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Abstract

Given an unnormalized target distribution we want to obtain approximate samples
from it and a tight lower bound on its (log) normalization constant logZ. Annealed
Importance Sampling (AIS) with Hamiltonian MCMC is a powerful method that
can be used to do this. Its main drawback is that it uses non-differentiable transition
kernels, which makes tuning its many parameters hard. We propose a framework
to use an AIS-like procedure with Uncorrected Hamiltonian MCMC, called Uncor-
rected Hamiltonian Annealing. Our method leads to tight and differentiable lower
bounds on logZ. We show empirically that our method yields better performances
than other competing approaches, and that the ability to tune its parameters using
reparameterization gradients may lead to large performance improvements.

1 Introduction

Variational Inference (VI) [4, 41, 45] is a method to do approximate inference on a target distribution
p(z) = p̄(z)/Z that is only known up to the normalization constant Z. The basic insights are, first,
that the evidence lower bound (ELBO) Eq(z)[log p̄(z)− log q(z)] lower-bounds logZ and, second,
that maximizing the ELBO is equivalent to minimizing the KL-divergence from q to p. The simplest
VI method chooses a parameterized family for q and optimizes its parameters to maximize the ELBO.

A recent direction involves combining VI with Markov chain Monte Carlo (MCMC) [34, 43]. These
methods can be seen as an instance of the auxiliary VI framework [2] – they create an augmented
variational distribution that represents all intermediate random variables generated during the MCMC
procedure. An augmented target distribution that attempts to capture the inverse MCMC dynamics
is optimized jointly with this variational distribution. However, it has been observed that capturing
inverse dynamics is challenging [43, §5.4] (further discussion in Section 4).

Annealed Importance Sampling (AIS) [22, 27] is a powerful technique used to build augmented distri-
butions without the need of learning inverse dynamics. While it was originally proposed to estimate
expectations using importance sampling, it can be easily used to build lower bounds on normalization
constants of intractable densities [18, 44]. AIS creates a sequence of densities that bridge from a
tractable initial approximation q to the target p̄. Then, the augmented variational distribution is given
by a sequence of MCMC kernels targeting each bridging density, while the augmented target uses the
reversals of those kernels. It turns out that the ratio of these augmented distributions can be computed
using only evaluations of the bridging densities. Combining Hamiltonian MCMC kernels with AIS
has been observed to produce strong lower bounds [35, 44].

However, these bounds are sensitive to numerous parameters, such as the initial distribution, bridging
schedule, and parameters of the MCMC kernels. It would be desirable to optimize these parameters
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to tighten the bound. Unfortunately, the presence of Metropolis-Hastings acceptance steps means that
the the final estimator is non-differentiable, and thus reparameterization gradients cannot be used.

In this work, we propose Uncorrected Hamiltonian Annealing (UHA), a differentiable alternative
to Hamiltonian AIS. We define an augmented variational distribution using Hamiltonian MCMC
kernels, but dropping the accept-reject steps. This is motivated by the fact that Hamiltonian dynamics
sometimes have high acceptance rates. Since these uncorrected MCMC kernels do not exactly
hold the bridging densities invariant, an augmented target distribution cannot be defined in terms of
reversals. Instead, we define our augmented target by deriving an algorithm for the exact reversal of
the original (corrected) MCMC kernel and dropping the accept-reject step. Surprisingly, this yields a
very simple expression for the resulting lower bound.

We use reparameterization gradients to tune various parameters involved in the lower bound produced
by UHA, including the initial approximation q, parameters of the uncorrected MCMC kernel, and
the bridging densities. Experimentally, tuning all these leads to large gains. For example, in several
inference tasks we observe that tuning UHA with K = 64 bridging densities gives better results than
traditional Hamiltonian AIS with K = 512.

Finally, we use UHA to train VAEs [24, 31]. In this case we observe that using UHA leads to
higher ELBOs. In addition, we observe that increasing the number of bridging densities with UHA
consistently leads to better results, and that for a large enough number of bridging densities the
variational gap (difference between ELBO and true log-likelihood) becomes small, and models with
higher log-likelihood are obtained.

2 Preliminaries

Variational inference and augmentation. Suppose that p(z) = 1
Z p̄(z) is some target density, where

p̄ is unnormalized and Z =
∫
p̄(z)dz is the corresponding normalizer, and let

ELBO(q(z), p̄(z)) = E
q(z)

log
p̄(z)

q(z)
(1)

be the "ELBO operator". Variational inference (VI) is based on the fact that for any q(z) we have [4]

logZ = ELBO(q(z), p̄(z)) + KL(q(z)‖p(z)). (2)

In VI, the parameters of q are tuned to maximize the "evidence lower bound" (ELBO). Since the
KL-divergence is non-negative, this is always a lower bound on logZ. Also, maximizing the ELBO
is equivalent to minimizing the KL-divergence from q to p.

