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Abstract

Existing risk-aware multi-armed bandit models typically focus on risk measures of
individual options such as variance. As a result, they cannot be directly applied
to important real-world online decision making problems with correlated options.
In this paper, we propose a novel Continuous Mean-Covariance Bandit (CMCB)
model to explicitly take into account option correlation. Specifically, in CMCB,
there is a learner who sequentially chooses weight vectors on given options and
observes random feedback according to the decisions. The agent’s objective
is to achieve the best trade-off between reward and risk, measured with option
covariance. To capture different reward observation scenarios in practice, we
consider three feedback settings, i.e., full-information, semi-bandit and full-bandit
feedback. We propose novel algorithms with optimal regrets (within logarithmic
factors), and provide matching lower bounds to validate their optimalities. The
experimental results also demonstrate the superiority of our algorithms. To the
best of our knowledge, this is the first work that considers option correlation in
risk-aware bandits and explicitly quantifies how arbitrary covariance structures
impact the learning performance. The novel analytical techniques we developed for
exploiting the estimated covariance to build concentration and bounding the risk of
selected actions based on sampling strategy properties can likely find applications
in other bandit analysis and be of independent interests.

1 Introduction

The stochastic Multi-Armed Bandit (MAB) [3, 30, 2] problem is a classic online learning model,
which characterizes the exploration-exploitation trade-off in decision making. Recently, due to the
increasing requirements of risk guarantees in practical applications, the Mean-Variance Bandits
(MVB) [28, 32, 36] which aim at balancing the rewards and performance variances have received
extensive attention. While MVB provides a successful risk-aware model, it only considers discrete
decision space and focuses on the variances of individual arms (assuming independence among arms).

However, in many real-world scenarios, a decision often involves multiple options with certain
correlation structure, which can heavily influence risk management and cannot be ignored. For
instance, in finance, investors can select portfolios on multiple correlated assets, and the investment
risk is closely related to the correlation among the chosen assets. The well-known “risk diversification”
strategy [5] embodies the importance of correlation to investment decisions. In clinical trials, a
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treatment often consists of different drugs with certain ratios, and the correlation among drugs plays
an important role in the treatment risk. Failing to handle the correlation among multiple options,
existing MVB results cannot be directly applied to these important real-world tasks.

Witnessing the above limitation of existing risk-aware results, in this paper, we propose a novel
Continuous Mean-Covariance Bandit (CMCB) model, which considers a set of options (base arms)
with continuous decision space and measures the risk of decisions with the option correlation.
Specifically, in this model, a learner is given d base arms, which are associated with an unknown joint
reward distribution with a mean vector and covariance. At each timestep, the environment generates
an underlying random reward for each base arm according to the joint distribution. Then, the learner
selects a weight vector of base arms and observes the rewards. The goal of the learner is to minimize
the expected cumulative regret, i.e., the total difference of the reward-risk (mean-covariance) utilities
between the chosen actions and the optimal action, where the optimal action is defined as the weight
vector that achieves the best trade-off between the expected reward and covariance-based risk. To
capture important observation scenarios in practice, we consider three feedback settings in this model,
i.e., full-information (CMCB-FI), semi-bandit (CMCB-SB) and full-bandit (CMCB-FB) feedback,
which vary from seeing rewards of all options to receiving rewards of the selected options to only
observing a weighted sum of rewards.

The CMCB framework finds a wide range of real-world applications, including finance [25], company
operation [26] and online advertising [29]. For example, in stock markets, investors choose portfolios
based on the observed prices of all stocks (full-information feedback), with the goal of earning high
returns and meanwhile minimizing risk. In company operation, managers allocate investment budgets
to several correlated business and only observe the returns of the invested business (semi-bandit
feedback), with the objective of achieving high returns and low risk. In clinical trials, clinicians select
a treatment comprised of different drugs and only observe an overall therapeutic effect (full-bandit
feedback), where good therapeutic effects and high stability are both desirable.

For both CMCB-FI and CMCB-SB, we propose optimal algorithms (within logarithmic factors) and
establish matching lower bounds for the problems, and contribute novel techniques in analyzing
the risk of chosen actions and exploiting the covariance information. For CMCB-FB, we develop a
novel algorithm which adopts a carefully designed action set to estimate the expected rewards and
covariance, with non-trivial regret guarantees. Our theoretical results offer an explicit quantification
of the influences of arbitrary covariance structures on learning performance, and our empirical
evaluations also demonstrate the superior performance of our algorithms.

Our work differs from previous works on bandits with covariance [34, 35, 13, 27] in the following
aspects. (i) We consider the reward-risk objective under continuous decision space and stochastic
environment, while existing works study either combinatorial bandits, where the decision space
is discrete and risk is not considered in the objective, or adversarial online optimization. (ii) We
do not assume a prior knowledge or direct feedback on the covariance matrix as in [34, 35, 13].
(iii) Our results for full-information and full-bandit feedback explicitly characterize the impacts of
arbitrary covariance structures, whereas prior results, e.g., [13, 27], only focus on independent or
positively-correlated cases. These differences pose new challenges in algorithm design and analysis,
and demand new analytical techniques.

We summarize the main contributions as follows.

• We propose a novel risk-aware bandit model called continuous mean-covariance bandit
(CMCB), which considers correlated options with continuous decision space, and char-
acterizes the trade-off between reward and covariance-based risk. Motivated by practical
reward observation scenarios, three feedback settings are considered under CMCB, i.e.,
full-information (CMCB-FI), semi-bandit (CMCB-SB) and full-bandit (CMCB-FB).

• We design an algorithm MC-Empirical for CMCB-FI with an optimalO(
√
T ) regret (within

logarithmic factors), and develop a novel analytical technique to build a relationship on risk
between chosen actions and the optimal one using properties of the sampling strategy. We
also derive a matching lower bound, by analyzing the gap between hindsight knowledge and
available empirical information under a Bayesian environment.

• For CMCB-SB, we develop MC-UCB, an algorithm that exploits the estimated covariance
information to construct confidence intervals and achieves the optimal O(

√
T ) regret (up to
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logarithmic factors). A matching regret lower bound is also established, by investigating the
necessary regret paid to differentiate two well-chosen distinct instances.

• We propose a novel algorithm MC-ETE for CMCB-FB, which employs a well-designed action
set to carefully estimate the reward means and covariance, and achieves an O(T

2
3 ) regret

guarantee under the severely limited feedback.

To our best knowledge, our work is the first to explicitly characterize the influences of arbitrary
covariance structures on learning performance in risk-aware bandits. Our results shed light into
optimal risk management in online decision making with correlated options. Due to space limitation,
we defer all detailed proofs to the supplementary material.

2 Related Work

(Risk-aware Bandits) Sani et al. [28] initiate the classic mean-variance paradigm [25, 16] in bandits,
and formulate the mean-variance bandit problem, where the learner plays a single arm each time
and the risk is measured by the variances of individual arms. Vakili & Zhao [31, 32] further study
this problem under a different metric and complete the regret analysis. Zhu & Tan [36] provide a
Thompson Sampling-based algorithm for mean-variance bandits. In addition to variance, several
works consider other risk criteria. The VaR measure is studied in [12], and CVaR is also investigated
to quantify the risk in [15, 18]. Cassel et al. [6] propose a general risk measure named empirical
distributions performance measure (EDPM) and present an algorithmic framework for EDPM. All
existing studies on risk-aware bandits only consider discrete decision space and assume independence
among arms, and thus they cannot be applied to our CMCB problem.

(Bandits with Covariance) In the stochastic MAB setting, while there have been several works [13,
27] on covariance, they focus on the combinatorial bandit problem without considering risk. Degenne
& Perchet [13] study the combinatorial semi-bandits with correlation, which assume a known upper
bound on the covariance, and design an algorithm with this prior knowledge of covariance. Perrault
et al. [27] further investigate this problem without the assumption on covariance under the sub-
exponential distribution framework, and propose an algorithm with a tight asymptotic regret analysis.
In the adversarial setting, Warmuth & Kuzmin [34, 35] consider an online variance minimization
problem, where at each timestep the learner chooses a weight vector and receives a covariance matrix,
and propose the exponentiated gradient based algorithms. Our work differs from the above works
in the following aspects: compared to [13, 27], we consider a continuous decision space instead
of combinatorial space, study the reward-risk objective instead of only maximizing the expected
reward, and investigate two more feedback settings other than the semi-bandit feedback. Compared
to [34, 35], we consider the stochastic environment and in our case, the covariance cannot be directly
observed and needs to be estimated.

3 Continuous Mean-Covariance Bandits (CMCB)

Here we present the formulation for the Continuous Mean-Covariance Bandits (CMCB) problem.
Specifically, a learner is given d base arms labeled 1, . . . , d and a decision (action) space D ⊆ 4d,
where4d = {w ∈ Rd : 0 ≤ wi ≤ 1,∀i ∈ [d],

∑
i wi = 1} denotes the probability simplex in Rd.

The base arms are associated with an unknown d-dimensional joint reward distribution with mean
vector θ∗ and positive semi-definite covariance matrix Σ∗, where Σ∗ii ≤ 1 for any i ∈ [d] without
loss of generality. For any action w ∈ D, which can be regarded as a weight vector placed on the
base arms, the instantaneous reward-risk utility is given by the following mean-covariance function

f(w) = w>θ∗ − ρw>Σ∗w, (1)

where w>θ∗ denotes the expected reward, w>Σ∗w represents the risk, i.e., reward variance, and
ρ > 0 is a risk-aversion parameter that controls the weight placed on the risk. We define the optimal
action as w∗ = argmaxw∈D f(w). Compared to linear bandits [1, 19], the additional quadratic
term in f(w) raises significant challenges in estimating the covariance, bounding the risk of chosen
actions and deriving covariance-dependent regret bounds.

At each timestep t, the environment generates an underlying (unknown to the learner) random reward
vector θt = θ∗ + ηt according to the joint distribution, where ηt is a zero-mean noise vector and it is
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Algorithm 1 MC-Empirical

1: Input: Risk-aversion parameter ρ > 0.
2: Initialization: Pull action w1 = ( 1

d , . . . ,
1
d ),

and observe θ1 = (θ1,1, . . . , θd,1)>. θ̂∗1,i ←
θ1,i, ∀i ∈ [d]. Σ̂1,ij = (θ1,i − θ̂∗1,i)(θ1,j −
θ̂∗1,j), ∀i, j ∈ [d].

3: for t = 2, 3, . . . do

4: wt = argmax
w∈4d

(w>θ̂∗t−1 − ρw>Σ̂t−1w)

5: Pull wt, observe θt = (θt,1, . . . , θt,d)
>

6: θ̂∗t,i ← 1
t

∑t
s=1 θs,i, ∀i ∈ [d]

7: Σ̂t,ij=
1
t

t∑
s=1

(θs,i−θ̂∗t,i)(θs,j−θ̂∗t,j),∀i,j∈ [d]

8: end for

independent among different timestep t. Note that here we consider an additive vector noise to the
parameter θ∗, instead of the simpler scalar noise added in the observation (i.e., yt = w>t θ

∗ + ηt)
as in linear bandits [1, 19]. Our noise setting better models the real-world scenarios where distinct
actions incur different risk, and enables us to explicitly quantify the correlation effects. Following the
standard assumption in the bandit literature [24, 13, 36], we assume the noise is sub-Gaussian, i.e.,
∀u ∈ Rd, E[exp(u>ηt)] ≤ exp( 1

2u
>Σ∗u), where Σ∗ is unknown. The learner selects an action

wt ∈ D and observes the feedback according to a certain structure (specified later). For any time
horizon T > 0, define the expected cumulative regret as

E [R(T )] =

T∑
t=1

E [f(w∗)− f(wt)] .

The objective of the learner is to minimize E[R(T )]. Note that our mean-covariance function Eq. (1)
extends the popular mean-variance measure [28, 32, 36] to the continuous decision space.

In the following, we consider three feedback settings motivated by reward observation scenarios in
practice, including (i) full-information (CMCB-FI), observing random rewards of all base arms after
a pull, (ii) semi-bandit (CMCB-SB), only observing random rewards of the selected base arms, and
(iii) full-bandit (CMCB-FB), only seeing a weighted sum of the random rewards from base arms. We
will present the formal definitions of these three feedback settings in the following sections.

Notations. For actionw ∈ D, let Iw be a diagonal matrix such that Iw,ii = I{wi > 0}. For a matrix
A, let Aw = IwAIw and ΛA be a diagonal matrix with the same diagonal as A.

4 CMCB with Full-Information Feedback (CMCB-FI)

We start with CMCB with full-information feedback (CMCB-FI). In this setting, at each timestep t,
the learner selectswt ∈ 4d and observes the random reward θt,i for all i ∈ [d]. CMCB-FI provides
an online learning model for the celebrated Markowitz [25, 16] problem in finance, where investors
select portfolios and can observe the prices of all stocks at the end of the trading days.

Below, we propose an optimal Mean-Covariance Empirical algorithm (MC-Empirical) for CMCB-FI,
and provide a novel regret analysis that fully characterizes how an arbitrary covariance structure
affects the regret performance. We also present a matching lower bound for CMCB-FI to demonstrate
the optimality of MC-Empirical.

4.1 Algorithm for CMCB-FI

Algorithm 1 shows the detailed steps of MC-Empirical. Specifically, at each timestep t, we use
the empirical mean θ̂t and covariance Σ̂t to estimate θ∗ and Σ∗, respectively. Then, we form
f̂t(w) = w>θ̂t − ρw>Σ̂tw, an empirical mean-covariance function ofw ∈ 4d, and always choose
the action with the maximum empirical objective value.

Although MC-Empirical appears to be intuitive, its analysis is highly non-trivial due to covariance-
based risk in the objective. In this case, a naive universal bound cannot characterize the impact
of covariance, and prior gap-dependent analysis (e.g., [13, 27]) cannot be applied to solve our
continuous space analysis with gap approximating to zero. Instead, we develop two novel techniques
to handle the covariance, including using the actual covariance to analyze the confidence region of
the expected rewards, and exploiting the empirical information of the sampling strategy to bound the
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risk gap between selected actions and the optimal one. Different from prior works [13, 27], which
assume a prior knowledge on covariance or only focus on the independent and positively-related
cases, our analysis does not require extra knowledge of covariance and explicitly quantifies the
effects of arbitrary covariance structures. The regret performance of MC-Empirical is summarized
in Theorem 1.
Theorem 1 (Upper Bound for CMCB-FI). Consider the continuous mean-covariance bandits with
full-information feedback (CMCB-FI). For any T > 0, algorithm MC-Empirical (Algorithm 1)
achieves an expected cumulative regret bounded by

O

((
min

{√
w∗>Σ∗w∗ + ρ−

1
2

√
θ∗max − θ∗min ,

√
Σ∗max

}
+ ρ

)
lnT
√
T

)
, (2)

where θ∗max = maxi∈[d] θ
∗
i , θ∗min = mini∈[d] θ

∗
i and Σ∗max = maxi∈[d] Σ∗ii.

