concepts nor model objects’ dynamics. Therefore, they lack transparency,
interpretability, and generalizability to new concepts and scenarios. Another common approach to
dynamic visual reasoning is to build graph neural networks (GNNs) [47] to capture the dynamics of
the scenes. These GNN models [54, 79, 16] treat objects in the video as nodes and perform object-
and relation-centric updates to predict objects’ dynamics in future or counterfactual scenes. Such
systems achieve decent performance with good interpretability on CLEVRER by combining the
GNN-based dynamics models with neural-symbolic execution [58, 80]. However, these dynamic
models do not explicitly consider laws of physics or use concepts encoded in the question-answer
pairs associated with the videos. As a result, they show limitations in counterfactual situations that
require long-term dynamics prediction.

Although (graph-)neural-network-based approaches have achieved competitive performance on
CLEVRER, dynamic visual reasoning is still far from being solved perfectly. In particular, due to the
lack of explicit physics models, existing models [79, 19, 16] typically struggle to reason about future
and counterfactual events, especially when training data is limited. For this reason, one appealing
alternative is to develop explicit physics-based methods to model and reason about dynamics, as
highlighted in the recent development of differentiable physics engines [9, 17, 68, 18, 66] and their
applications in robotics [9, 17, 68]. However, these physics engines typically take as input a full
description of the scene (e.g., the number of objects and their shapes) which usually requires certain
human priors, limiting their availability to applications with well-defined inputs only.

In this work, we take an approach fundamentally different from either network-based methods or
physics-based methods. Noting that deep learning based methods excel at parsing objects and learning
concepts from videos and language, and physics laws are good at capturing object dynamics, we
propose Visual Reasoning with Differentiable Physics (VRDP), a unified framework that combines
a visual perception module, a concept learner, and a differentiable physics engine. VRDP jointly
learns object trajectories, language concepts, and objects’ physics models to make accurate dynamic
predictions. It starts with a perception module running an object detector [31] on individual frames to
generate object proposals and connect them into trajectories based on a motion heuristic. Then, a
concept learner learns object- and event-based concepts, such as ‘shape’, ‘moving’, and ‘collision’ as
in DCL [16, 58]. Based on the obtained object trajectories and attributes, the differentiable physics
engine estimates all dynamic and physical properties (e.g., velocity, angular velocity, restitution, mass,
and the coefficient of resistance) by comparing the simulated trajectories with the video observations.
With these explicit physical parameters, the physics engine reruns the simulation to reason about
future motion and causal events, which a program executor then executes to get the answer. The three
components of VRDP cooperate seamlessly: the concept learner grounds physical concepts needed by
the physics engine like ‘shape’ onto the objects detected by the perception module; the differentiable
physics engine estimates all physical parameters and simulates accurate object trajectories, which in
turn help the concept learning process in the concept learner.

Compared with existing methods, VRDP has several advantages thanks to its carefully modularized
design. First, it achieves the state-of-the-art performance on both synthetic videos (CLEVRER [79])
and real-world videos (Real-Billiard [63]) without sacrificing transparency or interpretability, espe-
cially in situations that require long-term dynamics prediction. Second, it has high data efficiency
thanks to the differentiable physics engine and symbolic representation. Third, it shows strong
generalization capabilities and can capture new concepts with only a few examples.

2 Related Work

Visual Reasoning Our model is related to reasoning on vision and natural language. Existing works
can be generally categorized into two streams as end-to-end approaches [40, 83, 74, 41, 5] and neuro-
symbolic approaches [80, 29, 30, 24, 4, 59, 45, 58, 36, 3]. The end-to-end methods [40, 83, 74, 60]
typically tackle the visual question answering (VQA) problem by designing monolithic multi-modal
deep networks [32, 35]. They directly output answers without explicit and interpretable mechanisms.
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Beyond question answering, neuro-symbolic methods [80, 29, 59, 45, 58] propose a set of visual-
reasoning primitives, which manifest as an attention mechanism capable of performing complex
reasoning tasks in an explicitly interpretable manner.