To get tighter bounds and better approximations recent work has made use of augmented distributions
[2, 21]. Let z1:M = (z1, · · · , zM ) and suppose that p̄(z1:M ) = p̄(zM )p(z1:M−1|zM ) augments the
original target density while preserving its normalization constant. Then, for any q(z1:M ) we have

logZ = ELBO(q(z1:M ), p̄(z1:M )) + KL(q(z1:M )‖p(z1:M )). (3)

The first term is called the "augmented" ELBO and again lower bounds logZ. By the chain rule of
KL-divergence [12], the KL-divergence from q to p over z1:M upper-bounds the KL-divergence over
zM . This justifies using the marginal of q over zM to approximate the original target distribution.

Annealed Importance Sampling. A successful approach for creating augmented distributions is
Annealed Importance Sampling (AIS) [27]. It creates an augmented proposal distribution q by
applying a sequence of transition densities Tm(zm+1|zm), and an augmented target by defining
transition densities Um(zm|zm+1). This gives the augmented densities

q(z1:M ) = q(z1)

M−1∏
m=1

Tm(zm+1|zm) and p̄(z1:M ) = p̄(zM )

M−1∏
m=1

Um(zm|zm+1). (4)

Naively, the ratio of these densities is

p̄(z1:M )

q(z1:M )
=
p̄(zM )

q(z1)

M−1∏
m=1

Um(zm|zm+1)

Tm(zm+1|zm)
. (5)
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To define the transitions Tm and Um, AIS creates a sequence of unnormalized densities π̄1, . . . , π̄M−1
that “bridge” from a starting distribution q to the target p̄, meaning that π̄1 is close to q and π̄M−1 is
close to p̄. Then, for each intermediate distribution, Tm(zm+1|zm) is chosen to be a Markov kernel
that holds πm invariant, and Um to be the reversal of Tm with respect to πm, defined as

Um(zm|zm+1) = T (zm+1|zm)
πm(zm)

πm(zm+1)
. (6)

This choice produces a simplification so that eq. 5 becomes

p̄(z1:M )

q(z1:M )
=
p̄(zM )

q(z1)

M−1∏
m=1

π̄m(zm)

π̄m(zm+1)
. (7)

This can be easily evaluated without needing to evaluate the transition densities. The ratio from eq. 7
can be used to get an expression for the lower bound ELBO(q(z1:M ), p̄(z1:M )). Research has shown
that the AIS augmentation may lead to extremely tight lower bounds [18, 17, 35, 44].

Hamiltonian Dynamics. Many MCMC methods used to sample from p(z) are based on Hamiltonian
dynamics [3, 8, 29, 42]. The idea is to create an augmented distribution p(z, ρ) = p(z)S(ρ), where
S(ρ) is a distribution over a momentum variable ρ (e.g. a Multivariate Gaussian). Then, one can define
numerical integration schemes where z and ρ evolve while nearly holding p(z, ρ) constant. When
corrected by a Metropolis-Hastings acceptance step, this can be made to exactly hold p(z, ρ) invariant.
This is alternated with a scheme that resamples the momentum ρ while holding S(ρ) invariant. When
Hamiltonian dynamics work well, z can quickly move around, suppressing random-walk behavior.

There are a variety of different Hamiltonian MCMC methods, corresponding to different integration
schemes, momentum distributions, and ways of resampling the momentum. For instance, HMC and
Langevin dynamics use the leapfrog integrator, a Gaussian for the momentum variables and a full
resampling of the momentum variables at each step [29, 42]. On the other hand, if the momentum
variables are only partially resampled, the under-damped variants of HMC and Langevin dynamics
are recovered [29]. It was observed that partial resampling may lead to improved perfomance [9].

It is easy to integrate Hamiltonian dynamics into AIS. First, define an augmented target p̄(z, ρ) =
p̄(z)S(ρ) and an augmented starting distribution q(z, ρ) = q(z)S(ρ). Then, create a series of
augmented densities π̄1(z, ρ), . . . , π̄M−1(z, ρ) bridging the two as π̄m(z, ρ) = π̄m(z)S(ρ). Finally,
define the forward transition Tm(zm+1, ρm+1|zm, ρm) to be an iteration of a Hamiltonian MCMC
method that leaves πm(z, ρ) invariant. We will describe a single transition Tm as a sequence of three
steps: (1) resample the momentum; (2) simulate Hamiltonian dynamics and apply an accept-reject
step; and (3) negate the momentum. The precise process that defines the transition is shown in Alg. 1.
Note that this algorithm is quite general, and compatible with HMC, Langevin dynamics and their
underdamped variants (by selecting an appropriate integrator and resampling method).