Proof sketch. Let Dt be the diagonal matrix which takes value t at each diagonal entry. We first build
confidence intervals for the expected rewards of actions and the covariance as |w>θ∗ −w>θ̂t−1| ≤
pt(w) , c1

√
ln t
√
w>D−1

t−1(λΛΣ∗Dt−1 +
∑t−1
s=1 Σ∗)D−1

t−1w and |Σ∗ij − Σ̂ij,t−1| ≤ qt , c2
ln t√
t−1

.

Here λ = w∗>Σ∗w∗

Σ∗max
and c1, c2 are positive constants. Then, we obtain the confidence interval

of f(w) as |f̂t−1(w) − f(w)| ≤ rt(w) , pt(w) + ρw>Qtw, where Qt is a matrix with all
entries equal to qt. Since algorithm MC-Empirical always plays the empirical best action, we have
f(w∗)−f(wt) ≤ f̂t−1(w∗)+rt(w

∗)−f(wt) ≤ f̂t−1(wt)+rt(w
∗)−f(wt) ≤ rt(w∗)+rt(wt).

Plugging the definitions of f(w) and rt(w), we have

−∆θ∗+ρ
(
w>t Σ∗wt −w∗>Σ∗w∗

)
≤f(w∗)−f(wt)

(a)
≤
c3ln t

(√
w∗>Σ∗w∗+

√
w>t Σ∗wt+ρ

)
√
t− 1

, (3)

where ∆θ∗ = θ∗max − θ∗min and c3 is a positive constant. Since our goal is to bound the regret
f(w∗)− f(wt) and in inequality (a) only the

√
w>t Σ∗wt term is a variable, the challenge falls on

bounding w>t Σ∗wt. Note that the left-hand-side of Eq. (3) is linear with respect to w>t Σ∗wt and
the right-hand-side only contains

√
w>t Σ∗wt. Then, using the property of sampling strategy on wt,

i.e., Eq. (3), again, after some algebraic analysis, we obtain w>t Σ∗wt ≤ c4(w∗>Σ∗w∗ + 1
ρ∆θ∗ +

1
ρ

√
ln t
t−1

√
w∗>Σ∗w∗ + ln t√

t−1
+ ln t

ρ2(t−1) ) for some constant c4. Plugging it into inequality (a) and
doing a summation over t, we obtain the theorem.

Remark 1. As we will show in Section 4.2, this O(
√
T ) regret matches the lower bound up to a

logarithmic factor. Moreover, Theorem 1 fully characterizes how an arbitrary covariance structure
impacts the regret bound. To see this, note that in Eq. (2), under the min operation, the first√
w∗>Σ∗w∗-related term dominates under reasonable ρ, and shrinks from positive to negative

correlation, which implies that the more the base arms are negatively (positively) correlate, the lower
(higher) regret the learner suffers. The intuition behind is that the negative (positive) correlation
diversifies (intensifies) the risk of estimation error and narrows (enlarges) the confidence region for
the expected reward of an action, which leads to a reduction (an increase) of regret.

Also note that when ρ = 0, the CMCB-FI problem reduces to a d-armed bandit problem with
full-information feedback, and Eq. (2) becomes Õ(

√
Σ∗maxT ). For this degenerated case, the optimal

gap-dependent regret is O(
Σ∗max

∆ ) for constant gap ∆ > 0. By setting ∆ =
√

Σ∗max/T at this
gap-dependent result, one obtains the optimal gap-independent regret O(

√
Σ∗maxT ). Hence, when

ρ = 0, Eq. (2) still offers a tight gap-independent regret bound.

4.2 Lower Bound for CMCB-FI

Now we provide a regret lower bound for CMCB-FI, which demonstrates that the O(
√
T ) regret of

MC-Empirical is in fact optimal (up to a logarithmic factor).

Since CMCB-FI considers full-information feedback and continuous decision space where the reward
gap ∆ (between the optimal action and the nearest optimal action) approximates to zero, existing
lower bound analysis for linear [10, 11] or discrete [21, 13, 27] bandit problems cannot be applied to
this problem.
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Algorithm 2 MC-UCB

1: Input: ρ > 0, c ∈ (0, 1
2 ] and regularization

parameterλ>0.
2: Initialize: ∀i ∈ [d], pull ei that has 1 at

the i-th entry and 0 elsewhere. ∀i, j ∈
[d], i 6= j, pull eij that has 1

2 at the i-th and
the j-th entries, and 0 elsewhere. Update
Nij(d

2), ∀i, j ∈ [d], θ̂d2 and Σ̂d2 .
3: for t = d2 + 1, . . . do
4: Σt,ij ← Σ̂t−1,ij − gij(t)
5: Σ̄t,ij ← Σ̂t−1,ij + gij(t)

6: wt←argmax
w∈4cd

(w>θ̂t−1+Et(w)−ρw>Σtw)

7: Pull wt and observe all θt,i s.t. wt,i > 0

8: Jt,ij ← I{wt,i, wt,j > 0}, ∀i,j∈ [d]

9: Nij(t)← Nij(t− 1) + Jt,ij , ∀i,j∈ [d]

10: θ̂∗t,i ←
∑t
s=1 Jt,iiθs,i
Nii(t)

, ∀i ∈ [d]

11: Σ̂t,ij←
t∑
s=1
Jt,ij(θs,i−θ̂∗t,i)(θs,j−θ̂

∗
t,j)

Nij(t)
,∀i,j∈ [d]

12: end for

To tackle this challenge, we contribute a new analytical procedure to establish the lower bound for
continuous and full-information bandit problems from the Bayesian perspective. The main idea is to
construct an instance distribution, where θ∗ is drawn from a well-chosen prior Gaussian distribution.
After t pulls the posterior of θ∗ is still Gaussian with a mean vector ut related to sample outcomes.
Since the hindsight strategy simply selects the action which maximizes the mean-covariance function
with respect to θ∗ while a feasible strategy can only utilize the sample information (ut), we show
that any algorithm must suffer Ω(

√
T ) regret due to the gap between random θ∗ and its mean ut.

Theorem 2 below formally states this lower bound.
Theorem 2 (Lower Bound for CMCB-FI). There exists an instance distribution of the continu-
ous mean-covariance bandits with full-information feedback problem (CMCB-FI), for which any
algorithm has an expected cumulative regret bounded by Ω(

√
T ).

Remark 2. This parameter-free lower bound demonstrates that the regret upper bound (Theorem 1)
of MC-Empirical is optimal (within a logarithmic factor), since under the constructed instance
distribution, Theorem 1 also implies a matching Õ(

√
T ) parameter-free result, i.e., when ρ = 1/

√
T ,

Eq. (2) becomes Õ((
√

Σ∗max + 1/
√
T )
√
T ) = Õ(

√
T ). Unlike discrete bandit problems [21, 13, 27]

where the optimal regret is usually log T
∆ for constant gap ∆ > 0, CMCB-FI has continuous decision

space with gap ∆→ 0 and a polylogarithmic regret is not achievable in general. In such continuous
bandit literature [20, 10, 11], the parameter (θ∗, Σ∗ and ρ) dependent lower bound is an open problem.

5 CMCB with Semi-Bandit Feedback (CMCB-SB)

In many practical tasks, the learner may not be able to simultaneously select (place positive weights
on) all options and observe full information. Instead, the weight of each option is usually lower
bounded and cannot be arbitrarily small. As a result, the learner only selects a subset of options and
obtains their feedback, e.g., company investments [14] on multiple business.

Motivated by such tasks, in this section we consider the CMCB problem with semi-bandit feedback
(CMCB-SB), where the decision space is a restricted probability simplex 4cd = {w ∈ Rd : wi =
0 or c ≤ wi ≤ 1,∀i ∈ [d] and

∑
i wi = 1} for some constant 0 < c ≤ 1

2 .2 In this scenario, at
timestep t, the learner selectswt ∈ 4cd and only observes the rewards {θt,i : wi ≥ c} from the base
arms that are placed positive weights on. Below, we propose the Mean-Covariance Upper Confidence
Bound algorithm (MC-UCB) for CMCB-SB, and provide a regret lower bound, which shows that
MC-UCB achieves the optimal performance with respect to T .

5.1 Algorithm for CMCB-SB

Algorithm MC-UCB for CMCB-SB is described in Algorithm 2. The main idea is to use the optimistic
covariance to construct a confidence region for the expected reward of an action and calculate an upper
confidence bound of the mean-covariance function, and then select the action with the maximum
optimistic mean-covariance value.

2When c > 1
2

, the learner can only place all weight on one option, and the problem trivially reduces to the
mean-variance bandit setting [28, 36]. In this case, our Theorem 3 still provides a tight gap-independent bound.
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In Algorithm 2, Nij(t) denotes the number of times ws,i, ws,j > 0 occurs among timestep s ∈ [t].
Jt,ij is an indicator variable that takes value 1 if wt,i, wt,j > 0 and 0 otherwise. Dt is a diagonal
matrix such thatDt,ii = Nii(t). In Line 2, we update the number of observations byNii(d2)← 2d−1
for all i ∈ [d] and Nij(d2)← 2 for all i, j ∈ [d], i 6= j (due to the initialized d2 pulls), and calculate
the empirical mean θ̂∗d2 and empirical covariance Σ̂∗d2 using the equations in Lines 10,11.

For any t > 1 and i, j ∈ [d], we define the confidence radius of covariance Σ∗ij as gij(t) ,

16
(

3 ln t
Nij(t−1) ∨

√
3 ln t

Nij(t−1)

)
+
√

48 ln2 t
Nij(t−1)Nii(t−1) +

√
36 ln2 t

Nij(t−1)Nj(t−1) , and the confidence region

for the expected reward w>θ∗ of action w as

Et(w) ,

√√√√2β(δt)

(
w>D−1

t−1

(
λΛΣ̄tDt−1 +

t−1∑
s=1

Σ̄s,ws

)
D−1
t−1w

)
,

where λ > 0 is the regularization parameter, β(δt) = ln( 1
δt

)+d ln ln t+ d
2 ln(1+ e

λ ) is the confidence
term and δt = 1

t ln2 t
is the confidence parameter. At each timestep t, algorithm MC-UCB calculates the

upper confidence bound of f(w) using gij(t) and Et(w), and selects the action wt that maximizes
this upper confidence bound. Then, the learner observes rewards θt,i with wt,i > 0 and update the
statistical information according to the feedback.

In regret analysis, unlike [13] which uses a universal upper bound to analyze confidence intervals,
we incorporate the estimated covariance into the confidence region for the expected reward of an
action, which enables us to derive tighter regret bound and explictly quantify the impact of the
covariance structure on algorithm performance. We also contribute a new technique for handling the
challenge raised by having different numbers of observations among base arms, in order to obtain an
optimal O(

√
T ) regret (here prior gap-dependent analysis [13, 27] still cannot be applied to solve

this continuous problem). Theorem 3 gives the regret upper bound of algorithm MC-UCB.
Theorem 3 (Upper Bound for CMCB-SB). Consider the continuous mean-covariance bandits with
semi-bandit feedback problem (CMCB-SB). Then, for any T > 0, algorithm MC-UCB (Algorithm 2)
with regularization parameter λ > 0 has an expected cumulative regret bounded by

O

(√
L(λ)(‖Σ∗‖+ + d2)d ln2 T · T + ρd lnT

√
T

)
,

where L(λ) = (λ+ 1)(ln(1 + λ−1) + 1) and ‖Σ∗‖+ =
∑
i,j∈[d]

(
Σ∗ij ∨ 0

)
for any i, j ∈ [d].

Remark 3. Theorem 3 captures the effects of covariance structures in CMCB-SB, i.e., positive
correlation renders a larger ‖Σ∗‖+ factor than the negative correlation or independent case, since
the covariance influences the rate of estimate concentration for the expected rewards of actions. The
regret bound for CMCB-SB has a heavier dependence on d than that for CMCB-FI. This matches
the fact that semi-bandit feedback only reveals rewards of the queried dimensions, and provides less
information than full-information feedback in terms of observable dimensions.

5.2 Lower Bound for CMCB-SB

In this subsection, we establish a lower bound for CMCB-SB, and show that algorithm MC-UCB
achieves the optimal regret with respect to T up to logarithmic factors.

The insight of the lower bound analysis is to construct two instances with a gap in the expected
reward vector θ∗, where the optimal actions under these two instances place positive weights on
different base arms. Then, when the gap is set to

√
lnT/T , any algorithm must suffer Ω

(√
T lnT

)
regret for differentiating these two instances. Theorem 4 summarizes the lower bound for CMCB-SB.
Theorem 4 (Lower Bound for CMCB-SB). There exists an instance distribution of the continuous
mean-covariance bandits with semi-bandit feedback (CMCB-SB) problem, for which any algorithm
has an expected cumulative regret bounded by Ω

(√
cdT

)
.

Remark 4. Theorem 4 demonstrates that the regret upper bound (Theorem 3) of MC-UCB is optimal
with respect to T (up to logarithmic factors). Similar to CMCB-FI, CMCB-SB considers continuous
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Algorithm 3 MC-ETE

1: Input: ρ > 0, d̃ = d(d+1)
2 and design action

set π = {v1, . . . ,vd̃}.
2: Initialize: Nπ(0)← 0. t← 1.
3: Repeat lines 4-22:
4: if Nπ(t− 1) > t

2
3 /d then

5: wt = argmax
w∈4d

(w>θ̂∗t−1 − ρw>Σ̂t−1w)

6: t← t+ 1
7: else
8: Nπ(t)← Nπ(t− 1) + 1

9: for k = 1, . . . , d̃ do
10: Pull vk and observe yNπ(t),k

11: if k = d̃ then

12: yNπ(t) ← (yNπ(t),1, . . . , yNπ(t),d̃)
>

13: ŷt ←
∑Nπ(t)
s=1 ys
Nπ(t)

14: ẑt,k =
∑Nπ(t)
s=1 (ys,k−ŷt,k)2

Nπ(t) ,∀k ∈ [d̃]

15: ẑt ← (ẑt,1, . . . , ẑt,d̃)
>

16: θ̂t ← B+
π ŷt

17: σ̂t ← C+
π ẑt

18: Reshape σ̂t to d× d matrix Σ̂t
19: end if
20: t← t+ 1
21: end for
22: end if

decision space with ∆→ 0, and thus the lower bound differs from those gap-dependent results log T
∆

in discrete bandit problems [21, 13, 27]. Our lower bound shows that for CMCB-SB, no improvement
upon O(

√
T ) regret is possible in general.