Dynamic visual reasoning in videos has attracted much research attention. Many video question
answering datasets [27, 49, 42, 67, 81] and the methods [82, 51, 38, 75, 78, 22] built on them mainly
focus on understanding diverse visual scenes, such as human actions (MovieQA [67]) or 3D object
movements without physical and language cues (CATER [27]). Differently, CLEVRER [79] targets
the physical and causal relations grounded in dynamic videos of rigid-body collisions and asks a
range of questions that requires the modeling of long-term dynamic predictions. For this reason, we
evaluate our method and compare it with other state-of-the-arts on CLEVRER.

Both end-to-end [63, 19] and neuro-symbolic methods [79, 16] have been explored on CLEVRER.
However, they either lack transparency or struggle for long-term dynamic prediction. In this paper,
we perform high-performance and interpretable reasoning by recovering the physics model of objects
and their interactions (e.g., collisions) from visual perception and language concepts.

Physical Models Physical models are widely used in video prediction [50, 23, 76, 77], neural
simulation and rendering [52, 54], and dynamic reasoning [10, 71]. For example, PhysNet and its
variants [50, 23, 76, 77] leverage global or object-centric deep features to predict the physical motion
in video frames. Some other related works [61, 1, 65, 46] extend physical models to predict the effect
of forces and infer the geometric attributes and topological relations of cuboids.

In this work, we focus on dynamic visual reasoning about object interactions, dynamics, and physics
with question answering, which is central to human intelligence and a key goal of artificial intelligence.
Solving such tasks requires a good representation and understanding of physics models. A common
choice is to train a deep neural network for physical property estimation (e.g., location and velocity)
based on learned visual and dynamic priors [15, 10, 71, 70, 43, 54, 55, 34, 33]. However, since these
neural networks do not model physics laws, generalizing them to unseen events or counterfactual
scenarios could result in unexpected results. Our work is different and more physics-based: Inspired
by the recent advances in differentiable physics [9, 17, 68, 18, 66, 37], we implement an impulse-
based differentiable rigid-body simulator and leverage the power of its gradients to infer dynamics
information about the scene.

Physical Scene Understanding Our work is also relevant to studies on physical scene understand-
ing [7, 73, 66, 64, 8, 25, 26, 20, 50, 39], most of which propose pure neural-network solutions without
explicitly incorporating physics models. Benchmarks like PHYRE [7] study physical understanding
and reasoning based on pure videos without concept learning and language inference. Based on such
benchmarks, some works [72, 11, 50, 54] learn compositional scene structure and estimate states
through physical motions and visual de-animation. Recently, two papers propose pure physics-based
methods [44, 39] that make heavy use of differentiable physics simulators, but they typically assume
concepts in the scene are given as input. Our work is unique in that we learn video and language
concepts from raw videos and infer dynamics information from a differentiable simulator, combining
the benefits of both learning and physics.

3 Method

By integrating differentiable physics into the dynamic reasoning framework, VRDP jointly learns
visual perception, language concepts, and physical properties of objects. The first two provide prior
knowledge for optimizing the third one to reason about the physical world, and the optimized physical
properties in turn help to learn better concepts. In the following, we first give an overview of our
framework and then describe each of its components in detail.

3.1 Framework Overview

An overview of VRDP is illustrated in Fig. 1. It contains three components: a visual perception
module, a concept learner, and a physics model. The input to the framework is a video and reasoning
questions, where the former is processed by the visual perception module to get object trajectories
and corresponding visual features, and the latter is parsed into executable symbolic programs with
language concepts by the concept learner. Similar to DCL [58, 16], the concept learner first grounds
object properties (e.g., color and shape) and event concepts (e.g., collision and moving) by aligning the
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Figure 1: VRDP contains three components including a visual perception module, a concept learner,
and a physics model. The perception module first runs an object detector [31] on individual frames to
generate object proposals and connect them into trajectories based on motion heuristic. Then, the
concept learner learns object- and event-based concepts, such as ‘shape’, ‘moving’, and ‘collision’,
as prior knowledge for the physics model. Based on the obtained object trajectories and concepts,
the differentiable physics engine estimates all dynamic and physical properties (e.g., velocity v,
angular velocity α, restitution r, massm, and coefficients of resistance λ) by comparing the simulated
trajectories with the video observations. With these explicit physical parameters, the physic engine
reruns the simulation to reason about future motion and causal events, which are then executed by a
symbolic executor to get the answer. Stroboscopic imaging is applied for motion visualization.

visual features and the corresponding concept embeddings in the (explanatory or descriptive) program
that does not require dynamic predictions, e.g., “what is the shape of ...”. With those perceptually
grounded object trajectories and properties, the physical model then performs differentiable simulation
to learn all physical parameters of the scene and objects by comparing the simulated trajectories with
the video observations. After that, the physics engine simulates unseen trajectories for predictive and
counterfactual scenarios and generates their features, in turn enabling the concept learner to finetune
event concepts from the program that requires dynamic predictions, e.g., “what will happen ...” and
“what if ...”. Finally, a symbolic executor executes the parsed programs with the dynamic predictions
to get the answer.

