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Abstract

We investigate the parameterized complexity of Bayesian Network Structure Learn-1

ing (BNSL), a classical problem that has received significant attention in empirical2

but also purely theoretical studies. We follow up on previous works that have3

analyzed the complexity of BNSL w.r.t. the so-called superstructure of the input.4

While known results imply that BNSL is unlikely to be fixed-parameter tractable5

even when parameterized by the size of a vertex cover in the superstructure, here we6

show that a different kind of parameterization—notably by the size of a feedback7

edge set—yields fixed-parameter tractability. We proceed by showing that this8

result can be strengthened to a localized version of the feedback edge set, and9

provide corresponding lower bounds that complement previous results to provide a10

complexity classification of BNSL w.r.t. virtually all well-studied graph parameters.11

We then analyze how the complexity of BNSL depends on the representation of the12

input. In particular, while the bulk of past theoretical work on the topic assumed13

the use of the so-called non-zero representation, here we prove that if an additive14

representation can be used instead then BNSL becomes fixed-parameter tractable15

even under significantly milder restrictions to the superstructure, notably when16

parameterized by the treewidth alone. Last but not least, we show how our results17

can be extended to the closely related problem of Polytree Learning.18

1 Introduction19

Bayesian networks are among the most prominent graphical models for probability distributions. The20

key feature of Bayesian networks is that they represent conditional dependencies between random21

variables via a directed acyclic graph; the vertices of this graph are the variables, and an arc ab means22

that the distribution of variable b depends on the value of a. One beneficial property of Bayesian23

networks is that they can be used to infer the distribution of random variables in the network based24

on the values of the remaining variables.25

The problem of constructing a Bayesian network with an optimal network structure is NP-hard, and26

remains NP-hard even on highly restricted instances [5]. This initial negative result has prompted27

an extensive investigation of the problem’s complexity, with the aim of identifying new tractable28

fragments as well as the boundaries of its intractability [29, 36, 30, 25, 14, 9, 22]. The problem—29

which we simply call BAYESIAN NETWORK STRUCTURE LEARNING (BNSL)—can be stated as30

follows: given a set of V of variables (represented as vertices), a family F of score functions which31

assign each variable v ∈ V a score based on its parents, and a target value `, determine if there exists32

a directed acyclic graph over V that achieves a total score of at least `1.33

1Formal definitions are provided in Section 2. We consider the decision version of BNSL for complexity-
theoretic reasons only; all of the provided algorithms are constructive and can output a network as a witness.
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To obtain a more refined understanding of the complexity of BNSL, past works have analyzed the34

problem not only in terms of classical complexity but also from the perspective of parameterized35

complexity [12, 8]. In parameterized complexity analysis, the tractability of problems is measured36

with respect to the input size n and additionally with respect to a specified numerical parameter k. In37

particular, a problem that is NP-hard in the classical sense may—depending on the parameterization38

used—be fixed-parameter tractable (FPT), which is the parameterized analogue of polynomial-time39

tractability and means that a solution can be found in time f(k) ·nO(1) for some computable function40

f , or W[1]-hard, which rules out fixed-parameter tractability under standard complexity assumptions.41

The use of parameterized complexity as a refinement of classical complexity is becoming increasingly42

common and has been employed not only for BNSL [29, 36, 30], but also for numerous other43

problems arising in the context of neural networks and artificial intelligence [16, 44, 13, 19].44

Unfortunately, past complexity-theoretic works have shown that BNSL is a surprisingly difficult45

problem. In particular, not only is the problem NP-hard, but it remains NP-hard even when asking46

for the existence of extremely simple networks such as directed paths [33] and is W[1]-hard when47

parameterized by the vertex cover number of the network [30]. In an effort to circumvent these lower48

bounds, several works have proposed to instead consider restrictions to the so-called superstructure,49

which is a graph that, informally speaking, captures all potential dependencies between variables [45,50

38]. Ordyniak and Szeider [36] studied the complexity of BNSL when parameterized by the51

structural properties of the superstructure, and showed that parameterizing by the treewidth [39]52

of the superstructure is sufficient to achieve a weaker notion of tractability called XP-tractability.53

However, they also proved that BNSL remains W[1]-hard when parameterized by the treewidth of54

the superstructure [36, Theorem 3].55

Contribution. Up to now, no “implicit” restrictions of the superstructure were known to lead56

to a fixed-parameter algorithm for BNSL alone. More precisely, the only known fixed-parameter57

algorithms for the problem require that we place explicit restrictions on either the sought-after network58

or the parent sets on the input: BNSL is known to be fixed-parameter tractable when parameterized59

by the number of arcs in the target network [25], the treewidth of an “extended superstructure graph”60

which also bounds the maximum number of parents a variable can have [29], or the number of61

parent set candidates plus the treewidth of the superstructure [36]. Moreover, a closer analysis of the62

reduction given by Ordyniak and Szeider [36, Theorem 3] reveals that BNSL is also W[1]-hard when63

parameterized by the treedepth, pathwidth, and even the vertex cover number of the superstructure64

alone. The vertex cover number is equal to the vertex deletion distance to an edgeless graph, and65

hence their result essentially rules out the use of the vast majority of graph parameters; among others,66

any structural parameter based on vertex deletion distance.67

As our first conceptual contribution, we show that a different kind of graph parameters—notably,68

parameters that are based on edge deletion distance—give rise to fixed-parameter algorithms for69

BNSL in its full generality, without requiring any further explicit restrictions on the target network70

or parent sets. Our first result in this direction concerns the feedback edge number (fen), which is the71

minimum number of edges that need to be deleted to achieve acyclicity. In Theorem 3 we show not72

only that BNSL is fixed-parameter tractable when parameterized by the fen of the superstructure, but73

also provide a polynomial-time preprocessing algorithm that reduces any instance of BNSL to an74

equivalent one whose number of variables is linear in the fen (i.e., a kernelization [12, 8]).75

Since fen is a highly “restrictive” parameter—its value can be large even on simple superstructures76

such as collections of disjoint cycles—we proceed by asking whether it is possible to lift fixed-77

parameter tractability to a more relaxed way of measuring distance to acyclicity. For our second78

result, we introduce the local feedback edge number (lfen), which intuitively measures the maximum79

edge deletion distance to acyclicity for cycles intersecting any particular vertex in the superstructure.80

In Theorem 6, we show that BNSL is also fixed-parameter tractable when prameterized by lfen; we81

also show that this comes at the cost of BNSL not admitting any polynomial-time preprocessing82

procedure akin to Theorem 3 when parameterized by lfen. We conclude our investigation in the83

direction of parameters based on edge deletion distance by showing that BNSL parameterized by84

treecut width [32, 48, 17], a recently discovered edge-cut based counterpart to treewidth, remains85

W[1]-hard (Theorem 10). An overview of these complexity-theoretic results is provided in Figure 1.86

As our second conceptual contribution, we show that BNSL becomes significantly easier when one87

can use an additive representation of the scores rather than the non-zero representation that was88

considered in the vast majority of complexity-theoretic works on BNSL to date [29, 36, 30, 25, 14, 22].89

2



Figure 1: The complexity landscape of BNSL
with respect to parameterizations of the super-
structure. Arrows point from more restrictive
parameters to less restrictive ones. Results
for the three graph parameters on the left side
follow from this paper, while all other W[1]-
hardness results follow from the reduction by
Ordyniak and Szeider [36, Theorem 3].