6 CMCB with Full-Bandit Feedback (CMCB-FB)

In this section, we further study the CMCB problem with full-bandit feedback (CMCB-FB), where at
timestep t, the learner selectswt ∈ 4d and only observes the weighted sum of random rewards, i.e.,
yt = w>t θt. This setting models many real-world decision making tasks, where the learner can only
attain an aggregate feedback from the chosen options, such as clinical trials [33].

6.1 Algorithm for CMCB-FB

We propose the Mean-Covariance Exploration-Then-Exploitation algorithm (MC-ETE) for CMCB-
FB in Algorithm 3. Specifically, we first choose a design action set π = {v1, . . . ,vd̃}
which contains d̃ = d(d + 1)/2 actions and satisfies that Bπ = (v>1 ; . . . ;v>

d̃
) and Cπ =

(v2
1,1, . . . , v

2
1,d, 2v1,1v1,2, . . . , 2v1,d−1v1,d; . . . ; v

2
d̃,1
, . . . , v2

d̃,d
, 2vd̃,1vd̃,2, . . . , 2vd̃,d−1vd̃,d) are of full

column rank. We also denote their Moore-Penrose inverses by B+
π and C+

π , and it holds that
B+
π Bπ = Id×d and C+

π Cπ = I d̃×d̃. There exist more than one feasible π, and for simplicity and
good performance we choose v1, . . . ,vd as standard basis vectors in Rd and {vd+1, . . . ,vd̃} as the
set of all

(
d
2

)
vectors where each vector has two entries equal to 1

2 and others equal to 0.

In an exploration round (Lines 8-21), we pull the designed actions in π and maintain their empirical
rewards and variances. Through linear transformation by B+

π and C+
π , we obtain the estimators of the

expected rewards and covariance of base arms (Lines 16-17). When the estimation confidence is high
enough, we exploit the attained information to select the empirical best action (Lines 5). Theorem 5
presents the regret guarantee of MC-ETE.
Theorem 5 (Upper Bound for CMCB-FB). Consider the continuous mean-covariance bandits with
full-bandit feedback problem (CMCB-FB). Then, for any T > 0, algorithm MC-ETE (Algorithm 3)
achieves an expected cumulative regret bounded by

O
(
Z(ρ, π)

√
d(lnT + d2) · T 2

3 + d∆max · T
2
3

)
,

whereZ(ρ, π) = maxw∈4d(
√
w>B+

π Σ∗π(B+
π )>w+ρ‖C+

π ‖), Σ∗π = diag(v>1 Σ∗v1, . . . ,v
>
d̃

Σ∗vd̃),

‖C+
π ‖ = maxi∈[d̃]

∑
j∈[d̃] |C

+
π,ij | and ∆max = f(w∗)−minw∈4d f(w).

Remark 5. The choice of π will affect the regret factor Σ∗π contained in Z(ρ, π). Under our
construction, Σ∗π can be regarded as a uniform representation of covariance Σ∗, and thus our regret
bound demonstrates how the learning performance is influenced by the covariance structure, i.e.,
negative (positive) correlation shrinks (enlarges) the factor and leads to a lower (higher) regret.
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(a) FI, synthetic, d = 5, ρ = 0.1 (b) SB, synthetic, d = 5, ρ = 0.1 (c) FB, synthetic, d = 5, ρ = 10

(d) FI, real-world, d = 5, ρ = 0.1 (e) SB, real-world, d = 5, ρ = 0.1 (f) FB, real-world, d = 5, ρ = 10

Figure 1: Experiments for CMCB-FI, CMCB-SB and CMCB-FB on the synthetic and real-world
datasets.

Discussion on the ETE strategy. In contrast to common ETE-type algorithms, MC-ETE requires
novel analytical techniques in handling the transformed estimate concentration while preserving
the covariance information in regret bounds. In analysis, we build a novel concentration using key
matrices B+

π and C+
π to adapt to the actual covariance structure, and construct a super-martingale

which takes the aggregate noise in an exploration round as analytical basis to prove the concentration.
These techniques allow us to capture the correlations in the results, and are new compared to both the
former FI/SB settings and covariance-related bandit literature [35, 13, 27].

In fact, under the full-bandit feedback, it is highly challenging to estimate the covariance without
using a fixed exploration (i.e., ETE) strategy. Note that even for its simplified offline version, where
one uses given (non-fixed) full-bandit data to estimate the covariance, there is no available solution
in the statistics literature to our best knowledge. Hence, for such online tasks with severely limited
feedback, ETE is the most viable strategy currently available, as used in many partial observation
works [23, 7, 8]. We remark that our contribution in this setting focuses on designing a practical
solution and deriving regret guarantees which explicitly characterize the correlation impacts. The
lower bound for CMCB-FB remains open, which we leave for future work.

7 Experiments

In this section, we present experimental results for our algorithms on both synthetic and real-world
[22] datasets. For the synthetic dataset, we set θ∗ = [0.2, 0.3, 0.2, 0.2, 0.2]>, and Σ∗ has all diagonal
entries equal to 1 and all off-diagonal entries equal to −0.05. For the real-world dataset, we use an
open dataset US Funds from Yahoo Finance on Kaggle [22], which provides financial data of 1680
ETF funds in 2010-2017. We select five funds and generate a stochastic distribution (θ∗ and Σ∗)
from the data of returns (since we study a stochastic bandit problem). For both datasets, we set d = 5
and ρ ∈ {0.1, 10}. The random reward θt is drawn i.i.d. from Gaussian distribution N (θ∗,Σ∗). We
perform 50 independent runs for each algorithm and show the average regret and 95% confidence
interval across runs,3 with logarithmic y-axis for clarity of magnitude comparison.

3In some cases, since algorithms are doing similar procedures (e.g., in Figures 1(c),1(f), the algorithms are
exploring the designed actions) and have low performance variance, the confidence intervals are narrow and
indistinguishable.
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(CMCB-FI) We compare our algorithm MC-Empirical with two algorithms OGD [17] and LinearFI.
OGD (Online Gradient Descent) [17] is designed for general online convex optimization with also a
O(
√
T ) regret guarantee, but its result cannot capture the covariance impacts as ours. LinearFI is a

linear adaption of MC-Empirical that only aims to maximize the expected rewards. Figures 1(a),1(d)
show that our MC-Empirical enjoys multiple orders of magnitude reduction in regret compared to the
benchmarks, since it efficiently exploits the empirical observations to select actions and well handles
the covariance-based risk. In particular, the performance superiority of MC-Empirical over OGD
demonstrates that our sample strategy sufficiently utilize the observed information than conventional
gradient descent based policy.

(CMCB-SB) For CMCB-SB, we compare MC-UCB with two adaptions of OLS-UCB [13] (state-of-the-
art for combinatorial bandits with covariance), named MC-UCB-Γ and OLS-UCB-C. MC-UCB-Γ uses the
confidence region with a universal covariance upper bound Γ, instead of the adapting one used in our
MC-UCB. OLS-UCB-C directly adapts OLS-UCB [13] to the continuous decision space and only considers
maximizing the expected rewards in its objective. As shown in Figures 1(b),1(e), MC-UCB achieves the
lowest regret since it utilizes the covariance information to accelerate the estimate concentration. Due
to lack of a covariance-adapting confidence interval, MC-UCB-Γ shows an inferior regret performance
than MC-UCB, and OLS-UCB-C suffers the highest regret due to its ignorance of risk.

(CMCB-FB) We compare MC-ETE with two baselines, OGD-ETE, which adopts OGD [17] during the
exploitation phase, and LinearFB, which only investigates the expected reward maximization. From
Figures 1(c),1(f), one can see that, MC-ETE achieves the best regret performance due to its effective
estimation of the covariance-based risk and efficiency in exploitation. Due to the inefficiency of
gradient descent based policy in utilizing information, OGD-ETE has a higher regret than MC-ETE,
whereas LinearFB shows the worst performance owing to the unawareness of the risk.

8 Conclusion and Future Work

In this paper, we propose a novel continuous mean-covariance bandit (CMCB) model, which investi-
gates the reward-risk trade-off measured by option correlation. Under this model, we consider three
feedback settings, i.e., full-information, semi-bandit and full-bandit feedback, to formulate different
real-world reward observation scenarios. We propose novel algorithms for CMCB to achieve the
optimal regrets (within logarithmic factors), and provide lower bounds for the problems to demon-
strate our optimality. We also present empirical evaluations to show the superior performance of our
algorithms. To our best knowledge, this is the first work to fully characterize the impacts of arbitrary
covariance structures on learning performance for risk-aware bandits. There are several interesting
directions for future work. For example, how to design an adaptive algorithm for CMCB-FB is a
challenging open problem, and the lower bound for CMCB-FB is also worth further investigation.
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Appendix

A Technical Lemmas

In this section, we introduce two technical lemmas which will be used in our analysis.

Lemmas 1 and 2 give the concentration guarantees of algorithm MC-UCB for CMCB-SB, which sets up a foundation for the
concentration guarantees in CMCB-FI. For ease of notation, we use Σ for a shorthand of the covariance matrix Σ∗ in Appendix.

Lemma 1 (Concentration of Covariance for CMCB-SB). Consider the CMCB-SB problem and algorithm MC-UCB (Algorithm 2).
Define the event

Gt ,

{
|Σij − Σ̂ij,t−1| ≤16

(
3 ln t

Nij(t− 1)
∨

√
3 ln t

Nij(t− 1)

)

+

√
61 ln2 t

Nij(t− 1)Ni(t− 1)
+

√
36 ln2 t

Nij(t− 1)Nj(t− 1)
,∀i, j ∈ [d]

}
For any t ≥ 2, we have

Pr[Gt] ≥ 1− 10d2

t2
.

Proof. According to Proposition 2 in [27], we have that for any t ≥ 2 and i, j ∈ [d],

Pr

[
|Σij − Σ̂ij,t−1| ≤16

(
3 ln t

Nij(t− 1)
∨

√
3 ln t

Nij(t− 1)

)

+

√
61 ln2 t

Nij(t− 1)Ni(t− 1)
+

√
36 ln2 t

Nij(t− 1)Nj(t− 1)

]
≤ 1− 10

t2
.

Using a union bound on i, j ∈ [d], we obtain Lemma 1.

Lemma 2 (Concentration of Means for CMCB-SB). Consider the CMCB-SB problem and algorithm MC-UCB (Algorithm 2).
Let 0 < λ < 1, and define δt = 1

t ln2 t
and β(δt) = ln(1/δt) + d ln ln t + d

2 ln(1 + e/λ) for t ≥ 2. Then, for any t ≥ 2 and
w ∈ 4cd, with probability at least 1− δt, we have

∣∣∣w>θ∗ −w>θ̂t−1

∣∣∣ ≤√2β(δt)

√√√√w>D−1
t−1

(
λΛΣDt−1 +

t−1∑
s=1

Σws

)
D−1
t−1w.

Further define Et(w) =
√

2β(δt)
√
w>D−1

t−1(λΛΣ̄tDt−1 +
∑t−1
s=1 Σ̄s,ws)D

−1
t−1w. Then, for any t ≥ 2 and w ∈ 4cd, the

eventHt , {|w>θ∗ −w>θ̂t−1| ≤ Et(w)} satisfies Pr[Ht | Gt] ≥ 1− δt.

Proof. The proof of Lemma 2 follows the analysis procedure in [13]. Specifically, assuming that event Gt occurs, we have
Σ̄t,ij ≥ Σij for any i, j ∈ [d] and

Et(w) ≥
√

2β(δt)

√√√√w>D−1
t−1

(
λΛΣDt−1 +

t−1∑
s=1

Σws

)
D−1
t−1w.
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Hence, to prove Lemma 2, it suffices to prove that

Pr

∣∣∣w>θ∗ −w>θ̂t−1

∣∣∣ >√2β(δt)

√√√√w>D−1
t−1

(
λΛΣDt−1 +

t−1∑
s=1

Σws

)
D−1
t−1w

 ≤ δt. (4)

Recall that Ni(t) =
∑t
s=1 I{ws,i ≥ c} and Dt is a diagonal matrix such that Dt,ii = Ni(t) for any t > 0. For any w ∈ 4cd,

let Iw denote the diagonal matrix such that Iii = 1 for any wi ≥ c and Ijj = 0 for any wj = 0, and let Σw = IwΣIw. Let εt
be the vector such that ηt = Σ

1
2 εt for any t > 0. Then, we have for any w ∈ 4cd that∣∣∣w> (θ∗ − θ̂t−1

)∣∣∣ =

∣∣∣∣∣−w>D−1
t−1

t−1∑
s=1

IwsΣ
1
2 εs

∣∣∣∣∣
=

∣∣∣∣∣∣−w>D−1
t−1

(
D +

t−1∑
s=1

Σws

) 1
2
(
D +

t−1∑
s=1

Σws

)− 1
2 t−1∑
s=1

IwsΣ
1
2 εs

∣∣∣∣∣∣
≤

√√√√w>D−1
t−1

(
D +

t−1∑
s=1

Σws

)
D−1
t−1w ·

∥∥∥∥∥
t−1∑
s=1

IwsΣ
1
2 εs

∥∥∥∥∥
(D+

∑t−1
s=1 Σws)

−1

Let St =
∑t−1
s=1 IwsΣ

1
2 εs, Vt =

∑t−1
s=1 Σws and ID+Vt = 1

2‖St‖
2
(D+Vt)

−1 . We get∥∥∥∥∥
t−1∑
s=1

IwsΣ
1
2 εs

∥∥∥∥∥
(D+

∑t−1
s=1 Σws)

−1

= ‖St‖(D+Vt)
−1 =

√
2ID+Vt .