3.2 Model Details

Visual Perception Module Given a video with the number of frames T , the visual perception
module parses the video frame-by-frame and associate the parsed objects in each frame into object
trajectories L = {ln}Nn=1, where ln denotes the object trajectory of the nth object and N is the
number of the objects in the video. Specifically, we leverage a pretrained Faster R-CNN [31] as
the object detector to get the Region of Interest (ROI) feature ft ∈ RN×D and the object location
of objects bt = [x2D

t , y2D
t , xBEV

t , yBEV
t ] ∈ RN×4 at frame t, where D is the feature dimension,

(x2D
t , y2D

t ) denotes the normalized object bounding box center in the image coordinate frame, and
(xBEV

t , yBEV
t ) denotes the projected bird’s-eye view (BEV) location in the BEV coordinate frame

using the calibrated camera matrix. Following works [16, 28], we associate object proposals in
adjacent frames by thresholding their intersection over union (IoU) and obtain the object trajectory
ln = {bnt }Tt=1 for the nth object.

The visual perception module then constructs object and interactive representations for concept
learning. The object representation Fobj ∈ RN×(D+4T ) contains both appearance-based Fa =
avg({ft}Tt=1) and trajectory-based feature Fl = {bt}Tt=1 for modeling static properties and dynamic
concepts, respectively, where avg(·) here represents the average ROI feature over time. The interactive
feature Fpair ∈ RT×N×N×12S , where S denotes a fixed temporal window size, is built on every
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pair of objects. It contains object trajectories {bit}
t0+S/2
t0−S/2, {b

j
t}

t0+S/2
t0−S/2 of the objects i and j and their

distance {abs(bit − b
j
t )}

t0+S/2
t0−S/2 to model the collision event of the objects at a specific moment t0.

Concept Learner The concept learner grounds the physical and event concepts (e.g., shape and color)
as prior knowledge for the physics model from the video representation and language. It first leverages
a question parser to translate the input questions and choices into executable neuro-symbolic programs
where each language concept in the program is represented by a concept embedding. Similar to
[58, 16], this work adopts a seq2seq model [6] with an attention mechanism to translate language into
a set of symbolic programs, e.g., retrieving objects with certain colors, getting future or counterfactual
events, finding the causes of an event, thus decomposing complex questions into step-by-step dynamic
visual reasoning processes. The concept learner assigns each concept in the program (e.g., color,
shape, and collision) a randomly initialized embedding e ∈ RC so that the symbolic program can be
formulated as differentiable vector operations.

After that, it projects the visual representation into concept embedding spaces and performs Nearest
Neighbor (NN) search to quantize concepts for the object attributes and events. We implement the
projection through a linear layer P(·) and calculate the cosine similarity between two vectors in the
embedding space for NN search. For example, the confidence score of whether the nth object is
a cube can be represented by [cos(P(Fn

a ), ecube)− µ]/σ, where ecube is the embedding of concept
‘cube’, µ and σ are the shifting and scaling scalars, and P(·) maps a D-dimensional visual feature
into a C-dimensional vector in this case.

Physics Model The differentiable physics model captures objects’ intrinsic physical properties and
makes accurate dynamic predictions for reasoning. With the perceptually grounded object shapes
and trajectories from the above two components of VRDP, it performs differentiable simulation to
optimize the physical parameters of the scene and objects by comparing the simulation with the video
observations L. Our physics model is implemented as an impulse-based differentiable rigid-body
simulator [37, 62, 14]. It iteratively simulates a small time step of ∆t based on the objects’ state
in the BEV coordinate through inferring collision events, forces (including resistance and collision
force), and impulses acting on the object, and updating the state of each object.