Algorithm 1 Corrected Tm(zm+1, ρm+1|zm, ρm)

1. Sample ρ′m from some s(ρ′m|ρm) that leaves S(ρ) invariant. Set z′m ← zm.
2. Simulate Hamiltonian dynamics as (z′′m, ρ

′′
m)← Tm(z′m, ρ

′
m).

Calculate an acceptance probability α = min (1, π̄m(z′′m, ρ
′′
m)/π̄m(z′m, ρ

′
m)).

With probability α, set (z′′′m , ρ
′′′
m)← (z′′m, ρ

′′
m). Otherwise, set (z′′′m , ρ

′′′
m)← (z′m, ρ

′
m).

3. Reverse the momentum as (zm+1, ρm+1)← (z′′′m ,−ρ′′′m).
return (zm+1, ρm+1)

Representing Tm this way makes it easy to show it holds the density πm(z, ρ) invariant. The overall
strategy is to show that each of the steps 1-3 holds πm invariant, and so does the composition of
them [29, §3.2]. For steps 1 and 3 this is trivial, provided that S(ρ) = S(−ρ). For step 2, we require
that the simulation Tm has unit Jacobian and satisfies T −1m = Tm. Then, Tm can be interpreted as a
symmetric Metropolis-Hastings proposal, meaning the Metroplis-Hastings acceptance probability α
is as given. A typical choice for Tm that satisfies these requirements is the leapfrog integrator with a
momentum reversal at the end. (This reversal then gets "un-reversed" in step 3 for accepted moves.)

Since Tm holds πm invariant, we can define Um as the reversal of Tm wrt πm. Then, eq. 7 becomes

p̄(z1:M , ρ1:M )

q(z1:M , ρ1:M )
=
p̄(zM , ρM )

q(z1, ρ1)

M−1∏
m=1

π̄m(zm, ρm)

π̄m(zm+1, ρm+1)
. (8)
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Using this ratio we get an expression for the lower bound ELBO(q(z1:M , ρ1:M ), p̄(z1:M , ρ1:M ))
obtained with Hamiltonian AIS. While this method has been observed to yield strong lower bounds on
logZ [35, 44] (see also Section 5.2), its performance depends on many parameters: initial distribution
q(z), momentum distribution S, momentum resampling scheme, simulator Tm, and bridging densities.
We would like to tune these parameters by maximizing the ELBO using reparameterization-based
estimators. However, due to the accept-reject step required by the Hamiltonian MCMC transition, the
resulting bound is not differentiable, and thus reparameterization gradients are not available.

3 Uncorrected Hamiltonian Annealing

The contribution of this paper is the development of uncorrected Hamiltonian Annealing (UHA).
This method is similar to Hamiltonian AIS (eq. 8), but yields a differentiable lower bound. The main
idea is simple. For any transitions Tm and Um, by the same logic as in eq. 5, we can define the ratio

p̄(z1:M , ρ1:M )

q(z1:M , ρ1:M )
=
p̄(zM , ρM )

q(z1, ρ1)

M−1∏
m=1

Um(zm, ρm|zm+1, ρm+1)

Tm(zm+1, ρm+1|zm, ρm)
. (9)

Hamiltonian AIS defines Tm as a Hamiltonian MCMC kernel that holds πm invariant, and Um as the
reversal of Tm with respect to πm. While this leads to a nice simplification, there is no requirement
that these choices be made. We can use any transitions as long as the ratio Um/Tm is tractable.

We propose to use the "uncorrected" versions of the transitions Tm and Um used by Hamiltonian
AIS, obtained by dropping the accept-reject steps. To get an expression for the uncorrected Um
we first derive the reversal Um used by Hamiltonian AIS (Alg. 2). These uncorrected transitions
are no longer reversible with respect to the bridging densities πm(z, ρ), and thus we cannot use
the simplification used by AIS to get eq. 8. Despite this, we show that the ratio Um/Tm for the
uncorrected transitions can still be easily computed (Thm. 2). This produces a differentiable estimator,
meaning the parameters can be tuned by stochastic gradient methods designed to maximize the ELBO.

We start by deriving the process that defines the transition Um used by Hamiltonian AIS. This is
shown in Alg. 2. It can be observed that Um follows the same three steps of Tm (resample momentum,
Hamiltonian simulation with accept-reject, momentum negation), but in reverse order.

Algorithm 2 Corrected Um(zm, ρm|zm+1, ρm+1)

1. Set (z′′′m , ρ
′′′
m)← (zm+1,−ρm+1).

2. Simulate Hamiltonian dynamics as (z′′m, ρ
′′
m)← Tm(z′′′m , ρ

′′′
m).