Since D � λΛΣDt−1, we have∣∣∣w> (θ∗ − θ̂t−1

)∣∣∣ ≤
√√√√w>D−1

t−1DD
−1
t−1w

> +w>D−1
t−1

(
t−1∑
s=1

Σws

)
D−1
t−1w ·

√
2ID+Vt

≤

√√√√λw>D−1
t−1ΛΣw> +w>D−1

t−1

(
t−1∑
s=1

Σws

)
D−1
t−1w ·

√
2ID+Vt

=

√√√√w>D−1
t−1

(
λΛΣDt−1 +

t−1∑
s=1

Σws

)
D−1
t−1w ·

√
2ID+Vt

Thus,

Pr

∣∣∣w> (θ∗ − θ̂t−1

)∣∣∣ >√2β(δt)

√√√√w>D−1
t−1(λΛΣ̄tDt−1 +

t−1∑
s=1

Σ̄s,ws)D
−1
t−1w


≤Pr

[√√√√w>D−1
t−1

(
λΛΣDt−1 +

t−1∑
s=1

Σws

)
D−1
t−1w ·

√
2ID+Vt

>
√

2β(δt)

√√√√w>D−1
t−1

(
λΛΣDt−1 +

t−1∑
s=1

Σws

)
D−1
t−1w

]
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= Pr [ID+Vt > β(δt)]

Hence, to prove Eq. (4), it suffices to prove

Pr [ID+Vt > β(δt)] ≤ δt. (5)

To do so, we introduce some notions. Let Jt be the σ-algebra σ(w1, ε1, . . . ,wt−1, εt−1,wt). Let u ∈ Rd be a multivariate
Gaussian random variable with mean 0 and covariance D−1, which is independent of all the other random variables, and use
ϕ(u) denote its probability density function. Define

Pus = exp

(
u>IwsΣ

1
2 εs −

1

2
u>Σwsu

)
,

Mu
t , exp

(
u>St −

1

2
‖u‖2Vt

)
,

and

Mt , Eu[Mu
t ] =

∫
Rd

exp

(
u>St −

1

2
‖u‖2Vt

)
ϕ(u)du.

We have Mu
t = Πt−1

s=1P
u
s . In the following, we prove E[Mt] ≤ 1.

For any s > 0, according to the sub-Gaussian property, ηs = Σ
1
2 εs satisfies

∀v ∈ Rd, E
[
ev
>Σ

1
2 εs

]
≤ e 1

2v
>Σv,

which is equivalent to

∀v ∈ Rd, E
[
ev
>Σ

1
2 εs− 1

2v
>Σv

]
≤ 1.

Thus, we have

E [Pus |Js] = E
[
exp

(
u>IwsΣ

1
2 εs −

1

2
u>Σwsu

)
|Js
]
≤ 1.

Then, we can obtain

E[Mu
t |Jt−1] =E

[
Πt−1
s=1P

u
s |Jt−1

]
=
(
Πt−2
s=1P

u
s

)
E
[
Put−1|Jt−1

]
≤Mu

t−1,

which implies that Mu
t is a super-martingale and E[Mu

t |u] ≤ 1. Thus,

E[Mt] = Eu[E[Mu
t |u]] ≤ 1.

According to Lemma 9 in [1], we have

Mt ,
∫
Rd

exp

(
u>St −

1

2
‖u‖2Vt

)
ϕ(u)du =

√
detD

det(D + Vt)
exp (ID+Vt) .

Thus,

E

[√
detD

det(D + Vt)
exp (ID+Vt)

]
≤ 1.
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Now we prove Eq. (5). First, we have

Pr [ID+Vt > β(δt)] = Pr

[√
detD

det(D + Vt)
exp (ID+Vt) >

√
detD

det(D + Vt)
exp (β(δt))

]

= Pr

Mt >
1√

det(I +D−
1
2VtD−

1
2 )

exp (β(δt))


≤
E[Mt]

√
det(I +D−

1
2VtD−

1
2 )

exp (β(δt))

≤

√
det(I +D−

1
2VtD−

1
2 )

exp (β(δt))
(6)

Then, for some constant γ > 0 and for any a = (a1, . . . , ad) ∈ Nd, we define the set of timesteps Ka ⊆ [T ] such that

t ∈ Ka ⇔ ∀i ∈ d, (1 + γ)ai ≤ Ni(t) < (1 + γ)ai+1.

Define Da a diagonal matrix with Da,ii = (1 + γ)ai .

Suppose t ∈ Ka for some fixed a. We have
1

1 + γ
Dt � Da � Dt.

Let D = λΛΣDa � λ
1+γΛΣDt. Then, we have

D−
1
2VtD

− 1
2 � 1 + γ

λ
D
− 1

2
t Λ

− 1
2

Σ VtΛ
− 1

2

Σ D
− 1

2
t ,

where matrix D−
1
2

t Λ
− 1

2

Σ VtΛ
− 1

2

Σ D
− 1

2
t has d ones on the diagonal. Since the determinant of a positive definite matrix is smaller

than the product of its diagonal terms, we have

det(I +D−
1
2VtD

− 1
2 ) ≤det(I +

1 + γ

λ
D
− 1

2
t Λ

− 1
2

Σ VtΛ
− 1

2

Σ D
− 1

2
t )

≤
(

1 +
1 + γ

λ

)d
(7)

Let 0 < λ < 1 and γ = e− 1. Using Eqs. (6) and (7), β(δt) = ln(1/δt) + d ln ln t+ d
2 ln(1 + e/λ) = ln(t ln2 t) + d ln ln t+

d
2 ln(1 + e/λ), and a union bound over a, we have

Pr [ID+Vt > β(δt)] ≤
∑
a

Pr [ID+Vt > β(δt)|t ∈ Ka, D = λΛΣDa]

≤
∑
a

√
det(I +D−

1
2VtD−

1
2 )

exp (β(δt))

≤
(

ln t

ln(1 + γ)

)d
·

(
1 + 1+γ

λ

) d
2

exp
(
ln(t ln2 t) + d ln ln t+ d

2 ln(1 + e
λ )
)

= (ln t)
d ·

(
1 + e

λ

) d
2

t ln2 t · (ln t)d ·
(
1 + e

λ

) d
2
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=
1

t ln2 t
=δt

Thus, Eq. (5) holds and we complete the proof of Lemma 2.

B Proof for CMCB-FI

B.1 Proof of Theorem 1

In order to prove Theorem 1, we first have the following Lemmas 3 and 4, which are adaptions of Lemmas 1 and 2 to CMCB-FI.
Lemma 3 (Concentration of Covariance for CMCB-FI). Consider the CMCB-FI problem and algorithm MC-Empirical
(Algorithm 1). For any t ≥ 2, the event

Et ,

{
|Σij − Σ̂ij,t−1| ≤ 16

(
3 ln t

t− 1
∨
√

3 ln t

t− 1

)
+
(

6 + 4
√

3
) ln t

t− 1
,∀i, j ∈ [d]

}
satisfies

Pr[Et] ≥ 1− 10d2

t2

Proof. In CMCB-FI, we have Nij(t− 1) = t− 1 for any t ≥ 2 and i, j ∈ [d]. Then, Lemma 3 can be obtained by applying
Lemma 1 with Nij(t− 1) = t− 1 for any i, j ∈ [d].

Lemma 4 (Concentration of Means for CMCB-FI). Consider the CMCB-FI problem and algorithm MC-Empirical (Al-
gorithm 1). Let 0 < λ < 1. Define δt = 1

t ln2 t
and β(δt) = ln(1/δt) + ln ln t + d

2 ln(1 + e/λ) for t ≥ 2.

Define Et(w) =
√

2β(δt)
√
w>D−1

t−1(λΛΣDt−1 +
∑t−1
s=1 Σ)D−1

t−1w. Then, for any t ≥ 2 and w ∈ 4d, the event

Ft , {|w>θ∗ −w>θ̂t−1| ≤ Et(w)} satisfies Pr[Ft] ≥ 1− δt.

Proof. In CMCB-FI, Dt is a diagonal matrix such that Dt,ii = Ni(t) = t. Then, Lemma 4 can be obtained by applying
Lemma 2 with Dt = tI and that the union bound on the number of samples only needs to consider one dimension. Specifically,
in the proof of Lemma 2, we replace the set of timesteps Ka with Ka ⊆ [T ] for a ∈ N, which stands for

t ∈ Ka ⇔ (1 + γ)a ≤ t < (1 + γ)a+1.

This completes the proof.

Now we are ready to prove Theorem 1.

Proof. (Theorem 1) Let ∆t = f(w∗)− f(wt), g(t) = 16
(

3 ln t
t−1 ∨

√
3 ln t
t−1

)
+
(
6 + 4

√
3
)

ln t
t−1 denote the confidence radius

of covariance Σ∗ij for any i, j ∈ [d], and G(t) be the matrix with all entries equal to g(t). For any w ∈ 4cd, define
f̂t(w) = w>θ̂t − ρw>Σ̂tw and ht(w) = Et(w) + ρw>Gtw.

For any t ≥ 2, suppose that event Et ∩ Ft occurs. Then,

|f̂t−1(w)− f(w)| ≤ ht(w).

Therefore, we have
∆t ≤ |f̂t−1(w∗)− f(w∗)|+ |f̂t−1(wt)− f(wt)|.
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This is because if instead ∆t > |f̂t−1(w∗)− f(w∗)|+ |f̂t−1(wt)− f(wt)|, we have

f̂t−1(w∗)− f̂t−1(wt)

=f̂t−1(w∗)− f̂t−1(wt) + (f(w∗)− f(wt))− (f(w∗)− f(wt))

≥∆t − (f(w∗)− f̂t−1(w∗))− (f̂t−1(wt)− f(wt))

≥∆t − |(f(w∗)− f̂t−1(w∗))| − |(f̂t−1(wt)− f(wt))|
>0,

which contradicts the selection strategy of wt in algorithm MC-Empirical. Thus, we obtain

∆t ≤|f̂t−1(w∗)− f(w∗)|+ |f̂t−1(wt)− f(wt)|
≤ht(w∗) + ht(wt)

=Et(w
∗) + ρw∗>Gtw

∗ + Et(wt) + ρwt
>Gtwt (8)

Now, for any w ∈ 4cd, we have

w>Gtw =
∑
i,j∈[d]

g(t)wiwj

=g(t)
∑
i,j∈[d]

wiwj

=g(t)

(∑
i

wi

)2

=g(t)

and

Et(w) =
√

2β(δt)

√√√√w>D−1
t−1

(
λΛΣDt−1 +

t−1∑
s=1

Σ

)
D−1
t−1w

=
√

2β(δt)

√√√√λw>D−1
t−1ΛΣw +w>D−1

t−1

(
t−1∑
s=1

Σ

)
D−1
t−1w

=
√

2β(δt)
√
λw>D−1

t−1ΛΣw +w>D−1
t−1Σw

=
√

2β(δt)

√
1

t− 1
λw>ΛΣw +

1

t− 1
w>Σw

≤
√

2β(δt)

t− 1

√
λΣmax +w>Σw,

where Σmax denotes the maximum diagonal entry of Σ.

For any t ≥ 7, 3 ln t
t−1 <

√
3 ln t
t−1 and g(t) ≤

(
6 + 20

√
3
)

ln t√
t−1

, Eq. (8) can be written as

∆t ≤Et(w∗) + ρw∗>Gtw
∗ + Et(wt) + ρwt

>Gtwt

≤
√

2β(δt)

t− 1

(√
λΣmax +w>t Σwt +

√
λΣmax +w∗>Σw∗

)
+ 82ρ

ln t√
t− 1
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≤
√

2β(δt)

t− 1

(
2
√
λΣmax +

√
w>t Σwt +

√
w∗>Σw∗

)
+ 82ρ

ln t√
t− 1

=

√
2β(δt)

t− 1

(
2
√
λΣmax +

√
w∗>Σw∗

)
+ 82ρ

ln t√
t− 1

+

√
2β(δt)

t− 1
·
√
w>t Σwt (9)

Next, we investigate the upper bound of wt>Σwt. According to Eq. (8), we have that wt>Σwt satisfies

∆t ≤ ht(w∗) + ht(wt) (10)

In Eq. (10), we have

∆t =f(w∗)− f(wt)

≥θ∗min − ρw∗
>Σw∗ − θ∗max + ρw>t Σwt

and

ht(w
∗) + ht(wt) =Et(w

∗) + ρw∗>Gtw
∗ + Et(wt) + ρwt

>Gtwt

≤
√

2β(δt)

t− 1

(
2
√
λΣmax +

√
w>t Σwt +

√
w∗>Σw∗

)
+ 82ρ

ln t√
t− 1

.

Thus, wt>Σwt satisfies

θ∗min − ρw∗
>Σw∗ − θ∗max + ρw>t Σwt ≤

√
2β(δt)

t− 1

(
2
√
λΣmax +

√
w>t Σwt +

√
w∗>Σw∗

)
+ 82ρ

ln t√
t− 1

Rearranging the terms, we have

ρw>t Σwt −
√

2β(δt)

t− 1

√
wt>Σwt −

(
θ∗max − θ∗min + ρw∗>Σw∗

+

√
2β(δt)

t− 1

(
2
√
λΣmax +

√
w∗>Σw∗

)
+ 82ρ

ln t√
t− 1

)
≤ 0 (11)

Let x = w>t Σwt and 0 < λ < 1. Define function

y(x) =ρx− c1
√
x− c2 ≤ 0,

where c1 =
√

2β(δt)
t−1 > 0 and c2 = θ∗max − θ∗min + ρw∗>Σw∗ +

√
2β(δt)
t−1

(
2
√
λΣmax +

√
w∗>Σw∗

)
+ 82ρ ln t√

t−1
> 0. When

t ≥ t0 , max
{

(1 + e/λ)
d
2 , 7
}

, we have

β(δt) = ln(t ln2 t) + ln ln t+
d

2
ln(1 + e/λ) ≤ 5 ln t

Now since

y(x) =ρx− c1
√
x− c2
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=ρ

(√
x− c1

2ρ

)2

− c21
4ρ
− c2,

by letting y(x) ≤ 0, we have

x ≤

 c1
2ρ

+

√
c21

4ρ2
+
c2
ρ

2

≤2
c21

4ρ2
+ 2

c21
4ρ2

+ 2
c2
ρ

=
c21
ρ2

+
2c2
ρ

Therefore

w>t Σwt ≤
1

ρ2

2β(δt)

t− 1
+

2

ρ

(
θ∗max − θ∗min + ρw∗>Σw∗ +

√
2β(δt)

t− 1

(
2
√
λΣmax +

√
w∗>Σw∗

)
+ 82ρ

ln t√
t− 1

)

≤2w∗>Σw∗ +
2

ρ
(θ∗max − θ∗min) +

2

ρ

√
2β(δt)

t− 1

(
2
√
λΣmax +

√
w∗>Σw∗

)
+ 164

ln t√
t− 1

+
1

ρ2

2β(δt)

t− 1

Thus, we have that, w>t Σwt satisfies

w>t Σwt ≤ min

{
2w∗>Σw∗ +

2

ρ
(θ∗max − θ∗min) +

2

ρ

√
2β(δt)

t− 1

(
2
√
λΣmax +

√
w∗>Σw∗

)
+ 164

ln t√
t− 1

+
1

ρ2

2β(δt)

t− 1
, w>maxΣwmax

}
, (12)

where w>max , argmaxw∈4cd w
>Σw.