The additive representation is inspired by known heuristics for BNSL [43, 42] and utilizes a succinct90

encoding of the score function which assumes that the scores for parent sets can be decomposed into91

a sum of the scores of individual variables in the parent set; a discussion and formal definitions are92

provided in Section 2. In Theorem 13, we show that if the additive representation can be used, BNSL93

becomes fixed-parameter tractable when parameterized by the treewidth of the superstructure (and94

hence under every parameterization depicted in Figure 1). Motivated by the empirical usage of the95

additive representation, we also consider the case where we additionally impose a bound q on the96

number of parents a vertex can accept; we show that the result of Theorem 13 also covers this case if97

q is taken as an additional parameter, and otherwise rule out fixed-parameter tractability using an98

intricate reduction (Theorem 15).99

For our third and final conceptual contribution, we show how our results can be adapted for the100

emergent problem of POLYTREE LEARNING (PL), a variant of BNSL where we require that the101

network forms a polytree. The crucial advantage of such networks is that they allow for a more102

efficient solution of the inference task [37, 26], and the complexity of PL has been studied in several103

works [24, 22, 41]. We show that all our results for BNSL can be adapted to PL, albeit in some cases104

it is necessary to perform non-trivial modifications. Furthermore, we observe that unlike BNSL,105

PL becomes polynomial-time tractable when the additive representation is used (Observation 20);106

this matches the “naive” expectation that learning simple networks would be easier than BNSL107

in its full generality. As our concluding result, we show that this expectation is in fact not always108

validated: while PL was recently shown to be W[1]-hard when parameterized by the number of109

so-called dependent vertices [24], in Theorem 21 we prove that BNSL is fixed-parameter tractable110

under that same parameterization.111

2 Preliminaries112

For an integer i, we let [i] = {1, 2, . . . , i} and [i]0 = [i] ∪ {0}. We denote by N the set of natural113

numbers, by N0 the set N ∪ {0}.114

We refer to the handbook by Diestel [11] for standard graph terminology. In this paper, we will115

consider directed as well as undirected simple graphs. If G = (V,E) is an undirected graph and116

{v, w} ∈ E, we will often use vw as shorthand for {v, w}; we will also sometimes use V (G) to117

denote its vertex set. Moreover, we let NG(v) denote the set of neighbors of v, i.e., {u ∈ V | vu ∈118

E }. We extend this notation to sets as follows: NG(X) = {u ∈ V \X | ∃x ∈ X : ux ∈ E(G). For119

a set X of vertices, let AX denote the set of all possible arcs over X .120

If D = (V,A) is a directed graph (i.e., a digraph) and (v, w) ∈ A, we will similarly use vw as121

shorthand for (v, w). We also let PD(v) denote the set of parents of v, i.e., {u ∈ V | uv ∈ A }122

(there are sometimes called in-neighbors in the literature, while the notion of out-neighbors is defined123

analogously). In both cases, we may drop G or D from the subscript if the (di)graph is clear from the124

context. The degree of v is |N(v)|, and for digraphs we use the notions of in-degree (which is equal125

to |P (v)|) and out-degree (the number of arcs originating from the given vertex).126

The skeleton (sometimes called the underlying undirected graph) of a digraph G = (V,A) is the127

undirected graph G′ = (V,E) such that vw ∈ E if vw ∈ A or wv ∈ A. A digraph is a polytree if its128

skeleton is a forest.129

When comparing two numerical parameters α, β of graphs, we say that α is more restrictive than β if130

there exists a function f such that β(G) ≤ f(α(G)) holds for every graph G. In other words, α is131
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more restrictive than β if and only if the following holds: whenever all graphs in some graph class132

H have α upper-bounded by a constant, all graphs in H also have β upper-bounded by a constant.133

Observe that in this case a fixed-parameter algorithm parameterized by β immediately implies a134

fixed-parameter algorithm parameterized by α, while W[1]-hardness behaves in the opposite way.135

Problem Definitions. Let V be a set of vertices and F = { fv : 2V \{v} → N0 | v ∈ V }136

be a family of local score functions. For a digraph D = (V,A), we define its score as follows:137

score(D) =
∑
v∈V fv(PD(v)), where PD(v) is the set of vertices of D with an outgoing arc to v138

(i.e., the parent set of v in D). We can now formalize our problem of interest [36, 25].139

BAYESIAN NETWORK STRUCTURE LEARNING (BNSL)

Input: A set V of vertices, a family F of local score functions, and an integer `.
Question: Does there exist an acyclic digraph D = (V,A) such that score(D) ≥ `?

140

POLYTREE LEARNING (PL) is defined analogously, with the only difference that there D is addition-141

ally required to be a polytree [24]. We call D a solution for the given instance.142

Since both V and F are assumed to be given on the input of our problems, an issue that arises here143

is that an explicit representation of F would be exponentially larger than |V |. A common way to144

potentially circumvent this is to use a non-zero representation of the family F , i.e., where we only145

store values for fv(P ) that are different than zero. This model has been used in a large number of146

works studying the complexity of BNSL and PL [29, 36, 30, 25, 22, 24] and is known to be strictly147

more general than, e.g., the bounded-arity representation where one only considers parent sets of148

arity bounded by a constant [36, Section 3]. Let Γf (v) be the set of candidate parents of v which149

yield a non-zero score; formally, Γf (v) = {Z | fv(Z) 6= 0 }, and the input size |I| of an instance150

I = (V,F , `) is simply defined as |V |+ `+
∑
v∈V,P∈Γf (v) |P |.151

Let P→(v) be the set of all parents which appear in Γf (v), i.e., a ∈ P→(v) if and only if ∃Z ∈152

Γf (v) : a ∈ Z. A natural way to think about and exploit the structure of inter-variable dependencies153

laid bare by the non-zero representation is to consider the superstructure graph GI = (V,E) of a154

BNSL (or PL) instance I = (V,F , `), where ab ∈ E if and only if either a ∈ P→(b), or b ∈ P→(a),155

or both.156

Naturally, families of local score functions may be exponentially larger than |V | even when stored157

using the non-zero representation. In this paper, we also consider a second representation of F158

which is guaranteed to be polynomial in |V |: in the additive representation, we require that for159

every vertex v ∈ V and set Q = {q1, . . . , qm} ⊆ V \ {v}, fv(Q) = fv({q1}) + · · · + fv({qm}).160

Hence, each cost function fv can be fully characterized by storing at most |V |-many entries of the161

form fv(x) := fv({x}) for each x ∈ V \ {v}. To avoid overfitting, one may optionally impose an162

additional constraint: an upper bound q on the size of any parent set in the solution(or, equivalently, q163

is a maximum upper-bound on the in-degree of the sought-after acyclic digraph D).164

While not every family of local score functions admits an additive representation, the additive model165

is similar in spirit to the models used by some practical algorithms for BNSL. For instance, the166

algorithms of Scanagatta, de Campos, Corani and Zaffalon [43, 42], which can process BNSL167

instances with up to thousands of variables, approximate the real score functions by adding up the168

known score functions for two parts of the parent set and applying a small, logarithmic correction.169

Both of these algorithms also use the aforementioned bound q for the parent set size. In spite of this170

connection to practice and the representation’s streamlined nature, we are not aware of any prior171

works that considered the additive representation in complexity-theoretic studies of BNSL and PL.172