When an object moves on the ground with velocity −→v and angular velocity ω, we consider three
kinds of forces that affect the movement of the object: sliding friction, rolling resistance, and air
resistance. We use λ1, λ2, λ3 to denote their coefficients and have:

−→a =

{
−
−→v
|−→v | (λ1g + λ3|−→v |2) if the shape is not sphere

−
−→v
|−→v | (λ2g + λ3|−→v |2) if the shape is sphere

(1)

where g = 9.81m/s2 is the standard gravity and −→a denotes the acceleration of the object, whose
direction is opposite to the velocity. The velocity −→v and the location

−→
l′ = (x′, y′) are then updated

accordingly by the second order Runge-Kutta (RK2) algorithm [13]. Similarly, the angular velocity
ω also decreases at each time step due to the angular drag, and the angle α of the object is updated by
the RK2 algorithm.

The physics engine checks whether the boundaries of two objects with radius R are overlapped in the
BEV coordinate frame to detect collision events. Based on the fact that the total momentum of an
isolated system should be constant in the absence of net external forces, we compute the impulse
of collided objects and ignore the friction caused by the collision. Let (m1,m2), (r1, r2), (α1, α2),
(−→v1 ,−→v2), (

−→
l′1 ,
−→
l′2 ) denote the mass, restitution, angle, velocity and BEV location of two collided

objects at the moment of the collision, respectively;
−→
d1,
−→
d2 represent their collision unit directions

that the force is acting on, where
−→
d1 +

−→
d2 =

−→
0 . The change of velocity ∆−→v1 ,∆−→v2 at the moment of

collision can be obtained by calculating the impulse on the collision direction:
−−→
∆v1 = −(1 + r1r2)(m2/(m1 +m2))(

−→
d1 • (−→v1 −−→v2))

−→
d1

−−→
∆v2 = −(1 + r1r2)(m1/(m1 +m2))(

−→
d2 • (−→v2 −−→v1))

−→
d2,

(2)

the velocity −→v is then updated by −→v ← −→v + ∆−→v . Similarly, the angular velocity ω can be updated
by ω ← ω + ∆ω, where ∆ω is computed based on conservation of angular momentum.

Given an initial state of the scene and objects, our physics engine simulates force, impulse, and
collision events and iteratively updates the state of each element. All physical parameters including
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R, λ,m, r, α,−→v ,
−→
l are initialized and then optimized with L-BFGS algorithm [56] by fitting the

simulated trajectories L′ = {(x′t, y′t)}Tt=1 into the perceptual trajectories LBEV = {(xBEV
t , yBEV

t )}Tt=1.
To alleviate the difficulty of the optimization, we mark the time frame of each object’s first collision
by calculating the BEV distance between every pair and decompose the differentiable physical
optimization and simulation into the following steps: 1) Since radius R and resistance coefficients
λ are consistent in all videos, we use K videos to jointly learn those physical parameters and fix
them for the optimization of other sample-dependent parameters. 2) For each video, we then use
the frames before the collision to optimize the collision-independent physical parameters, such as
initial velocity −→v0 , initial location

−→
l0 , and initial angle α0. 3) With the above parameters learned and

fixed, we optimize the remaining collision-dependent parameters, including mass m and resistance
r of each object. This process follows the curriculum learning paradigm [12] by optimizing from
fewer to more frames, e.g., multi-step optimization on [0, 40], [0, 80], and [0, 128] frames, where
the parameters in each step are initialized from the optimization of the previous step. 4) With all
parameters of the physical model learned, the engine runs simulations and re-calculates the trajectory-
based representations Fl for answering counterfactual, descriptive, and explanatory questions. 5)
For the predictive case, we leverage the learned physical model as initialization and re-optimize all
sample-dependent parameters with only the last 20 frames to reduce the cumulative error over time.

Symbolic Execution As in [58, 16], we perform reasoning with a program executor, which is a
collection of deterministic functional modules designed to realize all logic operations specified in
symbolic programs. Its input consists of the parsed programs, learned concept embeddings, and
visual representations, including the appearance-based feature Fa from the visual perception module
and the updated trajectory feature Fl from the physics engine. Given a set of parsed programs, the
program executor runs them step-by-step and derives the answer based on these representations. For
example, the ‘counting’ program outputs the number of objects which meet specific conditions (e.g.,
red sphere). In this process, the executor leverages the concept learner to filter out eligible objects.