Below we discuss the two terms in Eq. (12) separately.

Case (i): Plugging the first term of the upper bound of w>t Σwt in Eq. (12) into Eq. (9), we have that for t ≥ t0,

∆t ≤
√

2β(δt)

t− 1

(
2
√
λΣmax +

√
w∗>Σw∗

)
+ 82ρ

ln t√
t− 1

+

√
2β(δt)

t− 1
·
√
w>t Σwt

≤
√

2β(δt)

t− 1

(
2
√
λΣmax +

√
w∗>Σw∗

)
+ 82ρ

ln t√
t− 1

+

√
2β(δt)

t− 1
·√

2w∗>Σw∗+
2

ρ
(θ∗max−θ∗min)+

2

ρ

√
2β(δt)

t− 1

(
2
√
λΣmax+

√
w∗>Σw∗

)
+164

ln t√
t− 1

+
1

ρ2

2β(δt)

t− 1

≤
√

2β(δt)

t− 1

(
2
√
λΣmax +

√
w∗>Σw∗

)
+ 82ρ

ln t√
t− 1

+

√
2β(δt)

t− 1
·
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(√
2w∗>Σw∗ +

√
2
√
ρ

√
θ∗max − θ∗min +

√
2
√
ρ

(
2β(δt)

t− 1

) 1
4
(√

2 (λΣmax)
1
4 +

(
w∗>Σw∗

) 1
4

)

+ 13

√
ln t

(t− 1)
1
4

+
1

ρ

√
2β(δt)

t− 1

)

≤
√

2β(δt)

t− 1

(
2
√
λΣmax +

√
w∗>Σw∗ +

√
2w∗>Σw∗ +

√
2
√
ρ

√
θ∗max − θ∗min

)
+ 82ρ

ln t√
t− 1

+

√
2
√
ρ

(
2β(δt)

t− 1

) 3
4
(√

2 (λΣmax)
1
4 +

(
w∗>Σw∗

) 1
4

)
+ 42

ln t

(t− 1)
3
4

+
1

ρ

2β(δt)

t− 1

≤
√

2β(δt)

t− 1

(
2
√
λΣmax +

√
w∗>Σw∗ +

√
2w∗>Σw∗ +

√
2
√
ρ

√
θ∗max − θ∗min

)
+ 82ρ

ln t√
t− 1

+

√
2
√
ρ

(
2β(δt)

t− 1

) 3
4
(√

2 (λΣmax)
1
4 +

(
w∗>Σw∗

) 1
4

)
+ 42

ln t

(t− 1)
3
4

+
1

ρ

2β(δt)

t− 1

≤
√

ln t

t− 1

(
2
√
λΣmax +

√
w∗>Σw∗ +

√
2w∗>Σw∗ +

√
2
√
ρ

√
θ∗max − θ∗min

)
+ 82ρ

ln t√
t− 1

+ 42
ln t

(t− 1)
3
4

(
1
√
ρ

+ 1

)
+

1

ρ

10 ln t

t− 1

According to Lemmas 3 and 4, for any t ≥ 2, we bound the probability of event ¬(Et ∩ Ft) as follows.

Pr [¬(Et ∩ Ft)] ≤
10d2

t2
+

1

t ln2 t

≤ 10d2

t ln2 t
+

1

t ln2 t

=
11d2

t ln2 t

Recall that t0 = max
{

(1 + e/λ)
d
2 , 7
}

. For any horizon T , summing over t = 1, . . . , t0 and t = t0, . . . , T , we obtain the
regret upper bound

E[R(T )] =O(t0∆max) +

T∑
t=t0

O (∆max · Pr [¬(Et ∩ Ft)] + ∆t · I {Et ∩ Ft})

=O(λ−
d
2 ∆max) +

T∑
t=t0

O

(
∆max ·

d2

t ln2 t

)
+

T∑
t=t0

O (∆t · I {Et ∩ Ft})

=O(λ−
d
2 ∆max) +

T∑
t=t0

O

(√
ln t

t− 1

(√
λΣmax +

√
w∗>Σw∗ +

1
√
ρ

√
θ∗max − θ∗min

)

+ ρ
ln t√
t− 1

+
ln t

(t− 1)
3
4

(
1
√
ρ

+ 1

)
+

1

ρ

ln t

t− 1

)
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=O(λ−
d
2 ∆max) +O

(
lnT
√
T

(√
λΣmax +

√
w∗>Σw∗ +

1
√
ρ

√
θ∗max − θ∗min + ρ

)

+ lnT · T 1
4

(
1
√
ρ

+ 1

)
+ ln2 T · 1

ρ

)

Case (ii): Plugging the second term of the upper bound of w>t Σwt in Eq. (12) into Eq. (9), we have that for t ≥ t0,

∆t ≤
√

2β(δt)

t− 1

(
2
√
λΣmax +

√
w>maxΣwmax +

√
w∗>Σw∗

)
+ 82ρ

ln t√
t− 1

≤2

√
2β(δt)

t− 1

(√
λΣmax +

√
w>maxΣwmax

)
+ 82ρ

ln t√
t− 1

For any horizon T , summing over t = 1, . . . , t0 and t = t0, . . . , T , we obtain the regret upper bound

E[R(T )] =O(t0∆max) +

T∑
t=t0

O (∆max · Pr [¬(Et ∩ Ft)] + ∆t · I {Et ∩ Ft})

=O(λ−
d
2 ∆max) +

T∑
t=t0

O

(
∆max ·

d2

t ln2 t

)
+

T∑
t=t0

O (∆t · I {Et ∩ Ft})

=O(λ−
d
2 ∆max) +

T∑
t=t0

O

(√
β(δt)

t− 1

(√
λΣmax +

√
w>maxΣwmax

)
+ ρ

ln t√
t− 1

)

=O(λ−
d
2 ∆max) +

T∑
t=t0

O

(√
ln t

t− 1

(√
λΣmax +

√
w>maxΣwmax

)
+ ρ

ln t√
t− 1

)

=O(λ−
d
2 ∆max) +O

(
lnT
√
T

(√
λΣmax +

√
w>maxΣwmax + ρ

))

Combining both cases (i) and (ii), we can obtain

E[R(T )] =O

(
min

{
lnT
√
T
(√

w∗>Σw∗ + ρ−
1
2

√
θ∗max − θ∗min

)
+ lnT · T 1

4

(
ρ−

1
2 + 1

)
+ ln2 T · ρ−1, lnT

√
T
√
w>maxΣwmax

}
+ lnT

√
T
(√

λΣmax + ρ
)

+ λ−
d
2 ∆max

)

Let Σ∗max = maxi∈[d] Σ∗ii. Setting λ = w∗>Σw∗

Σmax
and ignoring the terms of o(lnT

√
T ) order, we obtain

E[R(T )] =O

((
min

{√
w∗>Σw∗ + ρ−

1
2

√
θ∗max − θ∗min,

√
w>maxΣwmax

}
+ ρ

)
lnT
√
T

)

=O

((
min

{√
w∗>Σw∗ + ρ−

1
2

√
θ∗max − θ∗min,

√
Σmax

}
+ ρ
)

lnT
√
T

)
This completes the proof.
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B.2 Proof of Theorem 2

In order to prove Theorem 2, we first analyze the offline problem of CMCB-FI. Suppose that the covariance matrix Σ is positive
definite.

(Offline Problem of CMCB-FI) We define the quadratic optimization QuadOpt(θ∗,Σ) as

min
w

f(w) = ρw>Σw −w>θ∗

s.t. wi ≥ 0, ∀i ∈ [d]

d∑
i=1

wi = 1

andw∗ as the optimal solution to QuadOpt(θ∗,Σ). We consider the KKT condition for this quadratic optimization as follows:
2ρΣw − θ∗ − u− v1 = 0

wiui = 0, ∀i ∈ [d]

ui ≥ 0, ∀i ∈ [d]

wi ≥ 0, ∀i ∈ [d]

d∑
i=1

wi = 1

Let S ⊆ [d] be a subset of indexes forw such that S = {i ∈ [d] : wi > 0}. Let S̄ = [d]\S and we have S̄ = {i ∈ [d] : wi = 0}.
Then, from the KKT condition, we have

wS =
1

2ρ
Σ−1
S θ

∗
S +

1− ‖ 1
2ρΣ−1

S θ
∗
S‖

‖Σ−1
S 1‖

Σ−1
S 1 � 0 (13)

wS̄ =0

v =
2ρ(1− ‖ 1

2ρΣ−1
S θ

∗
S‖)

‖Σ−1
S 1‖

u =2ρΣw − θ∗ − v1 � 0
Since this problem is a quadratic optimization and the covariance matrix Σ is positive-definite, there is a unique feasible S
satisfying the above inequalities and the solution wS ,wS̄ is the optimal solution w∗.

Main Proof. Now, we give the proof of Theorem 2.

Proof. (Theorem 2) First, we choose prior distributions for θ∗ and Σ. We assume that θ∗ ∼ N (0, 1
ω I) and Σ ∼ πI , where

ω > 0 and πI takes probability 1 at the support I and probability 0 anywhere else. Define θ̂t , 1
t

∑t
i=1 θi and µt = t

t+ω θ̂t.
Then, we see that θ̂t ∼ N (0, ω+t

tω I) and µt ∼ N (0, t
(t+ω)ω I).

Thus, the posterior of θ∗ is given by

θ∗|θ1, . . . , θt,Σ ∼ N
(

t

t+ ω
θ̂t,

1

t+ ω
I

)
= N

(
µt,

1

t+ ω
I

)
.

The posterior of Σ is still Σ ∼ πI , i.e., Σ is always a fixed identity matrix. Under the Bayesian setting, the expected regret is
givenn by

T∑
t=1

Eµt∼N (0, t
(t+ω)ω

I)

[
Eθ∗|µt∼N (µt,

1
t+ω I)

[f(w∗)− f(wt)]
]
.
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Recall that w∗ is the optimal solution to QuadOpt(θ∗,Σ). It can be seen that the best strategy of wt at timestep t is to select
the optimal solution to QuadOpt(µt,Σ) and we use algorithm A to denote this strategy. Thus, to obtain a regret lower bound
for the problem, it suffices to prove a regret lower bound of algorithm A for the problem.

Below we prove a regret lower bound of algorithm A for the problem.

Step (i). We consider the case when w∗ and wt both lie in the interior of the d-dimensional probability simplex 4d, i.e.,
w∗i > 0,∀i ∈ [d] and wt,i > 0,∀i ∈ [d]. From Eq. (13), w∗ satisfies

1

2ρ
I−1θ∗ +

1− ‖ 1
2ρI
−1θ∗‖

‖I−11‖
I−11 � 0.

Rearranging the terms, we have

‖θ∗‖1− dθ∗ ≺ 2ρ1,

which is equivalent to 
θ∗2 + · · ·+ θ∗d − (d− 1)θ∗1 < 2ρ

...
θ∗1 + · · ·+ θ∗d−1 − (d− 1)θ∗d < 2ρ

(14)

Similarly, wt satisfies 
µ2 + · · ·+ µd − (d− 1)µ1 < 2ρ

...
µ1 + · · ·+ µd−1 − (d− 1)µd < 2ρ

(15)

We first derive a condition that makes µt lie in the interior of4d. Recall that µt ∼ N (0, t
(t+ω)ω I). Define event

Et ,

{
−3

√
t

(t+ ω)ω
≤ µt ≤ 3

√
t

(t+ ω)ω

}
.

According to the 3− σ principle for Gaussian distributions, we have

Pr [Et] ≥ (99.7%)d.

Conditioning on Et, under which Eq. (15) hold, it suffices to let

3(d− 1)

√
t

(t+ ω)ω
−

(
−3(d− 1)

√
t

(t+ ω)ω

)
< ρ,

which is equivalent to (
1 +

ω

t

)
ω >

36(d− 1)2

ρ2
, (16)

when t > 0,m > 0, t+ ω > 0. Let t1 > 0 be the smallest timestep that satisfies Eq. (16). Thus, when Et occurs and t ≥ t1, µt
lie in the interior of4d.

Next, we derive some condition that make θ∗ lie in the interior of4d. Recall that θ∗|µt ∼ N (µt,
1
t+ω I).
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Fix µt, and then we define event

Ft ,

{
−3

√
t

(t+ ω)ω
≤ θ∗ − µt ≤ 3

√
t

(t+ ω)ω

}
.

According to the 3− σ principle for Gaussian distributions, we have

Pr [Ft] ≥ (99.7%)d.

Conditioning on Ft, in order to let Eq. (14) hold, it suffices to let

3(d− 1)
1√
t+ ω

−
(
−3(d− 1)

1√
t+ ω

)
< ρ,

which is equivalent to

t >
36(d− 1)2

ρ2
− ω, (17)

when t+ ω > 0. Let t2 > 0 be the smallest timestep that satisfies Eq. (17). Thus, when Ft occurs and t ≥ t2, θ∗ lie in the
interior of4d.