As before, in the additive representation we will also only store scores for parents of v which yield a173

non-zero score, and can thus define P→(v) = { z | fv(z) 6= 0 }, as for the non-zero representation.174

This in turn allows us to define the superstructure graphs in an analogous way as before: GI = (V,E)175

where ab ∈ E if and only if a ∈ P→(b), b ∈ P→(a), or both.176

To distinguish between these models, we use BNSL 6=0, BNSL+, and BNSL+
≤to denote BAYESIAN177

NETWORK STRUCTURE LEARNING with the non-zero representation, the additive representation,178

and the additive representation and the parent set size bound q, respectively. The same notation will179

also be used for POLYTREE LEARNING—for example, an instance of PL+
≤ will consist of V , a family180
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F of local score functions in the additive representation, and integers `, q, and the question is whether181

there exists a polytree D = (V,A) with in-degree at most q and score(D) ≥ `.182

In our algorithmic results, we will often use G = (V,E) to denote the superstructure graph of183

the input instance I. Without any loss of generality, we will also assume that G is connected.184

Indeed, given an algorithm A that solves BNSL on connected instances, we may solve disconnected185

instances of BNSL by using A to find the maximum score `C for each connected component C of G186

independently, and we may then simply compare
∑
C is a connected component ofG `C with `.187

Parameterized Complexity. In parameterized algorithmics [8, 12, 35] the running-time of an188

algorithm is studied with respect to a parameter k ∈ N0 and input size n. The basic idea is to find189

a parameter that describes the structure of the instance such that the combinatorial explosion can190

be confined to this parameter. In this respect, the most favorable complexity class is FPT (fixed-191

parameter tractable) which contains all problems that can be decided by an algorithm running in192

time f(k) · nO(1), where f is a computable function. Algorithms with this running-time are called193

fixed-parameter algorithms. A less favorable outcome is an XP algorithm, which is an algorithm194

running in time O(nf(k)); problems admitting such algorithms belong to the class XP.195

Showing that a problem is W[1]-hard rules out the existence of a fixed-parameter algorithm under196

the well-established assumption that W[1] 6= FPT. This is usually done via a parameterized197

reduction [8, 12] to some known W[1]-hard problem. A parameterized reduction from a parameterized198

problem P to a parameterized problem Q is a function:199

• which maps Yes-instances to Yes-instances and No-instances to No-instances,200

• which can be computed in time f(k) · nO(1), where f is a computable function, and201

• where the parameter of the output instance can be upper-bounded by some function of the202

parameter of the input instance.203

Treewidth. A nice tree-decomposition T of a graph G = (V,E) is a pair (T, χ), where T is a tree204

(whose vertices we call nodes) rooted at a node r and χ is a function that assigns each node t a set205

χ(t) ⊆ V such that the following holds:206

• For every uv ∈ E there is a node t such that u, v ∈ χ(t).207

• For every vertex v ∈ V , the set of nodes t satisfying v ∈ χ(t) forms a subtree of T .208

• |χ(`)| = 1 for every leaf ` of T and |χ(r)| = 0.209

• There are only three kinds of non-leaf nodes in T :210

– Introduce node: a node t with exactly one child t′ such that χ(t) = χ(t′) ∪ {v} for211

some vertex v 6∈ χ(t′).212

– Forget node: a node t with exactly one child t′ such that χ(t) = χ(t′) \ {v} for some213

vertex v ∈ χ(t′).214

– Join node: a node t with two children t1, t2 such that χ(t) = χ(t1) = χ(t2).215

The width of a nice tree-decomposition (T, χ) is the size of a largest set χ(t) minus 1, and the216

treewidth of the graph G, denoted tw(G), is the minimum width of a nice tree-decomposition217

of G. Fixed-parameter algorithms are known for computing a nice tree-decomposition of optimal218

width [4, 27]. For t ∈ V (T ) we denote by Tt the subtree of T rooted at t.219

Graph Parameters Based on Edge Cuts. Traditionally, the bulk of graph-theoretic research on220

structural parameters has focused on parameters that guarantee the existence of small vertex separators221

in the graph; these are inherently tied to the theory of graph minors [40, 39] and the vertex deletion222

distance. This approach gives rise not only to the classical notion of treewidth, but also to its223

well-known restrictions and refinements such as pathwidth [40], treedepth [34] and the vertex cover224

number [15, 28]. The vertex cover number is the most restrictive parameter in this hierarchy.225

However, there are numerous problems of interest that remain intractable even when parameterized226

by the vertex cover number. A recent approach developed for attacking such problems has been to227

consider parameters that guarantee the existence of small edge cuts in the graph; these are typically228

based on the edge deletion distance or, more broadly, tied to the theory of graph immersions [48, 32].229

The parameter of choice for the latter is treecut width (tcw) [48, 32, 17, 18], a counterpart to230

treewidth which has been successfully used to tackle some problems that remained intractable when231
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parameterized by the vertex cover number [20]. For the purposes of this manuscript, it will be useful232

to note that graphs containing a vertex cover X such that every vertex outside of X has degree at233

most 2 have treecut width at most |X| [20, Section 3].234

On the other hand, the by far most prominent parameter based on edge deletion distance is the235

feedback edge number of a connected graph G = (V,E), which is the minimum caardinality of a236

set F ⊆ E of edges (called the feedback edge set) such that G− F is acyclic. The feedback edge237

number can be computed in quadratic time and has primarily been used to obtain fixed-parameter238

algorithms and polynomial kernels for problems where other parameterizations failed [20, 3, 2, 47].239

Up to now, these were the only two edge-cut based graph parameters that have been considered in240

the broader context of algorithm design. This situation could be seen as rather unstisfactory in view241

of the large gap between the complexity of the richer class of graphs of bounded treecut width, and242

the significantly simpler class of graphs of bounded feedback edge number—for instance, the latter243

class is not even closed under disjoint union. Here, we propose a new parameter that lies “between”244

the feedback edge number and treecut width, and which can be seen as a localized relaxation of the245

feedback edge number: instead of measuring the total size of the feedback edge set, it only measures246

how many feedback edges can “locally interfere with” any particular part of the graph.247

Formally, for a connected graph G = (V,E) and a spanning tree T of G, let the local feedback edge248

set at v ∈ V be249

ETloc(v) = {uw ∈ E \ E(T ) | the unique path between u and w in T contains v}.

The local feedback edge number of (G,T ) (denoted lfen(G,T )) is then equal to maxv∈V |ETloc(v)|,250

and the local feedback edge number of G is simply the smallest local feedback edge number among251

all possible spanning trees of G, i.e., lfen(G) = minT is a spanning tree ofG lfen(G,T ).252

It is not difficult to show that the local feedback edge number is “sandwiched” between the feedback253

edge number and treecut width. We also show that computing it is FPT.254

Proposition 1. For every graph G, tcw(G) ≤ lfen(G) + 1 and lfen(G) ≤ fen(G).255

Proof. Let us begin with the second inequality. Consider an arbitrary spanning tree T of G. Then for256

every v ∈ V (G), ETloc(v) is a subset of a feedback edge set corresponding to the spanning tree T , so257

|ETloc(v)| ≤ fen(G) and the claim follows.258

To establish the first inequality, we will use the notation and definition of treecut width from previous259

work [18, Subsection 2.4]. Let T be the spanning tree of G with lfen(G,T ) = lfen(G). We construct260

a treecut decomposition (T,X ) where each bag contains precisely one vertex, notably by setting261