Calculate an acceptance probability α = min (1, π̄m(z′′m, ρ
′′
m)/π̄m(z′′′m , ρ

′′′
m)).

With probability α, set (z′m, ρ
′
m)← (z′′m, ρ

′′
m). Otherwise, set (z′m, ρ

′
m)← (z′′′m , ρ

′′′
m).

3. Sample ρm from srev(ρm|ρ′m), the reversal of s(ρ′m|ρm) with respect to S(ρm). Set zm ← z′m.
return (zm, ρm)

Lemma 1. The corrected Um (Alg. 2) is the reversal of the corrected Tm (Alg. 1) with respect to πm.

(Proof Sketch). First, we claim the general result that if T1, T2 and T3 have reversals U1, U2 and U3,
respectively, then the composition T = T1 ◦T2 ◦T3 has reversal U = U3 ◦U2 ◦U1 (all reversals with
respect to same density π). Then, we apply this to the corrected Tm and Um: Tm is the composition of
three steps that hold πm invariant. Thus, its reversal Um is given by the composition of the reversals
of those steps, applied in reversed order. A full proof is in Appendix F.

We now define the "uncorrected" transitions used by UHA, shown in Algs. 3 and 4. These are just the
transitions used by Hamiltonian AIS but without the accept-reject steps. (If Hamiltonian dynamics
are simulated exactly, the acceptance rate is one and the uncorrected and corrected transitions are
equivalent.) We emphasize that, for the "uncorrected" transitions, Tm does not exactly hold πm
invariant and Um is not the reversal of Tm. Thus, their ratio does not give a simple expression in
terms of π̄m as in eq. 8. Nevertheless, the following result shows that their ratio has a simple form.
Theorem 2. Let Tm and Um be the uncorrected transitions defined in Algs. 3 and 4, and let the
dynamics simulator Tm(z, ρ) be volume preserving and self inverting. Then,

Um(zm, ρm|zm+1, ρm+1)

Tm(zm+1, ρm+1|zm, ρm)
=
S(ρm)

S(ρ′m)
, (10)
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Algorithm 3 Uncorrected Tm(zm+1, ρm+1|zm, ρm)

1. Sample ρ′m from some s(ρ′m|ρm) that leaves S(ρ) invariant. Set z′m ← zm.
2. Simulate Hamiltonian dynamics as (z′′m, ρ

′′
m)← Tm(z′m, ρ

′
m).

3. Reverse the momentum as (zm+1, ρm+1)← (z′′m,−ρ′′m).
return (zm+1, ρm+1)

Algorithm 4 Uncorrected Um(zm, ρm|zm+1, ρm+1)

1. Set (z′′m, ρ
′′
m)← (zm+1,−ρm+1).

2. Simulate Hamiltonian dynamics as (z′m, ρ
′
m)← Tm(z′′m, ρ

′′
m).

3. Sample ρm from srev(ρm|ρ′m), the reversal of s(ρ′m|ρm) with respect to S(ρm). Set zm ← z′m.
return (zm, ρm)

where ρ′m is the second component of Tm(zm+1,−ρm+1). (That is, ρ′m from Algs. 3 and 4.)

(Proof Sketch.) We consider variants of Algs. 3 and 4 in which each time z is assigned we add
Gaussian noise with some variance aI . We then derive the densities for Tm and Um using the rule
for transformation of densities under invertible mappings, using that Tm is self-inverting and volume
preserving. Taking the ratio gives eq. 10. Since this is true for arbitrary a, we take the stated result as
the limit as a→ 0. A full proof is in Appendix G.

As an immediately corollary of eq. 9 and Theorem 2 we get that for UHA

p̄(z1:M , ρ1:M )

q(z1:M , ρ1:M )
=
p̄(zM )

q(z1)

M−1∏
m=1

S(ρm+1)

S(ρ′m)
. (11)

This ratio can be used to get an expression for the lower bound ELBO(q(z1:M , ρ1:M ), p̄(z1:M , ρ1:M ))
obtained with UHA. As mentioned in Section 2, the parameters of the augmented distributions are
tuned to maximize the ELBO, equivalent to minimizing the KL-divergence from q to p̄. While
computing this ELBO exactly is typically intractable, an unbiased estimate can be obtained using a
sample from q(z1:M , ρ1:M ) as shown in Alg. 5. If sampling is done using reparameterization, then
unbiased reparameterization gradients may be used together with stochastic optimization algorithms
to optimize the lower bound. In contrast, the variational lower bound obtained with Hamiltonian AIS
(see Alg. 6 in Appendix A) does not allow the computation of unbiased reparameterization gradients.