Our reasoning process is designed fully differentiable w.r.t. the visual representations and the concept
embeddings by representing all object states, events, and results of all operators in a probabilistic
manner during training, supporting gradient-based optimization. Moreover, it works seamlessly with
our explicit physics engine, which simulates dynamic predictions through real physical parameters,
forming a symbolic and deterministic physical reasoning process. The whole reasoning process is
fully transparent and step-by-step interpretable.

3.3 Training Objectives

Similar to [16, 79], we train the program parser with program labels using cross-entropy loss,

Lprogram = −
J∑

j=1

1{yp = j} log(pj), (3)

where J is the size of the pre-defined program set, pj is the probability for the j-th program and yp is
the ground-truth program label.

We optimize the physical parameters in the physical model by comparing the simulation trajectories
with the video observations. All physical parameters includingR, λ,m, r, α,−→v ,

−→
l are initialized and

then optimized with L-BFGS algorithm [56] by fitting the simulated trajectories L′ = {(x′t, y′t)}Tt=1
into the perceptual trajectories LBEV = {(xBEV

t , yBEV
t )}Tt=1. We have:

LPhysics = ‖L′ − LBEV‖22, (4)

We optimize the feature extractor and the concept embeddings in the concept learner by question
answering. We treat each option of a multiple-choice question as an independent boolean question
during training. Specifically, we use cross-entropy loss to supervise open-ended questions and use
mean square error loss to supervise counting questions. Formally, for counting questions, we have

LQA,count = (ya − z)2, (5)
where z is the predicted number and ya is the ground-truth number label. For other open-ended
questions and multiple-choice questions, we have

LQA,others = −
A∑

a=1

1{ya = a} log(pa), (6)
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where A is the size of the pre-defined answer set, pa is the probability for the a-th answer and ya is
the ground-truth answer label.

4 Experiments

By recovering physics models of objects and their interactions from video and language, VRDP enjoys
the following benefits: 1) high accuracy and full transparency, 2) superior data efficiency, and 3) high
generalizability. In this section, we first evaluate the accuracy and data efficiency of VRDP on the
widely used dynamic visual reasoning benchmark CLEVRER [79] and its subsets; we then validate
the model’s generalizability on adapting to new concepts with few-shot data; lastly, we experiment
on the real-world dataset Real-Billiard [63] to show that VRDP works well in real-world dynamic
prediction and reasoning.

Datasets and Evaluation Settings To validate the effectiveness of our method for reasoning about
the physical world, we conduct main experiments on the CLEVRER [79] dataset, as it contains
both language and physics cues such as rigid body collisions and dynamics, compared to other
benchmarks that focus on either action understanding without physical inferring [49, 42] or temporal
reasoning without language concepts [27, 8]. CLEVRER includes four types of question answering
(QA): descriptive, explanatory, predictive, and counterfactual, where the first two types concern more
on video understanding, while the latter two types involve physical dynamics and predictions in
reasoning. Therefore, we mainly focus on the predictive and counterfactual questions in this work and
use QA accuracy as the evaluation metric. Note the multi-choice question (explanatory, predictive,
and counterfactual) contains multiple options. Only if all the options (per opt.) are answered correctly
can it be regarded as a correct question (per ques.).

We then collect a few-shot physical reasoning dataset with novel language and physical concepts (e.g.,
“heavier” and “lighter”), termed generalized CLEVRER, containing 100 videos (split into 25/25/50 for
train/validation/test) with 375 options in 158 counterfactual questions. This dataset is supplementary
to CLEVRER [79] for generalizing to new concepts with very few samples. For real-world scenarios,
we conduct experiments on the Real-Billiard [63] dataset, which contains three-cushion billiards
videos captured in real games for dynamics prediction. We generate 6 reasoning questions (e.g., “will
one billiard collide with ...?”) for each video and evaluate both the prediction error and QA accuracy.

Implementation Details We follow the experimental setting in [79, 16] using a pre-trained Faster R-
CNN model [31] to generate object proposals for each frame and training the language program parser
with 1,000 programs for all question types. We implement three versions of VRDP models, where our
unsupervised VRDP leverage a Slot-Attention model [57] to parse the objects unsupervisedly, while
VRDP † use Faster-RCNN [31] as the object detector. In addition to our standard model that grounds
object properties from question-answer pairs, we also train a variant (VRDP †‡) on CLEVRER with
an explicit rule-based program executor [79] and object attribute supervision. The camera matrix
is optimized from 20 training videos. We set ∆t = 0.004s,K = 10, S = 10, and T = 128 for
CLEVRER [79] and T = 20 for Real-Billiard [63]. More details of the dataset and settings can be
found in Supplemental Materials.