Xt = {t} for each t ∈ V (T ). Fix any node t in T other than root, let u be the parent of t in T . All262

the edges in G \ ut with one endpoint in the rooted subtree Tt and another outside of Tt belong to263

ETloc(t), so adhT (t) = | cut(t)| ≤ |ETloc(t)| ≤ lfen(G).264

265

Let Ht be the torso of (T,X ) in t, then V (Ht) = {t, z1...zl} where zi correspond to connected266

components of T \ t, i ∈ [l]. In H̃(t), only zi with degree at least 3 are preserved. But all such zi are267

the endpoints of at least 2 edges in |ETloc(t)|, so tor(t) = |V (H̃t)| ≤ 1 + |ETloc(t)| ≤ 1 + lfen(G).268

Thus tcw(G) ≤ lfen(G) + 1.269

Theorem 2. The problem of determining whether lfen(G) ≤ k for an input graph G parameterized270

by an integer k is fixed-parameter tractable. Moreover, if the answer is positive, we may also output271

a spanning tree T such that lfen(G,T ) ≤ k as a witness.272

Proof. Observe that since tcw(G) ≤ lfen(G) + 1 by Proposition 1 and tw(G) ≤ 2 tcw(G)2 +273

3 tcw(G) [17], we immediately see that no graph of treewidth greater than k′ = 2k2 + 5k + 3 can274

have a local feedback edge set of at most k. Hence, let us begin by checking that tw(G) ≤ k′ using275

the classical fixed-parameter algorithm for computing treewidth [4]; if not, we can safely reject the276

instance.277

Next, we use the fact that tw(G) ≤ k′ to invoke Courcelle’s Theorem [6, 12], which provides a278

fixed-parameter algorithm for model-checking any Monadic Second-Order Logic formula on G when279

parameterized by the size of the formula and the treewidth of G. We refer interested readers to the280

appropriate books [7, 12] for a definition of Monadic Second Order Logic; intuitively, the logic281
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allows one to make statements about graphs using variables for vertices and edges as well as their282

sets, standard logical connectives, set inclusions, and atoms that check whether an edge is incident to283

a vertex. If the formula contains a free set variable X and admits a model on G, Courcelle’s Theorem284

allows us to also output an interpretation of X on G that satisfies the formula.285

The formula φ we will use to check whether lfen(G) ≤ k will be constructed as follows. φ contains286

a single free edge set variable X (which will correspond to the sought-after feedback edge set). φ287

then consists of a conjunction of two parts, where the first part simply ensures that X is a minimal288

feedback edge set using a well-known folklore construction [31, 1]; this also ensures that G−X is a289

spanning tree. In the second part, φ quantifies over all vertices in G, and for each such vertex v it290

says there exist edges e1, . . . , ek in X such that for every edge ab ∈ X distinct from all of e1, . . . , ek,291

there exists a path P between a and b in G−X which is disjoint from v. (Note that since the path P292

is unique in G−X , one could also quantify P universally and achieve the same result.)293

It is easy to verify that φ(X) is satisfied in G if and only if lfen(G,G − X) ≤ k, and so the294

proof follows. Finally, we remark that—as with every algorithmic result arising from Courcelle’s295

Theorem—one could also use the formula as a template to build an explicit dynamic programming296

algorithm that proceeds along a tree-decomposition of G.297

3 Solving BNSL 6=0 with Parameters Based on Edge Cuts.298

In this section we provide tractability and lower-bound results for BNSL 6=0 from the viewpoint of299

superstructure parameters based on edge cuts. Together with the previous lower bound that rules300

out fixed-parameter algorithms based on all vertex-separator parameters [36, Theorem 3], the results301

presented here provide a comprehensive picture of the complexity of BNSL 6=0 with respect to302

superstructure parameterizations.303

3.1 Using the Feedback Edge Number for BNSL 6=0304

We say that two instances I, I ′ of BNSL are equivalent if (1) they are either both Yes-instances or305

both No-instances, and furthermore (2) a solution to one instance can be transformed into a solution306

to the other instance in polynomial time. Our aim here is to prove the following theorem:307

Theorem 3. There is an algorithm which takes as input an instance I of BNSL 6=0 whose super-308

structure has fen k, runs in time O(|I|2), and outputs an equivalent instance I ′ = (V ′,F ′, `′) of309

BNSL 6=0 such that |V ′| ≤ 16k.310

In parameterized complexity theory, such data reduction algorithms with performance guarantees are311

called kernelization algorithms [12, 8]. These may be applied as a polynomial-time preprocessing312

step before, e.g., more computationally expensive methods are used. The fixed-parameter tractability313

of BNSL 6=0 when parameterized by the fen of the superstructure follows as an immediate corollary314

of Theorem 3 (one may solve I by, e.g., exhaustively looping over all possible DAGs on V ′ via a315

brute-force procedure). We also note that even though the number of variables of the output instance316

is polynomial in the parameter k, the instance I ′ need not have size polynomial in k.317

We begin our path towards a proof of Theorem 3 by computing a feedback edge set EF of G of size k318

in timeO(|I|2) by, e.g., Prim’s algorithm. Let T be the spanning tree ofG, EF = E(G)\E(T ). The319

algorithm will proceed by the recursive application of certain reduction rules, which are polynomial-320

time operations that alter (“simplify”) the input instance in a certain way. A reduction rule is safe if it321

outputs an instance which is equivalent to the input instance. We start by describing a rule that will322

be used to prune T until all leaves are incident to at least one edge in EF .323

Reduction Rule 1. Let v ∈ V be a vertex and let Q be the set of neighbors of v with de-
gree 1 in G. We construct a new instance I ′ = (V ′,F ′, `) by setting: 1. V ′ := V \ Q; 2.
Γf ′(v) := {∅} ∪ { (P \ Q) | P ∈ Γf (v) }; 3. for all w ∈ V ′ \ {v}, f ′w = fw; 4. for every
P ′ ∈ Γf ′(v):

f ′v(P
′) := max

P :P\Q=P ′

(
fv(P ) +

∑
vin∈P∩Q

fvin(∅) +
∑

vout∈Q\P

max(fvout(∅), fvout(v))
)
.

Lemma 4. Reduction Rule 1 is safe.324
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Proof. For the forward direction, assume that I ′ admits a solution D′, and let λ be the score325

D′ achieves on v. By the construction of I ′, there must be a parent set Z ∈ Γf (v) such that326

Z ∩ V ′ = PD′(v) (i.e., Z agrees with v’s parents in D′) and λ is the sum of the following scores:327

(1) fv(Z), (2) the maximum achievable score for each vertex in Q \ Z, and (3) the score of {∅}328

for each vertex in Z ∩ Q. Let D be obtained from D′ by adding the following arcs: zv for each329

z ∈ Z, and vq for each q ∈ Q \ Z such that q achieves its maximum score with v as its parent. By330

construction, λ =
∑
w′∈{v}∪Q fw(PD(w)). Since the scores of D and D′ coincide on all vertices331

outside of {v}∪Q and D, we conclude that score(D) = score(D′), and hence I is a Yes-instance.332