Algorithm 5 Generating the (differentiable) uncorrected Hamiltonian annealing variational bound.
Sample z1 ∼ q and ρ1 ∼ S.
Initialize estimator as L ← − log q(z1).
for m = 1, 2, · · · ,M − 1 do

Run uncorrected Tm (Alg. 3) on input (zm, ρm), storing ρ′m and the output (zm+1, ρm+1).
Update estimator as L ← L+ log (S(ρm+1)/S(ρ′m)).

Update estimator as L ← L+ log p̄(zM ).
return R

3.1 Algorithm Details

Simulation of dynamics. We use the leapfrog operator with step-size ε to simulate Hamiltonian
dynamics. This has unit Jacobian and satisfies Tm = T −1m (if the momentum is negated after the
simulation), which are the properties required for eq. 11 to be correct (see Theorem 2).

Momentum distribution and resampling. We set the momentum distribution S(ρ) = N (ρ|0,Σ) to
be a Gaussian with mean zero and covariance Σ. The resampling distribution s(ρ′|ρ) must hold this
distribution invariant. As is common we use s(ρ′|ρ) = N (ρ′|ηρ, (1− η2)Σ), where η ∈ [0, 1) is the
damping coefficient. If η = 0, the momentum is completely replaced with a new sample from S in
each iteration (used by HMC and Langevin dynamics [29, 42]). For larger η, the momentum becomes
correlated between iterations, which may help suppress random walk behavior and encourage faster
mixing [9] (used by the underdamped variants of HMC and Langevin dynamics [29]).

Bridging densities. We set π̄m(z, ρ) = q(z, ρ)1−βm p̄(z, ρ)βm , where βm ∈ [0, 1] and βm < βm+1.

5



Computing gradients. We set the initial distribution q(z1) to be a Gaussian, and perform all
sampling operations in Alg. 5 using reparameterization [24, 31, 39]. Thus, the whole procedure is
differentiable and reparameterization-based gradients may be used to tune parameters by maximizing
the ELBO. These parameters include the initial distribution q(z1), the covariance Σ of the momentum
distribution, the step-size ε of the integrator, the damping coefficient η of the momentum resampling
distribution, and the parameters of the bridging densities (including β), among others. As observed
in Section 5.2.1 tuning all of these parameters may lead to considerable performance improvements.

4 Related Work

UHA and slight variations have been proposed in concurrent work by Thin et al. [38], who use
uncorrected Langevin dynamics together with the uncorrected reversal to build variational lower
bounds, and by Zhang et al. [46], who proposed UHA with under-damped Langevin dynamics
together with a convergence analysis for linear regression models.

There are three other lines of work that produce differentiable variational bounds integrating Monte
Carlo methods. One is Hamiltonian VI (HVI) [34, 43]. It uses eq. 9 to build a lower bound on logZ,
with Tm set to an uncorrected Hamiltonian transition (like UHA but without bridging densities) and
Um set to conditional Gaussians parameterized by learnable functions. Typically, a single transition
is used, and the parameters of the transitions are learned by maximizing the resulting ELBO.1

A second method is given by Hamiltonian VAE (HVAE) [7], based on Hamiltonian Importance
sampling [28]. They augment the variational distribution with momentum variables, and use the
leapfrog integrator to simulate Hamiltonian dynamics (a deterministic invertible transformation with
unit Jacobian) with a tempering scheme as a target-informed flow [30, 37].

The third method is Importance Weighting (IW) [6, 13, 15]. Here, the idea is that
ELBO(q(z), p̄(z)) ≤ E log 1

K

∑
k p̄(zk)/q(zk), and that the latter bound can be optimized, rather

than the traditional ELBO. More generally, other Monte-Carlo estimators can be used [16].

Some work defines novel contrastive-divergence-like objectives in terms of the final iteration of an
MCMC chain [32, 26]. These do not provide an ELBO-like variational bound. While in some cases
the initial distribution can be optimized to minimize the objective [32], gradients do not flow through
the MCMC chains, meaning MCMC parameters cannot be optimized by gradient methods.

For latent variable models, Hoffman [19] suggested to run a few MCMC steps after sampling from
the variational distribution before computing gradients with respect to the model parameters, which is
expected to "debias" the gradient estimator to be closer to the true likelihood gradient. The variational
distribution is simultaneously learned to optimize a standard ELBO. (AIS can also be used [14].)