Step (ii). Suppose that Et ∩ Ft ∩ Gt occurs and consider t ≥ t̃ , max{t1, t2}. Then, w∗ and wt both lie in the interior of
4d, i.e., w∗i > 0,∀i ∈ [d] and wt,i > 0,∀i ∈ [d]. We have

w∗ =
1

2ρ
Σ−1θ∗ +

1− ‖ 1
2ρΣ−1θ∗‖
‖Σ−11‖

Σ−11

wt =
1

2ρ
Σ−1µt +

1− ‖ 1
2ρΣ−1µt‖
‖Σ−11‖

Σ−11

Let ∆θt , µt − θ∗ and thus ∆θt|µt ∼ N (0, 1
t+ω I). Let ∆wt , wt − w∗ = 1

2ρΣ−1∆θt −
‖ 1

2ρΣ−1∆θt‖
‖Σ−11‖ Σ−11 =

1
2ρ∆θt − 1

2ρd‖∆θt‖1. Then, we have

f(w∗)− f(wt) =f(w∗)− f(w∗ + ∆wt)

=
(
(w∗)>θ∗ − ρ(w∗)>Σw∗

)
−
(
(w∗)>θ∗ + (∆wt)

>θ∗ − ρ(w∗)>Σw∗ − 2ρ(∆wt)
>Σw∗ − ρ(∆wt)

>Σ∆wt
)

=− (∆wt)
>θ∗ + 2ρ(∆wt)

>Σw∗ + ρ(∆wt)
>Σ∆wt

=(∆wt)
>∇f(θ∗) + ρ(∆wt)

>Σ∆wt

≥ρ(∆wt)
>Σ∆wt

=ρ(∆wt)
>∆wt

=ρ

(
1

4ρ2
(∆θt)

>∆θt −
1

4ρ2d2
‖∆θt‖2d

)

=
1

4ρ

 d∑
i=1

∆θ2
t,i −

(∑d
i=1 ∆θt,i

)2

d


=

1

4ρd

∑
1≤i<j≤d

(∆θt,i −∆θt,j)
2
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Let i1 = 1, j1 = 2, i2 = 3, j2 = 4, . . . , id d2 e = 2
⌈
d
2

⌉
− 1, jd d2 e = 2

⌈
d
2

⌉
. For any ik, jk (k ∈ [

⌈
d
2

⌉
]), ∆θt,ik −∆θt,jk |µt ∼

N (0, 2
t+ω ) and they are mutually independent among k.

Fix µt, and then we define event

Gt ,

{
|∆θt,ik −∆θt,jk | ≥ 0.3

√
2

t+ ω
,∀k ∈

[⌈
d

2

⌉]}
.

From the c.d.f. of Gaussian distributions, we have

Pr[Gt] ≥ (75%)d
d
2 e.

From this, we get

Pr [Ft ∩ Gt] ≥1− Pr
[
F̄t
]
− Pr

[
Ḡt
]

≥1−
(
1− (99.7%)d

)
−
(

1− (75%)d
d
2 e
)

≥(99.7%)d + (75%)d
d
2 e − 1.

When d ≤ 18, Pr [Ft ∩ Gt] ≥ (99.7%)d + (75%)d
d
2 e − 1 > 0.

Step (iii). We bound the expected regret by considering the event Et ∩ Ft ∩ Gt and t ≥ t̃. Specifically,

T∑
t=1

Eµt∼N (0, t
(t+ω)ω

I)

[
Eθ∗|µt∼N (µt,

1
t+ω I)

[f(w∗)− f(wt)]
]

≥
T∑
t=t̃

Eµt∼N (0, t
(t+ω)ω

I)

[
Eθ∗|µt∼N (µt,

1
t+ω I)

[f(w∗)− f(wt)] |Et
]

Pr [Et]

≥
T∑
t=t̃

Eµt∼N (0, t
(t+ω)ω

I)

[
Eθ∗|µt∼N (µt,

1
t+ω I)

[f(w∗)− f(wt)|Ft ∩ Gt] Pr [Ft ∩ Gt] |Et
]

Pr [Et]

≥
T∑
t=t̃

Eµt∼N (0, t
(t+ω)ω

I)

[
Eθ∗|µt∼N (µt,

1
t+ω I)

[
1

4ρd

∑
1≤i<j≤d

(∆θt,i −∆θt,j)
2 |Ft ∩ Gt ∩ Et

]
· Pr [Ft ∩ Gt]

]
Pr [Et]

≥
T∑
t=t̃

Eµt∼N (0, t
(t+ω)ω

I)

[
Eθ∗|µt∼N (µt,

1
t+ω I)

[⌈
d
2

⌉
4ρd
· 0.32 · 2
t+ ω

|Ft ∩ Gt ∩ Et

]
·
(

(99.7%)d + (75%)d
d
2 e − 1

)]
(99.7%)d

=

T∑
t=t̃

0.01125

ρ(t+ ω)

(
(99.7%)d + (75%)d

d
2 e − 1

)
(99.7%)d

=
0.01125

(
(99.7%)d + (75%)d

d
2 e − 1

)
(99.7%)d

ρ
ln

(
t+ ω

t̃+ ω

)
.

In the following, we consider an intrinsic bound of the expected regret and set the problem parameters to proper quantities.
Since the expected regret is upper bounded by ∆maxT and

∆max =fmax − fmin
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≥f
(

1

d
1
)
− (θ∗min − ρ)

=
1

d

d∑
i=1

θ∗i − ρ
1

d
− (θ∗min − ρ)

=
1

d

d∑
i=1

θ∗i − θ∗min +
d− 1

d
ρ

>0,

we conclude that the expected regret is lower bounded by

min

{
0.01125

(
(99.7%)d + (75%)d

d
2 e − 1

)
(99.7%)d

ρ
ln

(
t+ ω

t̃+m

)
,

(
1

d

d∑
i=1

θ∗i − θ∗min +
d− 1

d
ρ

)
T

}
.

Choose ω = 36(d− 1)2T and ρ = 1√
T

. According to Eqs. (16) and (17), we have t1 = t2 = t̃ = 1. Therefore, for d ≤ 18, the

expected regret is lower bounded by Ω(
√
T ).

C Proof for CMCB-SB

C.1 Proof of Theorem 3

Proof. (Theorem 3) Denote ∆t = f(w∗)− f(wt), f̄t(w) = w>θ̂t−1 +Et(w)− ρw>Σt−1w and Gt the matrix whose ij-th
entry is gij(t).

For t ≥ d2 + 1, suppose that event Gt ∩Ht occurs. Define ht(w) , Et(w) + ρw>Gtw for any w ∈ 4cd. Then, we have

0 ≤ f̄t(w)− f(w) ≤ 2ht(w).

According to the selection strategy of wt, we obtain

f(w∗)− f(wt) ≤f̄t(w∗)− f(wt)

≤f̄t(wt)− f(wt)

≤2ht(wt)

Thus, for any T ≥ d2 + 1, we have that

T∑
t=d2+1

(f(w∗)− f(wt))

≤2

T∑
t=d2+1

ht(wt)

=2

T∑
t=d2+1

√2β(δt)

√√√√w>D−1
t−1(λΛΣ̄tDt−1 +

t−1∑
s=1

Σ̄s,ws)D
−1
t−1w + ρw>Gtw
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≤2
√

2β(δT )

T∑
t=d2+1

√√√√w>D−1
t−1(λΛΣ̄tDt−1 +

t−1∑
s=1

Σ̄s,ws)D
−1
t−1w + 2ρ

T∑
t=d2+1

w>Gtw

≤2
√

2β(δT )

√√√√T ·
T∑

t=d2+1

(
w>D−1

t−1(λΛΣ̄tDt−1 +

t−1∑
s=1

Σ̄s,ws)D
−1
t−1w

)

+ 2ρ

T∑
t=d2+1

w>Gtw

≤2
√

2β(δT )
√
T

√√√√√√√λ

T∑
t=d2+1

(
w>D−1

t−1ΛΣ̄tw
)

︸ ︷︷ ︸
Γ1

+

T∑
t=d2+1

(
w>D−1

t−1

t−1∑
s=1

Σ̄s,wsD
−1
t−1w

)
︸ ︷︷ ︸

Γ2

+ 2ρ
T∑

t=d2+1

w>Gtw︸ ︷︷ ︸
Γ3

Let Σ+
ij = Σij ∨ 0 for any i, j,∈ [d]. We first address Γ3. Since for any t ≥ d2 + 1 and i, j ∈ [d],

gij(t) =16

(
3 ln t

Nij(t− 1)
∨

√
3 ln t

Nij(t− 1)

)
+

√
48 ln2 t

Nij(t− 1)Ni(t− 1)
+

√
36 ln2 t

Nij(t− 1)Nj(t− 1)

≤48
ln t√

Nij(t− 1)
+

√
48 ln2 t

Nij(t− 1)
+

√
36 ln2 t

Nij(t− 1)

≤61
ln t√

Nij(t− 1)
,

we can bound Γ3 as follows

Γ3 =

T∑
t=d2+1

w>Gtw

=

T∑
t=d2+1

∑
i,j∈[d]

gij(t)wt,iwt,j

≤61
∑
i,j∈[d]

T∑
t=d2+1

ln t√
Nij(t− 1)

wt,iwt,j

≤61 lnT
∑
i,j∈[d]

T∑
t=d2+1

wt,iwt,j√∑t−1
s=1 ws,iws,j

≤61 lnT
∑
i,j∈[d]

T∑
t=d2+1

wt,iwt,j√∑t−1
s=1 ws,iws,j
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≤122 lnT
∑
i,j∈[d]

√√√√ T∑
t=1

wt,iwt,j

≤122 lnT

√√√√d2
∑
i,j∈[d]

T∑
t=1

wt,iwt,j

=122 lnT

√√√√d2

T∑
t=1

∑
i,j∈[d]

wt,iwt,j

=122 lnT

√√√√√d2

T∑
t=1

∑
i∈[d]

wt,i

2

≤122d lnT
√
T

Next, we obtain a bound for Γ1.

Γ1 =

T∑
t=d2+1

(
w>D−1

t−1ΛΣ̄tw
)

=

T∑
t=d2+1

∑
i∈[d]

Σ̄t,ii
Ni(t− 1)

w2
t,i

≤
T∑

t=d2+1

∑
i∈[d]

Σ̄t,ii∑t−1
s=1 ws,i

w2
t,i

≤
∑
i∈[d]

T∑
t=d2+1

Σii + 2gii(t)∑t−1
s=1 ws,i

w2
t,i

≤
∑
i∈[d]

 T∑
t=d2+1

Σii∑t−1
s=1 ws,i

wt,i + 122

T∑
t=d2+1

ln t√
Ni(t−1)∑t−1
s=1 ws,i

wt,i


≤
∑
i∈[d]

Σ,ii

T∑
t=d2+1

1∑t−1
s=1 ws,i

wt,i + 122 lnT

T∑
t=d2+1

1

(
∑t−1
s=1 ws,i)

3
2

wt,i


≤
∑
i∈[d]

Σ+
ii ln

(
T∑
t=1

wt,i

)
+ 244 lnT

1√∑d2

t=1 wt,i


≤
∑
i∈[d]

Σ+
ii lnT + 244 lnT

1√∑d2

t=1 wt,i


Finally, we bound Γ2.

Γ2
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=

T∑
t=d2+1

(
w>t D

−1
t−1

(
t−1∑
s=1

Σ̄s,ws

)
D−1
t−1wt

)

=
∑
i,j∈[d]

T∑
t=d2+1

∑t−1
s=1 Σ̄s,ijI{ws,i, ws,j > 0}
Ni(t− 1)Nj(t− 1)

wt,iwt,j

≤
∑
i,j∈[d]

T∑
t=d2+1

∑t−1
s=1 Σ̄s,ijI{ws,i, ws,j > 0}

N2
ij(t− 1)

wt,iwt,j

≤
T∑

t=d2+1

∑
i,j∈[d]

∑t−1
s=1 (Σij + 2gij(s)) I{ws,i, ws,j > 0}

N2
ij(t− 1)

wt,iwt,j

=
∑
i,j∈[d]

 T∑
t=d2+1

Σij
∑t−1
s=1 I{ws,i, ws,j > 0}
N2
ij(t− 1)

wt,iwt,j +

T∑
t=d2+1

2
∑t−1
s=1 gij(s)I{ws,i, ws,j > 0}

N2
ij(t− 1)

wt,iwt,j


≤
∑
i,j∈[d]

Σij

T∑
t=d2+1

1

Nij(t− 1)
wt,iwt,j + 122

T∑
t=d2+1

∑t−1
s=1

ln s√
Nij(s−1)

I{ws,i, ws,j > 0}

N2
ij(t− 1)

wt,iwt,j


≤
∑
i,j∈[d]

Σij

T∑
t=d2+1

1∑t−1
s=1 ws,iws,j

wt,iwt,j + 122

T∑
t=d2+1

ln t
∑t−1
s=1

1√∑s−1
`=1 I{w`,i,w`,j>0}

I{ws,i, ws,j > 0}

N2
ij(t− 1)

wt,iwt,j


≤
∑
i,j∈[d]

Σij

T∑
t=d2+1

1∑t−1
s=1 ws,iws,j

wt,iwt,j + 244

T∑
t=d2+1

ln t
√∑t−1

s=1 I{ws,i, ws,j > 0}
N2
ij(t− 1)

wt,iwt,j


=
∑
i,j∈[d]

Σij

T∑
t=d2+1

1∑t−1
s=1 ws,iws,j

wt,iwt,j + 244 lnT

T∑
t=d2+1

1

N
3
2
ij (t− 1)

wt,iwt,j


≤
∑
i,j∈[d]

Σij

T∑
t=d2+1

1∑t−1
s=1 ws,iws,j

wt,iwt,j + 244 lnT

T∑
t=d2+1

1(∑t−1
s=1 ws,iws,j

) 3
2

wt,iwt,j


≤
∑
i,j∈[d]

Σ+
ij ln

(
T∑
t=1

wt,iwt,j

)
+ 488 lnT

1√∑d2

t=1 wt,iwt,j


≤
∑
i,j∈[d]

Σ+
ij lnT + 488 lnT

1√∑d2

t=1 wt,iwt,j



Recall that β(δT ) = ln(T ln2 T ) + d ln lnT + d
2 ln(1 + e/λ) = O(lnT + d ln lnT + d ln(1 + λ−1)). Combining the bounds

of Γ1,Γ2 and Γ3, we obtain
T∑

t=d2+1

(f(w∗)− f(wt))
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≤2
√

2β(δT )
√
T

√√√√√√√λ

T∑
t=d2+1

(
w>D−1

t−1ΛΣ̄tw
)