For the converse direction, assume that I admits a solution D. Let D′ = D−Q. By the construction333

of f ′v , it follows that f ′v(PD′(v)) is greater or equal to the score D achieves on {v} ∪Q. Thus, D′ is334

a solution to I ′, and we conclude that Reduction Rule 1 is safe.335

Observe that the superstructure graph G′ obtained after applying one step of Reduction Rule 1 is336

simply G−Q; after its exhaustive application we obtain an instance I such that all the leaves of the337

tree T are endpoints of EF . Our next step is to get rid of long paths in G whose internal vertices338

have degree 2. We note that this step is more complicated than in typical kernelization results using339

feedback edge set as the parameter, since a directed path Q in G can serve multiple “roles” in a340

hypothetical solution D and our reduction gadget needs to account for all of these. Intuitively, Q may341

or may not appear as a directed path in D (which impacts what other arcs can be used in D due to342

acyclicity), and in addition the total score achieved by D on the internal vertices of Q needs to be343

preserved while taking into account whether the endpoints of Q have a neighbor in the path or not.344

Because of this (and unlike in many other kernelization results of this kind [20, 46, 18]), we will not345

be replacing Q merely by a shorter path, but by a more involved gadget.346

Reduction Rule 2. Let a, b1, . . . , bm, c be a path in G such that for each i ∈ [m], bi has degree347

precisely 2. For each B ⊆ {a, c}, let `max(B) be the maximum sum of scores that can be achieved by348

b1, . . . , bm under the condition that b1 (and analogously bm) takes a (c) into its parent set if and only349

if a ∈ B (c ∈ B). In other words, `max(B) = maxDB

∑
bi|i∈[m] fbi(PDB

(bi)) where DB is a DAG350

on {b1, . . . , bm} ∪B such that B does not contain any vertices of out-degree 0 in DB . Moreover, let351

`noPath(a) (and analogously `noPath(c)) be the maximum score that can be achieved on the vertices352

b1, . . . , bm by a DAG on a, b1, . . . , bm, c with the following properties: a (c) has out-degree 1, c (a)353

has out-degree 0, and there is no directed path from a to bm (from c to b1).354

We construct a new instance I ′ = (V ′,F ′, `) as follows:355

• V ′ := V ∪ {b} \ {b2...bm−1};356

• Γf ′(b) = {B ∪ {b1, bm}|B ⊆ {a, c}} with scores f ′b(B ∪ {b1, bm}) := `max(B);357

• The scores for a and c are obtained from F by simply adding b to any parent set containing358

either b1 or bm; formally:359

– Γf ′(a) is a union of {P ∈ Γf (a)|b1 6∈ P}, where f ′a(P ) := fa(P ) and {P ∪{b}|b1 ∈360

P, P ∈ Γf (a)}, where f ′a(P ∪ {b}) := fa(P );361

– Γf ′(c) is a union of {P ∈ Γf (c)|bm 6∈ P}, where f ′c(P ) := fc(P ), and {P∪{b}|bm ∈362

P, P ∈ Γf (c)}, where f ′c(P ∪ {b}) := fc(P ).363

• Γf ′(b1) contains only {a, b, bm} with score `noPath(a);364

• Γf ′(bm) contains only {c, b, b1} with score `noPath(c);365

• for all w ∈ V ′ \ {a, b1, b, bm, c}, f ′w = fw.366

An Illustration of Reduction Rule 2 is provided in Figure 2. The rule can be applied in linear367

time, since the 6 values of `noPath and `max can be computed in linear time by a simple dynamic368

programming subroutine that proceeds along the path a, b1, . . . , bm, c (alternatively, one may instead369

invoke the fact that paths have treewidth 1 [36]).370

Lemma 5. Reduction Rule 2 is safe.371

Proof. Note that the superstructure graph of reduced instance is obtained from GI by contracting372

b2...bm−1, adding b and connecting it by edges to a, c, b1, bm. We will show that a score of at least `373
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Figure 2:
Top: The six possible scenar-
ios that give rise to the values
of `max (Cases 1-4) and `noPath
(Cases 5-6).
Bottom: The corresponding
arcs in the gadget after the ap-
plication of Reduction Rule 2.

can be achieved in the original instance I if and only if a score of at least ` can be achieved in the374

reduced instance I ′.375

Assume that D is a DAG that achieves a score of ` in I. We will construct a DAG D′, called the376

reduct of D, with f ′(D′) ≥ `. To this end, we first modify D by removing the vertices b2...bm−1377

and adding b (let us denote the DAG obtained at this point D∗). Further modifications of D∗ depend378

only on D[a, b1...bm, c], and we distinguish the 6 cases listed below (see also Figure 2):379

• case 1: D contains both arcs ab1 and cbm. We add to D∗ arcs from a, c, b1, bm to b, denote380

resulting graph by D′. As D′ is obtained from DAG by making b a sink, it is a DAG as well.381

Parent set of b in D′ is {a, c, b1, bm}, so its score is `max(a, c) ≥
∑m
i=1 fbi(PD(bi)), which382

means that it achieves the highest scores all of bi’s can achieve in D. The remaining vertices383

in V (D′) \ {b1, bm, b} have the same scores as in D, so f ′(D′) ≥ f(D) = `.384

• case 2: D contains none of the arcs ab1 and cbm. To keep the scores of a and c the same as in385

D, we add to D∗ the arc ba iff D contains b1a, add arc bc iff D contains bmc. Furthermore,386

we add arcs b1b and bmb and denote resulting graph D′. As D′ is obtained from D by387

making b a source and then adding sources b1 and bm, it is a DAG as well. The parent388

set of b in D′ is {b1, bm}, so its score is `max(∅) ≥
∑m
i=1 fbi(PD(bi)). Rest of vertices in389

V (D′) \ {b1, bm, b} have the same scores as in D, so f ′(D′) ≥ f(D) = `.390

• case 3: D doesn’t contain arc ab1, but contains cbm and all the arcs bi+1bi, i ∈ [m− 1]. We391

add to D∗ arcs cb, b1b and bmb. We also add ba iff D contains b1a, to preserve the score392

of a. Denote resulting graph by D′. D′ can be considered as D where long directed path393

c→ bm → ...→ b1 was replaced by c→ b and then sources b1 and bm were added, so it is394

a DAG. Arguments for scores are similar to cases 1 and 2.395

• case 4: D doesn’t contain arc cbm, but contains ab1 and all the arcs bibi+1, i ∈ [m − 1].396

This case is symmetric to case 3.397

• case 5: D contains the arc ab1 but does not contain the arc cbm and at least one of the398

arcs bibi+1, i ∈ [m − 1] is also missing (i.e., there is no directed path from a to bm). We399

add to D′ arcs bb1 and bmb1. If bmc ∈ A(D), add also bc. Denote the resulting graph400

D′. As D′ is obtained from D∗ by making b1 a sink and b a source, it is a DAG. b1 has401

parent set {a, b, bm} in D′, so its score is `noPath(a) ≥
∑m
i=1 fbi(PD(bi)). Rest of vertices402

in V (D′) \ {b1, bm, b} have the same scores as in D, so f ′(D′) ≥ f(D) = `.403

• case 6: D contains the arc cbm but does not contain the arc ab1 and at least one of the arcs404

bi+1bi, i ∈ [m− 1] is also missing. This case is symmetric to case 5.405
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The considered cases exhaustively partition all possible configurations of D[a, b1...bm, c], so we406

always can construct D′ with a score at least `. For the converse direction, note that the DAGs407

constructed in cases 1-6 cover all optimal configurations on {a, b1, b, bm, c}: if there is a DAG D′′408

in I ′ with a score of `′, we can always reverse the construction to obtain a DAG D′ with score at409

least `′ such that D′[a, b1, b, bm, c] has one of the forms depicted at the bottom line of the figure. The410

claim for the converse direction follows from the fact that every such D′ is a reduct of some DAG D411

of the original instance with the same score.412

We are now ready to prove the desired result.413

Proof of Theorem 3. We begin by exhaustively applying Reduction Rule 1 on an instance whose414

superstructure graph has a feedback edge set of size k, which results in an instance with the same415

feedback edge set but whose spanning tree T has at most 2k leaves. It follows that there are at most416