4.1 Comparative Results on CLEVRER

We conduct experiments on CLEVRER against several counterparts: TVQA+ [49], Memory [22],
IEP (V) [45], TbD-net (V) [59], HCRN [48], MAC [40], NS-DR [79], DCL [16], and Object-based
Attention [19]. Among them, NS-DR [79] and DCL [16] are high-performance interpretable symbolic
models, while Object-based Attention [19] is the state-of-the-art end-to-end method.

From Tab. 1 we observe that: 1) Counterfactual and predictive questions are more difficult than
descriptive and explanatory ones as they require accurate physical dynamics and prediction hence
our main focus. By reconstructing the physical world explicitly, our method outperforms all existing
works on these two types by large margins. For example, VRDP † improves the per question
accuracy of counterfactual questions by 11.5% and 79.7% compared to the best end-to-end [19] and
neural-symbolic [16] counterparts.

2) The end-to-end model [19] improves the accuracy at the cost of losing model transparency
and interpretability. However, by leveraging object attribute supervision and explicit program
executors [79], our VRDP †‡ achieves new state-of-the-art overall performance on CLEVRER. It
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Methods Overall Predictive Counterfactual Descriptive Explanatory

per task per ques. per opt. per ques. per opt. per ques. per opt. per ques.

TVQA+ [49] 37.2 57.3 70.3 48.9 53.9 4.1 72.0 63.3 23.7
Memory [22] 27.2 43.3 50.0 33.1 54.2 7.0 54.7 53.7 13.9
IEP (V) [45] 20.2 40.5 50.0 9.7 53.4 3.8 52.8 52.6 14.5
TbD-net (V) [59] 23.6 58.6 50.3 6.5 56.1 4.4 79.5 61.6 3.8
HCRN [48] 27.3 44.8 54.1 21.0 57.1 11.5 55.7 63.3 21.0
MAC (V) [40] 32.1 65.5 51.0 16.5 54.6 13.7 85.6 59.5 12.5
MAC (V+) [40] † 44.2 69.8 59.7 42.9 63.5 25.1 86.4 70.5 22.3
NS-DR [79] †‡ 69.7 80.7 82.9 68.7 74.1 42.2 88.1 87.6 79.6
NS-DR (NE) [79] †‡ 64.1 77.7 75.4 54.1 76.1 42.0 85.8 85.9 74.3
DCL [16] † 75.5 84.1 90.5 82.0 80.4 46.5 90.7 89.6 82.8
DCL-Oracle [16] †‡ 75.6 84.5 90.6 82.1 80.7 46.9 91.4 89.8 82.0
Object-based Attention [19] 88.3 91.7 93.5 87.5 91.4 75.6 94.0 98.5 96.0

VRDP (ours) 82.9 86.9 91.7 83.8 89.9 75.7 89.8 89.1 82.4
VRDP (ours) † 86.6 89.4 94.5 89.2 92.5 80.7 91.5 90.9 85.2
VRDP (ours) †‡ 90.3 92.0 95.7 91.4 94.8 84.3 93.4 96.3 91.9

Table 1: Question-answering accuracy of visual reasoning models on CLEVRER [79]. We report
per-task and per-question overall accuracies, as well as per-option and per-question accuracies for
each sub-task. Note that predictive and counterfactual questions that require dynamics and physical
prediction are our focus. † denotes the method uses a supervised object detector, such as Faster/Mask
R-CNN [31]. ‡ indicates the use of object properties (i.e., shape, color, and material) as supervision.
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Figure 2: Comparisons of the data efficiency evaluation on four types of questions with MAC (V) [40]
and Object-based Attention [19] trained with different proportion of the CLEVRER [79] dataset.
Our method is highly data-efficient in that it achieves comparable results with the state-of-the-art
counterpart [19] with 3× fewer data. It improves the reasoning accuracy significantly when fewer
data (e.g., 20%) are used.

closes the performance gap between interpretable models and state-of-the-art end-to-end methods.
Moreover, it shows the flexibility of our physics model that can be combined with various physical
concepts and program executors while achieving impressive performance.