5 Experiments and Results

This section presents results using UHA for Bayesian inference problems on several models of
varying dimensionality and for VAE training. We compare against Hamiltonian AIS, IW, HVI and
HVAE. We report the performance of each method for different values of K, the number of likelihood
evaluations required to build the lower bound (e.g. number of samples used for IW, number of
bridging densities plus one for UHA). Note that, for a fixed K, all methods have the same oracle
complexity (i.e. number of target/target’s gradient evaluation), and that for K = 1 they all reduce to
plain VI.

For UHA and Hamiltonian AIS we use under-damped Langevin dynamics, that is, we perform just
one leapfrog step per transition and partially resample momentum. We implement all algorithms
using Jax [5].

1The formulation of HVI allows the use of more than one transition. However, this leads to an increased
number of reverse models that must be learned, and thus not typically used in practice. Indeed, experiments by
Salimans et al. [34] use only one HMC step while varying the number of leapfrog integration steps, and results
from Wolf et al. [43] show that increasing the number of transitions may actually yield worse bounds (they
conjecture that this is due to the difficulty of learning inverse dynamics.).
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Table 1: Our method (UHA) yields better bounds than importance weighting (IW) for mod-
erate or high dimensions. ELBO achieved by different methods when using a Student-t target
distribution of varying dimensionality, higher is better. Since the target is normalized, a perfect
inference algorithm would achieve the true value of logZ = 0.

Target Plain VI UHA IW

dimension K = 1 K = 4 K = 16 K = 64 K = 128 K = 128 K = 1024

20 −0.82 −0.55 −0.36 −0.19 −0.14 −0.14 −0.088
200 −8.1 −5.5 −3.5 −1.9 −1.4 −3.7 −2.9
500 −20.5 −13.9 −9.0 −5.2 −3.8 −12.0 −10.4

5.1 Toy example

This section compares results obtained with UHA and IW when the target is set to a factorized Student-
t with mean zero, scale one, and three degrees of freedom. We tested three different dimensionalities:
20, 200 and 500. In all cases we have logZ = 0, so we can exactly analyze the tightness of the
bounds obtained by the methods. We set the initial approximation to be a mean-field Gaussian, and
optimize the objective using Adam [23] with a step-size of 0.001 for 5000 steps. For UHA we tune
the initial approximation q(z), the integrator’s step-size ε and the damping coefficient η.

We ran UHA for K ∈ {4, 16, 64, 128} and IW for K ∈ {128, 1024}. Table 1 shows the results for
the three dimensionalities considered. It can be observed that UHA performs significantly better than
IW as the dimensionality increases; for the target with dimension 500, UHA with K = 16 yields
better bounds than IW with K = 1024. On the other hand, the methods perform similarly for the
low dimensional target. Finally, in this case both methods have similar time costs. For instance, for
K = 128 UHA takes 14.2 seconds to optimize and IW takes 13.9.

5.2 Inference tasks

This section shows results using UHA for Bayesian inference tasks. For this set of experiments, for
UHA we tune the initial distribution q(z), the integrator’s step-size ε and the damping coefficient η.
We include detailed results tuning more parameters in Section 5.2.1.

Models. We consider four models: Brownian motion (d = 32), which models a Brownian Motion
process with a Gaussian observation model; Convection Lorenz bridge (d = 90), which models
a nonlinear dynamical system for atmospheric convection; and Logistic regression with the a1a
(d = 120) and madelon (d = 500) datasets. The first two obtained from the “Inference gym” [36].

Baselines. We compare UHA against IW, HVAE, a simple variant of HVI, and Hamiltonian AIS
(HAIS). For all methods which rely on HMC (i.e. all except IW) we use a singe integration step-size
ε common to all dimensions and fix the momentum distribution to a standard Gaussian. For HVI
we learn the initial distribution q(z), integration step-size ε and the reverse dynamics Um (set to a
factorized Gaussian with mean and variance given by affine functions), and for HVAE we learn q(z),
ε and the tempering scheme (we use the quadratic scheme parameterized by a single parameter).

Training details. We set q(z) to be a mean-field Gaussian initialized to a maximizer of the ELBO,
and tune the parameters of each method by running Adam for 5000 steps. We repeat all simulations
for different step-sizes in {10−3, 10−4, 10−5}, and select the best one for each method. Since
Hamiltonian AIS’ parameters cannot be tuned by gradient descent, we find a good pair (ε, η) by
grid search. We consider η ∈ {0.5, 0.9, 0.99} and three values of ε that correspond to three different
rejection rates: 0.05, 0.25 and 0.5. We tested all 9 possible combinations and selected the best one.