2k vertices with a degree greater than 2 in T .417

Let us now “mark” all the vertices that either are endpoints of the edges inEF or have a degree greater418

then 2 in T ; the total number of marked vertices is upper-bounded by 4k. We now proceed to the419

exhaustive application of Reduction Rule 2, which will only be triggered for sufficiently long paths in420

T that connect two marked vertices but contain no marked vertices on its internal vertices; there are at421

most 4k such paths due to the tree structure of T . Reduction Rule 2 will replace each such path with422

a set of 3 vertices, and therefore after its exhaustive application we obtain an equivalent instance with423

at most 4k + 4k · 3 = 16k vertices, as desired. Correctness follows from the safeness of Reduction424

Rules 1, 2, and the runtime bound follows by observing that the total number of applications of each425

rule as well as the runtime of each rule are upper-bounded by a linear function of the input size.426

3.2 Fixed-Parameter Tractability of BNSL 6=0 using the Local Feedback Edge Number427

Our aim here will be to lift the fixed-parameter tractability of BNSL 6=0 established by Theorem 3 by428

relaxing the parameterization to lfen. In particular, we will prove:429

Theorem 6. BNSL 6=0 is fixed-parameter tractable when parameterized by the local feedback edge430

number of the superstructure.431

Since fen is a more restrictive parameter than lfen, this results in a strictly larger class of instances432

being identified as tractable. However, the means we will use to establish Theorem 6 will be funda-433

mentally different: we will not use a polynomial-time data reduction algorithm as the one provided434

in Theorem 3, but instead apply a dynamic programming approach. Since the kernels constructed435

by Theorem 3 contain only polynomially-many variables w.r.t. fen, that result is incomparable to436

Theorem 6.437

In fact one can use standard techniques to prove that, under well-established complexity assumptions,438

a data reduction result such as the one provided in Theorem 3 cannot exist for lfen. The intuitive439

reason for this is that lfen is a “local” parameter that does not increase by, e.g., performing a disjoint440

union of two distinct instances (the same property is shared by many other well-known parameters441

such as treewidth, pathwidth, treedepth, clique-width, and treecut width). We provide a formal proof442

of this claim at the end of Subsection 3.3.443

As our first step towards proving Theorem 6, we provide general conditions for when the union of two444

DAGs is a DAG as well. Let D = (V,A) be a directed graph and V ′ ⊆ V . Denote by Con(V ′, D)445

the binary relation on V ′ × V ′ which specifies whether vertices from V ′ are connected by a path in446

D: Con(V ′, D) = {(v1, v2) ⊆ V ′ × V ′| ∃ directed path from v1 to v2 in D}. Similarly to arcs, we447

will use v1v2 ∈ as shorthand for (v1, v2); we will also use trcl to denote the transitive closure.448

Lemma 7. Let D1, D2 be directed graphs with common vertices Vcom = V (D1) ∩ V (D2), Vcom ⊆449

V1 ⊆ V (D1), Vcom ⊆ V2 ⊆ V (D2). Then:450

• (i) Con(V1 ∪ V2, D1 ∪D2) = trcl(Con(V1, D1) ∪ Con(V2, D2));451

• (ii) If D1, D2 are DAGs and Con(V1 ∪ V2, D1 ∪D2) is irreflexive, then D1 ∪D2 is a DAG.452

Proof. (i) Denote Ri := Con(Vi, Di), i = 1, 2. Obviously trcl(R1 ∪R2) is a subset of Con(V1 ∪453

V2, D1 ∪D2). Assume that for some x, y ∈ V1 ∪ V2 there exists a directed path P from x to y in454

D1 ∪D2. We will show (by induction on the length l of shortest P ) that xy ∈ trcl(R1 ∪R2).455

10



• l = 1: in this case there is an arc xy in some Di, so xy ∈ Ri ⊆ trcl(R1 ∪R2)456

• l → l + 1. If P is completely contained in some Di, then xy ∈ Ri ⊆ trcl(R1 ∪ R2).457

Otherwise P must contain arcs e /∈ A(D1), f /∈ A(D2). Then there is w ∈ Vcom ⊆ V1 ∪ V2458

between them. By the induction hypothesis xw ∈ trcl(R1∪R2) andwy ∈ trcl(R1∪R2),459

so xy ∈ trcl(R1 ∪R2)460

(ii) The precondition implies that the digraph D1 ∪D2 induced on V1 ∪ V2 is a DAG. Assume that461

D1∪D2 is not a DAG and let C be a shortest directed cycle in D1∪D2. As D1 and D2 are DAGs, C462

must contain arcs e /∈ A(D1), f /∈ A(D2). So there are least 2 different vertices x, y from Vcom in C.463

By (i) we have that xy ∈ trcl(R1 ∪R2) and yx ∈ trcl(R1 ∪R2), then also xx ∈ trcl(R1 ∪R2),464

which contradicts irreflexivity.465

Towards proving Theorem 6, assume that we are given an instance I = (V,F , `) of BNSL 6=0 with466

connected superstructure graph G = (V,E). Let T be a fixed rooted spanning tree of G such that467

lfen(G,T ) = lfen(G) = k, denote the root by r. For v ∈ V (T ), let Tv be the subtree of T rooted at468

v, let Vv = V (Tv), and let V̄v = NG(Vv) ∪ Vv. We define the boundary δ(v) of v to be the set of469

endpoints of all edges in G with precisely one endpoint in Vv (observe that the boundary can never470

have a size of 1). v is called closed if |δ(v)| ≤ 2 and open otherwise. We begin by establishing some471

basic properties of the local feedback edge set.472

Observation 8. Let v be a vertex of T . Then:473

1. For every closed child w of v in T , it holds that δ(w) = {v, w} and vw is the only edge474

between Vw and V \ Vw in G.475

2. |δ(v)| ≤ 2k + 2.476

3. Let {vi|i ∈ [t]} be the set of all open children of v in T . Then t ≤ 2k and477

δ(v) ⊆ ∪ti=1δ(vi) ∪ {v} ∪NG(v)478

Proof. The first claim follows by the connectivity assumption on G and the definition of boundary.479

For the second claim, clearly δ(r) = ∅. Let v 6= r have the parent u, and consider an arbitrary480

w ∈ δ(v) \ {u, v}. Then there is an edge ww′ ∈ E(G) with precisely one endpoint in Vv and481

ww′ 6= uv. Hence ww′ 6∈ E(T ) and the path between w and w′ in T contains v, and this implies482

ww′ ∈ ETloc(v) by definition. Consequently, w ∈ V Tloc(v). For the claimed bound we note that483

|V Tloc(v)| ≤ 2|ETloc(v)| ≤ 2k.484

For the third claim, let w = vi for some i ∈ [t]. As w is open, there exists an edge e 6= vw between485