3) We conducted ablative experiments to study the impact of pre-trained object detection modules
of our framework by replacing the supervised visual model [31] in VRDP † with an unsuper-
vised one [57] in VRDP. We observe that although the use of unsupervised detectors decreases
the performance slightly, our framework still enjoys higher performance than previous methods in
counterfactual and predictive questions.

4) Neither the neuro-symbolic nor end-to-end works employ explicit dynamic models with physical
meanings. In contrast, our model is fully transparent with step-by-step interpretable programs and
meaningful physical parameters powered by a differentiable engine.

4.2 Detailed Analysis

Evaluation of Data Efficiency We evaluated the data efficiency of VRDP with two representative
models: MAC (V) [40] and Object-based Attention [19]. From Fig. 2 we see that: VRDP is highly
data-efficient. When the amount of data is reduced, the accuracy of our model drops slightly, while the
performance of MAC (V) [40] and Object-based Attention [19] drops drastically due to insufficient
data. For example, we improve the counterfactual accuracy of Object-based Attention [19] by 426%
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Question: If the blue sphere were much heavier, which of the
events that happened would not have happened?

Choice: The blue cylinder collides with the cube.

Input Video Our Simulation

Answer: False

Figure 3: VRDP learns new concepts and ac-
curately reasons about counterfactual events
from few data on generalized CLEVRER.

Methods Per opt. Per ques.

MAC (V) [40] 63.8 22.0
Object-based Attention [19] 59.5 26.7
VRDP (Ours) 88.1 75.6
Table 2: Comparative results of generalizability
evaluation under the few-shot setting. All models
are first pretrained on CLEVRER and then fine-
tuned with only 25 videos for adapting to gener-
alized CLEVRER. VRDP can learn new concepts
quickly with few-shot data.

Methods Overall Predictive Counterfactual Descriptive Explanatory

per task per ques. per opt. per ques. per opt. per ques. per opt. per ques.

Baseline 72.6 81.6 85.1 72.4 77.6 49.6 87.8 88.0 80.6
+ Collision-independent First 81.3 87.8 86.1 72.8 89.3 74.1 91.3 91.9 86.9
+ Curriculum Optimization 85.6 90.2 87.6 76.5 94.8 84.3 92.2 93.3 89.2
+ Re-optimization for Prediction 90.3 92.0 95.7 91.4 94.8 84.3 93.4 96.3 91.9

Table 3: Ablation study on the optimization of physical parameters on CLEVRER [79]. The reasoning
accuracy for the four types of questions is continuously increased through a better learning process.

under the setting of 20% data. Notably, our model uses 20% of the dataset to achieve comparable
performance to other works that use 80% of data. This is because the components of VRDP, e.g.,
perception module and question parser, can be trained with a small amount of data. More importantly,
our physics model is built based on an explicit physics engine, which can be optimized from the
trajectory of a single video.

Evaluation of Generalizability This part studies the generalization capabilities of VRDP against
MAC (V) [40] and Object-based Attention [19] on the generalized CLEVRER dataset. Tab. 2 shows
our model outperforms other works by a large margin (75.6 vs. 26.7) on per question accuracy,
demonstrating our model can quickly learn new concepts from few examples by reconstructing the
physics world. An example of generalization with few-shot data is shown in Fig. 3. Our model learns
a novel concept “heavier” from only 25 videos and the corresponding question-answer pairs. The
simulation is then run with 5 times the mass to answer the question correctly.

Ablation Study on the Learning of Physics Models In this work, sample-independent physical
parameters (R, λ) are learned from multiple training videos. In contrast, the sample-dependent
parameters, such as m, r, α, v, l, can only be learned with a single video, leading to difficulties in
optimization, especially when there are many collisions. This part studies the optimization of these
sample-dependent parameters by making comparisons among the following four simplified learning
processes on CLEVRER [79]: 1) Baseline – optimize all target parameters directly from all frames
simultaneously. 2) Collision-independent First – first use the frames before the collision to optimize
collision-independent parameters for each object, including initial velocity −→v0 , initial location

−→
l0 ,

and initial angle α0; then optimize mass m and restitution r from all video frames. 3) Curriculum
Optimization – optimizem and r by performing multiple steps on [0, 40], [0, 80], and [0, 128] frames,
where each step is initialized from the optimization of the previous step. 4) Re-optimization for
Prediction (Full model) – leverage the learned physical parameters as initialization and re-optimize
all sample-dependent parameters with the last 20 frames to reduce the cumulative error over time.