︸ ︷︷ ︸
Γ1

+

T∑
t=d2+1

(
w>D−1

t−1

t−1∑
s=1

Σ̄s,wsD
−1
t−1w

)
︸ ︷︷ ︸

Γ2

+ 2ρ

T∑
t=d2+1

w>Gtw︸ ︷︷ ︸
Γ3

≤2
√

2β(δT )
√
T

√√√√√λ
∑
i∈[d]

Σ+
ii lnT + 244 lnT

1√∑d2

t=1 wt,i

+
∑
i,j∈[d]

Σ+
ij lnT + 488 lnT

1√∑d2

t=1 wt,iwt,j


+ 244ρd lnT

√
T

≤2
√

2β(δT )
√
T

√
λ lnT

∑
i∈[d]

Σ+
ii + lnT

∑
i,j∈[d]

Σ+
ij + (244λ+ 488)d2 lnT + 244ρd lnT

√
T

=O

√(lnT + d ln lnT + d ln(1 + λ−1)) · T
√
λ lnT

∑
i∈[d]

Σ+
ii + lnT

∑
i,j∈[d]

Σ+
ij + (λ+ 1)d2 lnT + ρd lnT

√
T


=O

√d(lnT + ln(1 + λ−1)) · T
√
λ lnT

∑
i∈[d]

Σ+
ii + lnT

∑
i,j∈[d]

Σ+
ij + (λ+ 1)d2 lnT + ρd lnT

√
T


=O

√d lnT (lnT + ln(1 + λ−1)) · T
√
λ
∑
i∈[d]

Σ+
ii +

∑
i,j∈[d]

Σ+
ij + (λ+ 1)d2 + ρd lnT

√
T


According to Lemmas 1 and 2, for any t ≥ 2, the probability of event ¬(Gt ∩Ht) satisfies

Pr [¬(Gt ∩Ht)] ≤
10d2

t2
+

1

t ln2 t

≤ 10d2

t ln2 t
+

1

t ln2 t

=
11d2

t ln2 t

Therefore, for any horizon T , we obtain the regret upper bound

E[R(T )] =O(∆max) +

T∑
t=2

O (∆max · Pr [¬(Gt ∩Ht)] + ∆t · I {Gt ∩Ht})

=O(∆max) +

T∑
t=2

O

(
∆max ·

d2

t ln2 t

)
+O

(√
d lnT (lnT + ln(1 + λ−1))T ·

√
λ
∑
i∈[d]

Σ+
ii +

∑
i,j∈[d]

Σ+
ij + (λ+ 1)d2 + ρd lnT

√
T

)

=O

√d lnT (lnT + ln(1 + λ−1))T

√
λ
∑
i∈[d]

Σ+
ii +

∑
i,j∈[d]

Σ+
ij + (λ+ 1)d2 + ρd lnT

√
T + d2∆max
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=O

√d (ln(1 + λ−1) + 1) ln2 T · T

√√√√√(λ+ 1)

 ∑
i,j∈[d]

Σ+
ij + d2

+ ρd lnT
√
T


=O

(√
(λ+ 1) (ln(1 + λ−1) + 1) (‖Σ‖+ + d2)d ln2 T · T + ρd lnT

√
T

)

=O

(√
L(λ)(‖Σ‖+ + d2)d ln2 T · T + ρd lnT

√
T

)

where L(λ) = (λ+ 1)
(
ln(1 + λ−1) + 1

)
and ‖Σ‖+ =

∑
i,j∈[d] (Σij ∨ 0) for any i, j ∈ [d].

C.2 Proof of Theorem 4

Proof. First, we construct some instances with d ≥ 4, 2
d ≤ c ≤

1
2 , Σ∗ = I and θt ∼ N(θ∗, I).

Let IJ be a random instance constructed as follows: we uniformly choose a dimension J from [d], and the expected reward
vector θ∗J has 1

2 + ε on its J-th entry and 1
2 elsewhere, where ε ∈ (0, 1

2 ] will be specified later. Let Iu be a uniform instance,
where θ∗u has all its entries to be 1

2 . Let PrJ [·] and Pru[·] denote the probabilities under instances IJ and Iu, respectively, and
let Prj [·] = PrJ [·|J = j]. Analogously, EJ [·], Eu[·] and Ej [·] = EJ [·|J = j] denote the expectation operations.

Fix an algorithm A. Let St ∈ {R ∪ {⊥}}d be a random variable vector denoting the observations at timestep t, obtained by
running A. Here ⊥ denotes no observation on this dimension. Let Q⊥ denote the distribution on support {⊥} which takes
value ⊥ with probability 1.

In CMCB-SB, if wt,i > 0, we can observe the reward on the i-th dimension, i.e., St,i = θt,i; otherwise, if wt,i = 0, we
cannot get observation on the i-th dimension, i.e., St,i =⊥. Let DJ be the distribution of observation sequence S1, . . . St under
instance IJ , and Dj = DJ|J=j is the distribution conditioned on J = j. Let Du be the distribution of observation sequence
S1, . . . St under instance Iu. For any i ∈ [d], let Ni =

∑T
t=1 I{wt,i > 0} be the number of pulls that has a positive weight on

the i-th dimension, i.e., the number of observations on the i-th dimension.

Following the analysis procedure of Lemma A.1 in [4], we have

KL(Dj‖Du) =

T∑
t=1

KL(Du[St|S1, . . . , St−1]‖Dj [St|S1, . . . , St−1])

=

T∑
t=1

d∑
i=1

(
Pr[wt,i > 0] ·KL

(
N(θ∗u,i, 1)‖N(θ∗j,i, 1)

)
+ Pr[wt,i = 0] ·KL(Q⊥‖Q⊥)

)
=

T∑
t=1

Pr[wt,j > 0] ·KL
(
N(

1

2
, 1)‖N(

1

2
+ ε, 1)

)
+

d∑
i6=j

Pr[wt,i > 0] ·KL
(
N(

1

2
, 1)‖N(

1

2
, 1)

)
=

1

2
ε2 ·

T∑
t=1

Pr[wt,j > 0]

=
1

2
ε2Eu[Nj ]
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Here the first equality comes from the chain rule of entropy [9]. The second equality is due to that given S1, . . . , St−1, if
wt,i > 0, the conditional distribution of St is N(θ∗·,i, 1), where "·" refers to the subscript of instances; otherwise, if wt,i = 0,
St is ⊥ deterministically. The third equality is due to that θ∗u and θ∗j only have one different entry on the j-th dimension.

Let ‖ · ‖ with subscript TV denote the total variance distance, and KL(·‖·) denote the Kullback–Leibler divergence. Using Eq.
(28) in the analysis of Lemma A.1 in [4] and Pinsker’s inequality, we have

Ej [Nj ] ≤Eu[Nj ] + T‖Dj −Du‖TV

≤Eu[Nj ] + T

√
1

2
KL(Dj‖Du)

=Eu[Nj ] +
Tε

2

√
Eu[Nj ]

Let m =
⌊

1
c

⌋
≤ d

2 denote the maximum number of positive entries for a feasible action, i.e., the maximum number of
observations for a pull. Performing the above argument for all j ∈ [d] and using

∑
j∈[d]Eu[Nj ] ≤ mT , we have

∑
j∈[d]

Ej [Nj ] ≤
∑
j∈[d]

Eu[Nj ] +
Tε

2

∑
j∈[d]

√
Eu[Nj ]

≤mT +
Tε

2

√
d
∑
j∈[d]

Eu[Nj ]

≤mT +
Tε

2

√
dmT

and thus

EJ [NJ ] =
1

d

∑
j∈[d]

Ej [Nj ] ≤
mT

d
+
Tε

2

√
mT

d

Letting ρ ≤ ε
2(1−c) , the expected reward (linear) term dominates f(w), and the best actionw∗ under IJ has the weight 1 on

the J-th entry and 0 elsewhere.

Recall that m ≤ 1
c . For each pull that has no weight on the J-th entry, algorithm A must suffer a regret at least

(
1

2
+ ε− ρ)− (

1

2
− ρ · 1

m
)

≥ε− m− 1

m
ρ

≥ε− m− 1

m
· ε

2(1− c)

≥ε− m− 1

m
· ε

2(1− 1
m )

=
ε

2
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Thus, the regret is lower bounded by

E[R(T )] ≥(T − EJ [NJ ]) · ε
2

≥

(
T − mT

d
− Tε

2

√
mT

d

)
· ε

2

=Ω

(
Tε− Tε2

√
mT

d

)
,

where the last equality is due to m ≤ d
2 .

Letting ε = a0

√
d
Tm for small enough constant a0, we obtain the regret lower bound Ω(

√
dT
m ) = Ω(

√
cdT ).

D Proof for CMCB-FB

D.1 Proof of Theorem 5

In order to prove Theorem 5, we first prove Lemmas 5 and 6, which give the concentrations of covariance and means for
CMCB-FB, using different techniques than those for CMCB-SB (Lemmas 1 and 2) and CMCB-FI (Lemmas 3 and 4).
Lemma 5 (Concentration of Covariance for CMCB-FB). Consider the CMCB-FB problem and algorithm MC-ETE (Algorithm 3).
For any t > 0, the event

Mt ,

{
|Σij − Σ̂ij,t−1| ≤ 5‖C+

π ‖

√
3 ln t

2Nπ(t)

}
satisfies

Pr[Mt] ≥ 1− 6d2

t2
,

where ‖C+
π ‖ , maxi∈[d̃]

{∑
j∈[d̃]

∣∣C+
π,ij

∣∣}.

Proof. Let σ = (Σ11, . . . ,Σdd,Σ12, . . . ,Σ1d,Σ23, . . . ,Σd,d−1)> ∈ Rd̃ denote the column vector that stacks the d̃ distinct
entries in the covariance matrix Σ.

Recall that the d̃× d̃ matrix

Cπ =



w2
1,1 . . . w2

1,d 2w1,1w1,2 2w1,1w1,3 . . . 2w1,d−1w1,d

w2
2,1 . . . w2

2,d 2w2,1w2,2 2w2,1w2,3 . . . 2w2,d−1w2,d

. . . . . .

. . . . . .
w2
d̃,1

. . . w2
d̃,d

2wd̃,1wd̃,2 2wd̃,1wd̃,3 . . . 2wd̃,d−1wd̃,d


,

where wi,j denotes the j-th entry of portfolio vector wi in design set W . We use Cπ,k to denote the k-th row in matrix Cπ .

We recall the feedback structure in algorithm MC-ETE as follows. At each timestep t, the learner plays an action wt ∈
4d, and observes the full-bandit feedback yt = w>t θt with E[yt] = w>t θ

∗ and Var[yt] = w>t Σwt =
∑
i∈[d] w

2
t,iΣii +
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∑
i,j∈[d],i<j 2wt,iwt,jΣij . Then, during exploration round s, where each action in design set π = {v1, . . . ,vd̃} is pulled

once, the full-bandit feedback ys has mean y(π) , (v>1 θ
∗, . . . ,v>

d̃
θ∗)> and variance z(π) , (v>1 Σv1, . . . ,v

>
d̃

Σvd̃)
> =

(C>π,1σ, . . . , C
>
π,d̃
σ)> = Cπσ. For any t > 0, denote ŷt the empirical mean of y(π) , (v>1 θ

∗, . . . ,v>
d̃
θ∗)> and ẑt the

empirical variance of z(π) , (C>π,1σ, . . . , C
>
π,d̃
σ)>.

Using the Chernoff-Hoeffding inequality for empirical variances (Lemma 1 in [28]), we have that for any t > 0 and k ∈ d̃, with
probability at least 1− 6d2

t2 ,

|ẑt−1,k − zk| =
∣∣ẑt−1,k − C>π,kσ

∣∣ ≤ 5

√
3 ln t

2Nπ(t− 1)
.

Let C+
π,i denote the i-th row of matrix C+

π and C+
π,ik denote the ik-th entry of matrix C+

π . Since C+
π Cπ = I , for any i ∈ [d̃],

we have
|σ̂t−1,i − σi| =

∣∣(C+
π,i)
>ẑt − (C+

π,i)
>Cπσ

∣∣
≤
∑
k∈[d̃]

∣∣∣C+
π,ik

∣∣∣ ∣∣ẑt−1,k − C>π,kσ
∣∣

≤5
∑
k∈[d̃]

∣∣∣C+
π,ik

∣∣∣√ 3 ln t

2Nπ(t)

≤5‖C+
π ‖

√
3 ln t

2Nπ(t)

In addition, since σ = (Σ11, . . . ,Σdd,Σ12, . . . ,Σ1d,Σ23, . . . ,Σd,d−1)> ∈ Rd̃ is the column vector stacking the distinct
entries in Σ, we obtain the lemma.

Lemma 6 (Concentration of Means for CMCB-FB). Consider the CMCB-FB problem and algorithm MC-ETE

(Algorithm 3). Let δt > 0, λ > 0, β(δt) = ln(1/δt) + ln ln t + d̃
2 ln(1 + e/λ) and Et(w) =√

2β(δt)
√
w>B+

πD
−1
t−1(λΛΣπDt−1 +

∑Nπ(t−1)
s=1 Σπ)D−1

t−1(B+
π )>w, where Σπ = diag(v>1 Σv1, . . . ,v

>
d̃

Σvd̃). Then, the

event Nt , {|w>θ∗ −w>θ̂t−1| ≤ Et(w),∀w ∈ D} satisfies Pr[Nt] ≥ 1− δt.

Proof. Recall that the d̃× d matrix Bπ = [v>1 ; . . . ;v>
d̃

]. and B+
π is the Moore–Penrose pseudoinverse of Bπ. Since Bπ is of

full column rank, B+
π satisfies B+

π Bπ = I .

We recall the feedback structure in algorithm MC-ETE as follows. At each timestep t, the learner plays an action wt ∈ 4d,
and observes the full-bandit feedback yt = w>t θt such that E[yt] = w>t θ

∗ and Var[yt] = w>t Σwt =
∑
i∈[d] w

2
t,iΣii +∑

i,j∈[d],i<j 2wt,iwt,jΣij . Then, during exploration round s, where each action in design set π = {v1, . . . ,vd̃} is pulled
once, the full-bandit feedback ys has mean y(π) , (v>1 θ

∗, . . . ,v>
d̃
θ∗)> and variance z(π) , (v>1 Σv1, . . . ,v

>
d̃

Σvd̃)
> =

(C>π,1σ, . . . , C
>
π,d̃
σ)> = Cπσ. For any t > 0, ŷt is the empirical mean of y(π) , (v>1 θ

∗, . . . ,v>
d̃
θ∗)> and ẑt is the empirical

variance of z(π) , (C>π,1σ, . . . , C
>
π,d̃
σ)>.