Results are shown in Fig. 1. Our method yields better lower bounds than all other competing
approaches for all models considered, and that increasing the number of bridging densities consistently
leads to better results. The next best performing method is Hamiltonian AIS. IW also shows a good
performance for the lower dimensional model Brownian motion. However, for models of higher
dimensionality IW leads to bounds that are several nats worse than the ones achieved by UHA. Finally,
HVI and HVAE yield bounds that are much worse than those achieved by the other three methods,
and do not appear to improve consistently for larger K. For HVAE, these results are consistent with
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the ones in the original paper [7, §4], in that higher K may sometimes hurt performance. For HVI,
we believe this is related to the use of just one HMC step and suboptimal inverse dynamics.

Optimization times for Plain VI, IW and UHA (the latter two with K = 32) are 2.4, 3.4 and 4.4
seconds for the Brownian motion dataset, 2.5, 6.8 and 6.9 seconds for Lorenz convection,
2.8, 8.3 and 19.9 seconds for Logistic regression (A1A), and 4.6, 16.6 and 121.2 seconds for Lo-
gistic regression (Madelon). While IW and UHA have the same oracle complexity for the same K,
we see that the difference between their time cost depends on the specific model under consideration.
All other methods that use HMC have essentially the same time cost as UHA.
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Figure 1: Our method achieves much better bounds than other competing methods. K repre-
sents the number of likelihood evaluations to build the lower bound required by each method. The
leftmost point of all lines coincide because, for K = 1, all methods reduce to plain VI. Vertical bars
indicate one standard deviation obtained by running simulations with four different random seeds.

5.2.1 Tuning More Parameters with UHA

A basic version of UHA involves fitting a variational distribution using plain VI, and then tuning the
integration step-size ε and the damping coefficient η. However, more parameters could be tuned:

• Moment distribution cov Σ: We propose to learn a diagonal matrix instead of using the identity.
• Bridging densities’ coefficients βm: Typically βm = m/M . We propose to learn the sequence β,

with the restrictions β0 = 0, βM = 1, βm < βm+1 and βm ∈ [0, 1].
• Initial distribution q(z): Instead of fixing q(z) to be a maximizer of the typical ELBO, we propose

to learn it to maximize the augmented ELBO obtained using UHA.
• Integrator’s step-size ε: Instead of learning a unique step-size ε, we propose to learn a step-size

that is a function of β, i.e. ε(β). In our experiments we use an affine function.
• Bridging densities parameters ψ: Instead of setting them-th bridging density to be q1−βmpβm , we

propose to set it to q1−βm

ψ(βm) p
βm , where qψ(βm) is a mean-field Gaussian with a mean and diagonal

covariance specified as affine functions of β.

We consider the four models described previously and compare three methods: UHA tuning all
parameters described above, UHA tuning only the pair (ε, η), and Hamiltonian AIS with parameters
(ε, η) obtained by grid-search. We perform the comparison forK ranging from 2 to 512. (ForK ≥ 64
we tune the UHA’s parameters using K = 64 and extrapolate them as explained in Appendix D.)

Results are shown in Fig. 2. It can be observed that tuning all parameters with UHA leads to
significantly better lower bounds than those obtained by Hamiltonian AIS (or UHA tuning only ε
and η). Indeed, for the Logistic regression models, UHA tuning all parameters for K = 64 leads to
results comparable to the ones obtained by Hamiltonian AIS with K = 512.

To verify what parameters lead to larger performance improvements, we tested UHA with K = 64
tuning different subsets of {ε, η,Σ, β, q(z), ε(β), ψ(β)}. Fig. 3 shows the results. It can be observed
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Figure 2: UHA tuning all parameters leads to better performance than other methods.

that tuning the bridging parameters β and the initial approximation q(z) leads to the largest gains in
performance, and that tuning all parameters always outperforms tuning smaller subsets of parameters.
We show a more thorough analysis, including more subsets and values of K in Appendix B.
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Figure 3: Tuning all parameters leads to better results than tuning subsets of them. Largest
gains are obtained by tuning bridging coefficients β and initial distribution q. ELBO achieved
as a function of parameters tuned (x-axis), for K = 64. The subsets are ordered in terms of increasing
performance (same ordering is used for all four models). Parameters are step-size ε, damping
coefficient η, moment covariance Σ, bridging densities parameters β and ψ, initial distribution q.

Finally, Appendix E shows results comparing UHA (tuning several parameters) against HMC, mean
field VI and IW in terms of the approximation accuracy achieved on a logistic regression model with
a fixed computational budget.

5.3 VAE training

Our method can be used to train latent variable models, such as Variational Auto-encoders (VAE)
[24, 31]. In this case the initial approximation q(z|x) and the model p(x, z) are parameterized by
two neural networks (encoder and decoder), whose parameters are trained by maximizing the ELBO.
UHA can be used to train VAEs by augmenting these two distributions as described in Section 3.