Tab. 3 shows that the performance continuously increases when more optimization steps are used,
demonstrating the contribution of each part. The “Collision-independent First” rule offers the greatest
improvement, especially for counterfactual questions, as counterfactual simulations only rely on the
initial state. “Curriculum Optimization” improves all types of questions, and “Re-optimization for
Prediction” re-calculates the dynamics of the last 20 frames, thus mainly affect predictive questions.

Failure Analysis VRDP learns the physics model from object trajectories in videos and language
concepts in question-answer pairs. It is data-efficient and robust enough to work well when there
exists inaccurate perception or incorrect concept learning in some video frames. However, we noticed
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Question: Will the red billiard collide with the top side 
of the billiard table?

Answer: True

Ground Truth Our Prediction
Figure 4: An example of physical simulation
and question-answering on the real-world billiard
dataset [63]. VRDP learns accurate physics param-
eters and infers the correct answer by simulation.

Methods S1 Err. ↓ S2 Err. ↓ QA Acc. (%)↑
VIN [71] 1.02 5.11 58.3
OM [43] 0.59 3.23 61.1
CVP [77] 3.57 6.63 58.3
IN [10] 0.37 2.72 69.4
CIN [63] 0.30 2.34 72.2

VRDP (Ours) 0.24 0.88 80.6

Table 4: Comparisons of the prediction er-
ror and question-answering accuracy on Real-
Billiards. The rollout timesteps are chosen to
be the same (S1) and twice (S2) as the training
time (T = 20). The error is scaled by 1,000.

that the model might fail in the following cases: 1) If the object collides immediately after entering
the image plane, there are insufficient frames before the collision to learn the initial velocity v0. 2) If
no collision occurs on an object, its restitution r and mass m cannot be optimized (unknown). We set
default values for them. 3) The optimization becomes difficult if there are many cubes and collisions
between them in the scene, because cube collisions (considering the sides and corners) are more
complicated than sphere and cylinders’. These issues are challenging and will be our future work.

4.3 Comparative Results on Real-World Billiards

We also conduct experiments on the real-world dataset Real-billiard [63] with our supplemented
question-answer pairs. Note that the billiard table is a chaotic system, and highly accurate long-term
prediction is intractable. Fig. 4 shows an example of the ground truth video and our simulated
prediction based on the perceptual grounded physics model. It can be seen that the predicted collision
events and trajectories are of good quality. Tab. 4 evaluates the prediction errors under two different
rollout timesteps and QA accuracy with 5 competitors: VIN [71], OM [43], CVP [77], IN [10], and
CIN [63]. For the prediction task, the rollout timesteps are chosen to be the same (S1= [0, T ]) and
twice (S2= [T, 2T ]) as the training time, where the training time T = 20. We refer interested readers
to CIN [63] for more details. We find that VRDP is superior to these methods on both prediction and
question answering tasks. Moreover, VRDP works well in long-term prediction. It reduces the S2
error on CIN [63] by 62.4%.

5 Conclusion

This work introduces VRDP, a unified framework that integrates powerful differentiable physics
models into dynamic visual reasoning. It contains three mutually beneficial components: a visual
perception module, a concept learner, and a differentiable physics engine. The visual perception
module parses the input video into object trajectories and visual representations; the concept learner
grounds language concepts and object attributes from question-answer pairs and the visual repre-
sentations; with object trajectories and attributes as prior knowledge, the physics model optimizes
all physical parameters of the scene and objects by differentiable simulation. With these explicit
physical parameters, the physics model reruns the simulation to reason about future motion and causal
events, which are then executed by a symbolic program executor to get the answer. Equipped with
the powerful physics model, VRDP is of highly data-efficient and generalizable that adapts to novel
concepts quickly with few-shot data. Moreover, both the explicit physics engine and the symbolic
executor are step-by-step interpretable, making VRDP fully transparent. Extensive experiments
on CLEVRER and Real-Billiards show that VRDP outperforms state-of-the-art dynamic reasoning
methods by large margins.
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