Let Dt be the d̃× d̃ diagonal matrix such that Dt,ii = Nπ(t) for any i ∈ [d̃] and t > 0. Let Σπ be a d̃× d̃ diagonal matrix such
that Σπ,ii = w>i Σwi for any i ∈ [d̃], and thus ΛΣπ = Σπ. Let εt be the vector such that ηt = Σ

1
2 εt for any timestep t > 0.

Let ζs = (v1>Σ
1
2 εs,1, . . . ,vd̃>Σ

1
2 εs,d̃)

>, where Σ
1
2 εs,k denotes the noise of the k-th sample in the s-th exploration round.
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Note that, the following analysis of |w>(θ∗ − θ̂t−1)| and the constructions (definitions) of the noise ζs, matrices St, Vt and
super-martingale Mu

t are different from those in CMCB-SB (Lemmas 1 and 2) and CMCB-FI (Lemmas 3 and 4).

For any w ∈ 4d, we have∣∣∣w> (θ∗ − θ̂t−1

)∣∣∣ =
∣∣w> (B+

π Bπθ
∗ −B+

π ŷt−1

)∣∣
=
∣∣w>B+

π (y(π)− ŷt−1)
∣∣

=

∣∣∣∣∣∣−w>B+
πD
−1
t−1

Nπ(t−1)∑
s=1

ζs

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣−w>B+
πD
−1
t−1

D +

Nπ(t−1)∑
s=1

Σπ

 1
2
D +

Nπ(t−1)∑
s=1

Σπ

− 1
2 Nπ(t−1)∑

s=1

ζs

∣∣∣∣∣∣∣
≤

√√√√√w>B+
πD
−1
t−1

D +

Nπ(t−1)∑
s=1

Σπ

D−1
t−1(B+

π )>w ·

∥∥∥∥∥∥
Nπ(t−1)∑
s=1

ζs

∥∥∥∥∥∥(
D+

∑Nπ(t−1)
s=1 Σπ

)−1

Let St =
∑Nπ(t−1)
s=1 ζs, Vt =

∑Nπ(t−1)
s=1 Σπ and ID+Vt = 1

2‖St‖
2
(D+Vt)

−1 . Then, we have∥∥∥∥∥∥
Nπ(t−1)∑
s=1

ζs

∥∥∥∥∥∥(
D+

∑Nπ(t−1)
s=1 Σπ

)−1

= ‖St‖(D+Vt)
−1 =

√
2ID+Vt .

Since D � λΛΣπDt−1, we get

∣∣∣w> (θ∗ − θ̂t−1

)∣∣∣ ≤
√√√√√w>B+

πD
−1
t−1DD

−1
t−1(B+

π )>w +w>B+
πD
−1
t−1

Nπ(t−1)∑
s=1

Σπ

D−1
t−1(B+

π )>w ·
√

2ID+Vt

≤

√√√√√λw>B+
πD
−1
t−1ΛΣ(B+

π )>w +w>B+
πD
−1
t−1

Nπ(t−1)∑
s=1

Σπ

D−1
t−1(B+

π )>w ·
√

2ID+Vt

=

√√√√√w>B+
πD
−1
t−1

λΛΣDt−1 +

Nπ(t−1)∑
s=1

Σπ

D−1
t−1(B+

π )>w ·
√

2ID+Vt

Thus,

Pr

∣∣∣w> (θ∗ − θ̂t−1

)∣∣∣ >√2β(δt)

√√√√w>B+
πD
−1
t−1(λΛΣπDt−1 +

Nπ(t−1)∑
s=1

Σπ)D−1
t−1(B+

π )>w


≤Pr

[√√√√√w>B+
πD
−1
t−1

λΛΣDt−1 +

Nπ(t−1)∑
s=1

Σπ

D−1
t−1(B+

π )>w ·
√

2ID+Vt
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>
√

2β(δt)

√√√√√w>B+
πD
−1
t−1

λΛΣπDt−1 +

Nπ(t−1)∑
s=1

Σπ

D−1
t−1(B+

π )>w

]
= Pr [ID+Vt > β(δt)]

Hence, to prove Eq. (4), it suffices to prove

Pr [ID+Vt > β(δt)] ≤ δt. (18)

To prove Eq. (18), we introduce some notions. Let u ∈ Rd be a multivariate Gaussian random variable with mean 0 and
covariance D−1, which is independent of all the other random variables and we use ϕ(u) denote its probability density function.
Let

Pus = exp

(
u>ζs −

1

2
u>Σπu

)
,

Mu
t , exp

(
u>St −

1

2
‖u‖2Vt

)
,

and

Mt , Eu[Mu
t ] =

∫
Rd

exp

(
u>St −

1

2
‖u‖2Vt

)
ϕ(u)du,

where s = 1, . . . , Nπ(t − 1) is the index of exploration round. We have Mu
t = Π

Nπ(t−1)
s=1 Pus . In the following, we prove

E[Mt] ≤ 1.

For any timestep t, ηt = Σ
1
2 εt is Σ-sub-Gaussian and ηt is independent among different timestep t. Then, ζs =

(v1>Σ
1
2 εs,1, . . . ,vd̃>Σ

1
2 εs,d̃)

> is Σπ-sub-Gaussian. According to the sub-Gaussian property, ζs satisfies

∀v ∈ Rd, E
[
ev
>ζs
]
≤ e 1

2v
>Σπv,

which is equivalent to
∀v ∈ Rd, E

[
ev
>ζs− 1

2v
>Σπv

]
≤ 1.

Let Js be the σ-algebra σ(W, ζ1, . . . ,W, ζs−1, π). Thus, we have

E [Pus |Js] = E
[
exp

(
u>ζs −

1

2
u>Σπu

)
|Js
]
≤ 1.

Then, we can obtain

E[Mu
t |JNπ(t−1)] =E

[
Π
Nπ(t−1)
s=1 Pus |JNπ(t−1)

]
=
(

Π
Nπ(t−2)
s=1 Pus

)
E
[
PuNπ(t−1)|JNπ(t−1)

]
≤Mu

t−1,

which implies that Mu
t is a super-martingale and E[Mu

t |u] ≤ 1. Thus,

E[Mt] = Eu[E[Mu
t |u]] ≤ 1.

According to Lemma 9 in [1], we have

Mt ,
∫
Rd

exp

(
u>St −

1

2
‖u‖2Vt

)
ϕ(u)du =

√
detD

det(D + Vt)
exp (ID+Vt) .
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Thus,

E

[√
detD

det(D + Vt)
exp (ID+Vt)

]
≤ 1.

Now we prove Eq. (18). First, we have

Pr [ID+Vt > β(δt)] = Pr

[√
detD

det(D + Vt)
exp (ID+Vt) >

√
detD

det(D + Vt)
exp (β(δt))

]

= Pr

Mt >
1√

det(I +D−
1
2VtD−

1
2 )

exp (β(δt))


≤
E[Mt]

√
det(I +D−

1
2VtD−

1
2 )

exp (β(δt))

≤

√
det(I +D−

1
2VtD−

1
2 )

exp (β(δt))
(19)

Then, for some constant γ > 0 and for any a ∈ N, we define the set of timesteps Ka ⊆ [T ] such that

t ∈ Ka ⇔ (1 + γ)a ≤ Nπ(t− 1) < (1 + γ)a+1.

Define Da as a diagonal matrix such that Da,ii = (1 + γ)a, ∀i ∈ d̃. Suppose t ∈ Ka for some fixed a. Then, we have

1

1 + γ
Dt � Da � Dt.

Let D = λΛΣπDa � λ
1+γΛΣπDt. Then, we have

D−
1
2VtD

− 1
2 � 1 + γ

λ
D
− 1

2
t Λ

− 1
2

Σπ
VtΛ

− 1
2

Σπ
D
− 1

2
t ,

where matrix D−
1
2

t Λ
− 1

2

Σπ
VtΛ

− 1
2

Σπ
D
− 1

2
t has d̃ ones on the diagonal. Since the determinant of a positive definite matrix is smaller

than the product of its diagonal terms, we have

det(I +D−
1
2VtD

− 1
2 ) ≤det(I +

1 + γ

λ
D
− 1

2
t Λ

− 1
2

Σπ
VtΛ

− 1
2

Σπ
D
− 1

2
t )

≤
(

1 +
1 + γ

λ

)d̃
(20)

Let γ = e− 1. Using Eqs. (19) and (20), β(δt) = ln(1/δt) + ln ln t+ d̃
2 ln(1 + e/λ) = ln(t ln2 t) + ln ln t+ d̃

2 ln(1 + e
λ ) and

a union bound over a, we have

Pr [ID+Vt > β(δt)] ≤
∑
a

Pr [ID+Vt > β(δt)|t ∈ Ka, D = λΛΣπDa]

≤
∑
a

√
det(I +D−

1
2VtD−

1
2 )

exp (β(δt))
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≤ ln t

ln(1 + γ)
·

(
1 + 1+γ

λ

) d̃
2

exp
(
ln(t ln2 t) + ln ln t+ d

2 ln(1 + e
λ )
)

= ln t ·
(
1 + e

λ

) d̃
2

t ln2 t · ln t ·
(
1 + e

λ

) d̃
2

=
1

t ln2 t
=δt

Thus, Eq. (18) holds and we complete the proof of Lemma 2.

Now, we give the proof of Theorem 5.

Proof. (Theorem 5) First, we bound the number of exploration rounds up to time T . Let ψ(t) = t
2
3 /d. According to the

condition of exploitation (Line 4 in Algorithm 3), we have that if at timestep t algorithm MC-ETE starts an exploration round,
then t satisfies

Nπ(t− 1) ≤ ψ(t).

Let t0 denote the timestep at which algorithm MC-ETE starts the last exploration round. Then, we have

Nπ(t0 − 1) ≤ ψ(t0)

and thus

Nπ(T ) =Nπ(t0)

=Nπ(t0 − 1) + 1

≤ψ(t0) + 1

≤ψ(T ) + 1.

Next, for each timestep t, we bound the estimation error of f(w). For any t > 0, let ∆t , f(w∗) − f(wt) and f̂t(w) ,
w>θ̂t − ρw>Σ̂tw. Suppose that eventMt ∩Nt occurs. Then, according to Lemmas 5 and 6, we have that for any w ∈ 4d,

∣∣∣f(w)− f̂t−1(w)
∣∣∣ ≤√2β(δt)

√√√√√w>B+
πD
−1
t−1

λΛΣπDt−1 +

Nπ(t−1)∑
s=1

Σπ

D−1
t−1(B+

π )>w

+ 5ρ‖C+
π ‖

√
3 ln t

2Nπ(t− 1)

≤

√
2 ln(t ln2 t) + ln ln t+

d̃

2
ln(1 +

e

λ
) ·
√
w>B+

πD
−1
t−1 (λΛΣπ + Σπ) (B+

π )>w

+ 5ρ‖C+
π ‖

√
3 ln t

2Nπ(t− 1)

≤7

√
ln t+

d̃

2
ln(1 +

e

λ
) ·
(√

w>B+
π (λΛΣπ + Σπ) (B+

π )>w + ρ‖C+
π ‖
)
·

√
1

Nπ(t− 1)
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Let Z(ρ, π) , maxw∈4d

(√
w>B+

π (λΛΣπ + Σπ) (B+
π )>w + ρ‖C+

π ‖
)

. Then, we have

∣∣∣f(w)− f̂t−1(w)
∣∣∣ ≤ 7 · Z(ρ, π)

√
ln t+ d̃ ln(1 + e/λ)

Nπ(t− 1)
.

Let Lexploit(t) denote the event that algorithm MC-ETE does the exploitation at timestep t. For any t > 0, if Lexploit(t) occurs, we
have Nπ(t− 1) > ψ(t). Thus∣∣∣f(w)− f̂t−1(w)

∣∣∣ <7 · Z(ρ, π)

√
ln t+ d̃ ln(1 + e/λ)

ψ(t)

=7 · Z(ρ, π)

√
d
(

ln t+ d̃ ln(1 + e/λ)
)
· t− 1

3

According to Lemmas 5,6, for any t ≥ 2, we bound the probability of event ¬(Mt ∩Nt) by

Pr [¬(Mt ∩Nt)] ≤
6d2

t2
+

1

t ln2 t

≤ 6d2

t ln2 t
+

1

t ln2 t

=
7d2

t ln2 t

The expected regret of algorithm MC-ETE can be divided into two parts, one due to exploration and the other due to exploitation.
Then, we can obtain

E[R(T )] ≤Nπ(T ) · d̃∆max +

T∑
t=1

E[∆t|Lexploit(t)]

≤(ψ(T ) + 1) · d̃∆max +

T∑
t=1

(
E[∆t|Lexploit(t),Mt ∩Nt] + E[∆t|Lexploit(t),¬(Mt ∩Nt)] · Pr [¬(Mt ∩Nt)]

)
=O

((
T

2
3

d
+ 1

)
· d̃∆max +

T∑
t=1

(
Z(ρ, π)

√
d(ln t+ d̃ ln(1 + e/λ)) · t− 1

3 + ∆max ·
d2

t ln2 t

))
=O

(
T

2
3 d∆max + d2∆max + Z(ρ, π)

√
d(lnT + d2 ln(1 + λ−1)) · T 2

3 + d2∆max

)
=O

(
Z(ρ, π)

√
d(lnT + d2 ln(1 + λ−1)) · T 2

3 + d∆max · T
2
3 + d2∆max

)
=O

(
Z(ρ, π)

√
d(lnT + d2 ln(1 + λ−1)) · T 2

3 + d∆max · T
2
3

)
Choosing λ = 1

2 and using ΛΣπ = Σπ , we obtain

E[R(T )] = O
(
Z(ρ, π)

√
d(lnT + d2) · T 2

3 + d∆max · T
2
3

)
,

where Z(ρ, π) = maxw∈4d

(√
w>B+

π Σπ(B+
π )>w + ρ‖C+

π ‖
)

.
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