Datasets. We use three datasets: mnist [25] (numbers 1-9), emnist-letters [11] (letters A-Z), and
kmnist [10] (cursive Kuzushiji). All consist on greyscale images of 28×28 pixels. In all cases we use
stochastic binarization [33] and a training set of 50000 samples, a validation set of 10000 samples,
and a test set of 10000 samples. All datasets are available in tensorflow-datasets [1].

Baselines. We compare against Importance Weighted Auto-encoders [6] and plain VAE training [24].

Architecture details. We set q(z|x) to a diagonal Gaussian, p(z) to a standard Normal, and p(x|z)
to a Bernoulli. We consider two architectures for the encoder and decoder: (1) Feed forward networks
with one hidden layer of size 450 and Relu non-linearities, with a latent space dimensionality of 64;
(2) Architecture used by Burda et al. [6], feed forward networks with two hidden layers of size 200
with tanh non-linearities, with a latent space dimensionality of 50.

Training details. In all cases the encoder and decoder are initialized to parameters that maximize
the ELBO. For IW we tune the encoder and decoder parameters (using the doubly-reparameterized
estimator [40]), and for UHA we tune the integration step-size ε, damping coefficient η, bridging
parameters β, momentum covariance Σ (diagonal), and the decoder parameters. Following Caterini
et al. [7] we constrain ε ∈ (0, 0.05) to avoid unstable behavior of the leapfrog discretization. We use
Adam with a step-size of 10−4 to train for 100 epochs and use the validation set for early stopping.
We repeated all simulations for three different random seeds. In all cases the standard deviation of
the results was less than 0.1 nats (not shown in tables).
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All methods achieved better results using the architecture with one hidden layer. These results
are shown in Tables 2 and 3. The first one shows the ELBO on the test set achieved for different
values of K, and the second one the log-likelihood on the test set estimated with AIS [44]. It can
be observed that UHA leads to higher ELBOs, higher log-likelihoods, and smaller variational gaps
(difference between ELBO and log-likelihood) than IW for all datasets, with the difference between
both methods’ performance increasing for increasing K. Notably, for K = 64, the variational gap
for UHA becomes quite small, ranging from 0.8 to 1.4 nats depending on the dataset.

Results for the architecture from Burda et al. [6] (two hidden layers) are shown in Tables 4 and
5 (Appendix C). Again, we observe that UHA consistently leads to higher ELBOs and the best
test log-likelihood was consistently achieved by UHA with K = 64. However, for smaller K, IW
sometimes had better log-likelihoods than UHA (despite worse ELBOs).

Table 2: ELBO on the test set (higher is better). For K = 1 both methods reduce to plain VI.

K = 1 K = 8 K = 16 K = 32 K = 64

mnist UHA −93.4 −89.8 −88.8 −88.1 −87.6
IW −93.4 −90.5 −89.9 −89.4 −89.0

letters UHA −137.9 −133.5 −132.3 −131.5 −130.9
IW −137.9 −134.6 −133.9 −133.2 −132.7

kmnist UHA −184.2 −176.6 −174.6 −173.2 −171.6
IW −184.2 −179.7 −178.7 −177.8 −177.0

Table 3: Log-likelihood on the test set (higher is better). This is estimated using AIS with under-
damped HMC using 2000 bridging densities, 1 HMC iteration with 16 leapfrog steps per bridging
density, integration step-size ε = 0.06, and damping coefficient η = 0.8.

K = 1 K = 8 K = 16 K = 32 K = 64

mnist UHA −88.5 −87.5 −87.2 −87.0 −86.9
IW −88.5 −87.6 −87.5 −87.3 −87.2

letters UHA −131.9 −130.7 −130.3 −130.1 −129.9
IW −131.9 −130.9 −130.7 −130.6 −130.4

kmnist UHA −174.3 −172.2 −171.6 −171.2 −170.2
IW −174.3 −173.0 −172.6 −172.4 −172.2

6 Discussion

Since UHA yields a differentiable lower bound, one could tune other parameters not considered in
this work. For instance, a different momentum distribution per bridging density could be used, that
is, π̄m(z, ρ) = π̄m(z)Sm(ρ). We believe additions such as this may yield further gains. Also, our
method can be used to get tight and differentiable upper bounds on logZ using the reversed AIS
procedure described by Grosse et al. [18].

Finally, removing accept-reject steps might sometimes lead to instabilities during optimization if
the step-size ε becomes large. We observed this effect when training VAEs on some datasets for the
larger values of K. We solved this by constraining the range of ε (previously done by Caterini et al.
[7]). While this simple solution works well, we believe that other approaches (e.g. regularization,
automatic adaptation) could work even better. We leave the study of such alternatives for future work.
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