Vw and V \ Vw in G. By definition of local feedback edge set, e ∈ ETloc(v). Let xw be the endpoint486

of e that belongs to Vw, then xw ∈ V Tloc(v) and xw 6∈ Vw′ for any open child w′ 6= w of v. But487

|V Tloc(v)| ≤ 2k, which yields the bound on number t of open children.488

For the boundary inclusion, consider any edge c in G with precisely one endpoint xv in Vv . Note that489

xv can not belong to Vw for any closed child w of v. If xv ∈ Vvi for some i ∈ [t], then endpoints of c490

belong to δ(vi). Otherwise xv = v and therefore the second endpoint of c is in NG(v).491

With Observation 8 in hand, we can proceed to a definition of the records used in our dynamic492

program. Intuitively, these records will be computed in a leaf-to-root fashion and will store at each493

vertex v information about the best score that can be achieved by a partial solution that intersects the494

subtree rooted at v.495

Let R be a binary relation on δ(v) and s an integer. For s ∈ Z, we say that (R : s) is a record for a496

vertex v if and only if there exists a DAG D on V̄v such that (1) w ∈ Vv for each arc uw ∈ A(D), (2)497

R = Con(δ(v), D) and (3)
∑
u∈Vv

fu(PD(u)) = s. The records (R, s) where s is maximal for fixed498

R are called valid. Denote the set of all valid records for v byR(v), and note that |R(v)| ≤ 2O(k2).499

Observe that if vi is a closed child of v, then by Observation 8.1 R(vi) consists of precisely two500

valid records: one for R = ∅ and one for R = {vvi}. Moreover, the root r of T has only a single501

valid record (∅ : sI), where sI is the maximum score that can be achieved by a solution in I. The502

following lemma lies at the heart of our result and shows how we can compute our records in a503

leaf-to-root fashion along T .504
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Lemma 9. Let v ∈ V (G) have m children in T where m > 0, and assume we have computedR(vi)505

for each child vi of v. ThenR(v) can be computed in time at most m · |Γf (v)| · 2O(k3).506

Proof. Without loss of generality, let the open children of v ∈ V (G) be v1, . . . , vt and let the507

remaining (i.e., closed) children of v be vt+1, . . . , vm; recall that by Point 3. of Observation 8,508

t ≤ 2k. For each closed child vj , j ∈ [m] \ [t], let s∅j be the second component of the valid record for509

∅ ∈ R(vj), and let s×j be the second component of the valid record for the single non-empty relation510

inR(vj). Consider the following procedure A.511

First, A branches over all choices of P ∈ Γf (v) and all choices of (Ri, si) ∈ R(vi) for each512

individual open child vi of v. Let R0 = { pv | p ∈ P } and let R′ =
⋃
j∈[t]0

Rj . If trcl(R′) is513

not irreflexive, we discard this branch; otherwise, we proceed as follows. Let Rnew be the subset514

of R′ containing all arcs uw such that w ∈ Vv. Moreover, let snew = fv(P ) + (
∑
i∈[t] si) +515

(
∑
i∈[m]\[t] | vi∈P s

∅
i ) + (

∑
i∈[m]\[t] | vi 6∈P (max(s∅i , s

×
i )).516

The algorithm A gradually constructs a set R∗(v) as follows. At the beginning, R∗(v) = ∅. For517

each newly obtained tuple (Rnew, snew), A checks whetherR∗(v) already contains a tuple with Rnew518

as its first element; if not, we add the new tuple to R∗(v). If there already exists such a tuple519

(Rnew, sold) ∈ R∗(v), we replace it with (Rnew,max(sold, snew)).520

For the running time, recall that in order to construct R∗(v) the algorithm branched over |Γf (v)|-521

many possible parent sets of v and over the choice of at most 2k-many binary relations Ri on the522

boundaries of open children. According to Observation 8.2, there are at most 3(2k+2)2 options for523

every such relation, so we have at most O((3(2k+2)2)2k · |Γf (v)|) ≤ 2O(k3) · |Γf (v)| branches. In524

every branch we compute trcl(R′) in time kO(1) and then compute the value of snew using the525

equation provided above before updatingR∗(v), which takes time at most O(m).526

Finally, to establish correctness it suffices to prove following claim:527

Claim 1. (R : s) is a record for v if and only if there exist P ∈ Γf (v) and records (Ri : si) for vi,528

i ∈ [m], such that:529

• trcl(∪ti=0Ri) is irreflexive;530

• Ri = ∅ for any closed child vi ∈ P ;531

•
∑m
i=1 si + fv(P ) = s;532

• R = (trcl(∪ti=0Ri))|δ(v)×δ(v).533

Moreover, if (R : s) ∈ R(v) then in addition:534

• (Ri : si) ∈ R(vi), i ∈ [t];535

• for every closed child vi 6∈ P , si = max(s∅i , s
×
i ).536

Proof of the Claim. (a) (⇐) Denote Vi = Vvi and V̄i = V̄vi , i ∈ [m]. For every i ∈ [m] there exists
DAG Di on V̄i such that all its arcs finish in Vi, Ri = Con(δ(vi), Di) and

∑
u∈Vi

fu(PDi
(u)) = si.

Denote by D0 DAG on V0 = v ∪NG(v) with arc set R0. We will construct the witness D of (R, s)
by gluing together all Di, i ∈ [m]0.

We start from D0 and DAGs of open children. Note that Con(V0, D0) = R0 and
Con(δ(vi), Di) = Ri for i ∈ [t] . Inductive application of Lemma 7 to DAGs Di, i ∈ [t],
yields Con(∪ti=1δ(vi) ∪ V0, D

∗) = trcl(∪ti=0Ri). In particular, as δ(v) ⊆ ∪ti=1δ(vi) ∪ V0 by
Observation 8.3, we have that Con(δ(v), D∗) = (trcl(∪ti=0Ri))|δ(v)×δ(v) = R. As trcl(∪ti=0Ri)
is irreflexive, D∗ = ∪ti=0Di is DAG by Lemma 7.

Now we add to D∗ DAGs for closed children and finally obtain D = ∪mi=t+1Di ∪ D∗. For
every closed child vi, Di is by Observation 8.1 the union of v and Di \ v, plus at most one of arcs
vvi, viv between them (recall Ri = ∅ for any closed child vi ∈ P ). Note that Di \ v can share only
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vi with D0 and doesn’t have common vertices with any other Dj . Therefore any directed path in D
starting and finishing outside outside of Vi, i > t, doesn’t intersect Vi. In particular, acyclicity of D∗
and Di, i ∈ [m] \ [t], implies acyclicity of D; Con(δ(v), D) = Con(δ(v), D∗) = R.

All the arcs in Di finish in Vi, so parent set for every xi ∈ Di in D is the same as in Di,
i ∈ [m]. Also parent set of v in D is the same as in D0. So∑

u∈Vv

fu(PD(u)) =

m∑
i=1

∑
u∈Vi

fu(PDi
(u)) + fv(PD0

(v)) =

m∑
i=1

si + fv(P ) = s

(⇒) Let D be a witness for (R : s), i.e. D is DAG on V̄v with all arcs finishing in Vv such that∑
u∈Vv

fu(PD(u)) = s and Con(δ(v), D) = R. For i = 1 ∈ [m] define D′i = D[V̄i] and let
Di be obtained from D′i by deleting arcs that finish outside Vi. Note that ∪mi=1Di = D. Let
Ri = Con(δ(vi), Di), as in (⇐) we have that R = Con(δ(v), D) = trcl(∪ti=0Ri))|δ(v)×δ(v). As
D is DAG, trcl(∪ti=0Ri) is irreflexive and Ri = ∅ for any closed child vi ∈ P . Local score for Di

is
si =

∑
u∈Vi

fu(PDi
(u)) =

∑
u∈Vi

fu(PD′
i
(u)) =

∑
u∈Vi

fu(PD(u))

So vi has record (Ri : si). Denote P = PD(v). Then:

s =
∑
u∈Vv

fu(PD(u)) =

m∑
i=1

∑
u∈Vi

fu(PD(u)) + fv(PD(v)) =

m∑
i=1

si + fv(P )

(b) Let (R : s) ∈ R(v) and all D,P,Di, Ri, si are as in (a)(⇒). Assume that for some i (Ri, si) is537

not valid record of vi. In this case vi must have a record (Ri : si + ∆) with ∆ > 0. But then (a)(⇐)538

implies that v has record (R : s+ ∆), which contradicts to validity of (R : s)539

540

Assume that some closed vi 6∈ P has valid record (R′i, si + ∆) with ∆ > 0. R′ and R541

differ only by arc vvi, so addition or deletion of the arc to D would increase the total score by ∆ > 0542

without creating cycles. This would result in record (R : s + ∆) and yield a contradiction with543

validity of (R : s). �544

We are now ready to prove the main result of this subsection.545

Proof of Theorem 6. We provide an algorithm that solves BNSL 6=0 in time 2O(k3)·n3, where n = |I|,546

assuming that a spanning tree T of G such that lfen(G,T ) = k is provided as part of the input. Once547

that is done, the theorem will follow from Theorem 2.548

The algorithm computesR(v) for every node v in T , moving from leaves to the root:549

• For a leaf v, computeR∗(v) := {(RP : fv(P ))|P ∈ Γf (v), RP = {uv|u ∈ P}}. This can550

be done by simply looping over Γf (v) in timeO(n). Note thatR∗(v) is the set of all records551

of v, so we can correctly setR(v) := {(R : s) ∈ R∗(v)| there is no (R : s′) ∈ R∗(v) with552

s′ > s}.553

• Let v ∈ V (G) have at least one child in T , and assume we have computedR(vi) for each554

child vi of v. Then we invoke Lemma 9 to compute R(v) in time at most m · |Γf (v)| ·555

2O(k2) ≤ 2O(k2) · n2.556

3.3 Lower Bounds for BNSL 6=0557

Since lfen lies between fen and treecut width in the parameter hierarchy (see Proposition 1) and558

BNSL 6=0 is FPT when parameterized by lfen, the next step would be to ask whether this tractability559

result can be lifted to treecut width. Below, we answer this question negatively.560

Theorem 10. BNSL 6=0is W[1]-hard when parameterized by the treecut width of the superstructure561

graph.562
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In fact, we show an even stronger result: BNSL 6=0 is W[1]-hard when parameterized by the vertex563

cover number of the superstructure even when all vertices outside of the vertex cover are required to564

have degree at most 2. We remark that while BNSL 6=0 was already shown to be W[1]-hard when565

parameterized by the vertex cover number [36], in that reduction the degree of the vertices outside of566

the vertex cover is not bounded by a constant and, in particular, the graphs obtained in that reduction567

have unbounded treecut width.568

Proof of Theorem 10. We reduce from the following well-known W[1]-hard problem [12, 8]:569

REGULAR MULTICOLORED CLIQUE (RMC)

Input: A k-partite graphG = (V1∪ ...∪Vk, E) such that |NG(v)| = m for every v ∈ V
Parameter: The integer k
Question: Are there nodes vi that form a k-colored clique in G, i.e. vi ∈ Vi and vivj ∈ E

for all i, j ∈ [k], i 6= j?

570

We say that vertices in Vi have color i. Let G = (V1 ∪ ... ∪ Vk, E) be an instance of RMC. We571

will construct an instance (V,F , `) of BNSL 6=0such that I is a Yes-instance if and only if G is a572

Yes-instance of RMC. V consists of one vertex vi for each color i ∈ [k] and one vertex ve for every573

edge e ∈ E. For each edge e ∈ E that connects a vertex of color i with a vertex of color j, the574

constructed vertex ve will have precisely one element in its score function that achieves a non-zero575

score, in particular: fve({vi, vj}) = 1.576

Next, for each i ∈ [k], we define the scores for vi as follows. For every v ∈ Vi, let Ev be the set of all577

edges incident to v in G, and let P vi = {ve : e ∈ Ev}. We now set fvi(P
v
i ) = m+ 1 for each such578

v; all other parent sets will receive a score of 0. Note that { vi | i ∈ [k] } forms a vertex cover of the579

superstructure graph and that all vertices outside of this vertex cover have degree at most 2, as desired.580

We will show that G has a k-colored clique if and only if there is a Bayesian network D with score at581

least ` = |E|+ k +
(
k
2

)
. (In fact, it will later become apparent that the score can never exceed `.)582

Assume first that G has a k-colored clique on vi, i ∈ [k], consisting of a set EX of
(
k
2

)
edges.583

Consider the digraph D on V obtained as follows. For each vertex vi, i ∈ [k], and each vertex584

ve where e ∈ E, D contains the arc vevi if ve is incident to vi and otherwise D contains the arc585

vive. This completes the construction of D. Now notice that the construction guarantees that each586

vi receives the parent set P v
i

i and hence contributes a score of m+ 1. Moreover, for every edge e587

not incident to a vertex in the clique, the vertex ve contributes a score of 1; note that the number588

of such edges is |E| − km +
(
k
2

)
; indeed, every vi is incident to m edges but since vi, i ∈ [k],589

was a clique we are guaranteed to double-count precisely
(
k
2

)
many edges. Hence the total score is590

k(m+ 1) + |E| − km+
(
k
2

)
= |E|+ k +

(
k
2

)
, as desired.591

Assume that I = (V,F , `) is a Yes-instance and let sopt ≥ ` = |E|+k+
(
k
2

)
be the maximum score592

that can be achieved by a solution to I; let D be a dag witnessing such a score. Then all vi, i ∈ [k],593

must receive a score of m+ 1 in D. Indeed, assume that some vi receives a score of 0 and let Pv be594

any parent set of vi with a score m+ 1. Modify D by orienting edges vive for every ve ∈ Pv inside595

vi. Now local score of vi is m+ 1, total score of the rest of vertices decreased by at most m (maximal596

number of ve that had local score 1 in D and lost it after the modification). So the modified DAG has597

a score of at least sopt + 1, which contradicts the optimality of sopt. Therefore all vi, i ∈ [k], get598

score m+ 1 in D.599

Let Pi be parent set of vi in D, then |Pi| = m, Pi = P v
i

i for some vi ∈ Vi. For every ve ∈ Pi,600

the local score of ve in D is 0. Denote by Eunsat the set of all ve that have a score of 0 in D. Every601

ve belongs to at most 2 different Pi and Pi ∩ Pj ≤ 1 for every i 6= j, so |Eunsat| ≥ km −
(
k
2

)
. If602

|Eunsat| > km−
(
k
2

)
, sum of local scores of ev in D would be smaller then |E| − km+

(
k
2

)
, which603

results in sopt < |E|+ k+
(
k
2

)
. Therefore |Eunsat| = km−

(
k
2

)
. But this means that Pi ∩Pj 6= ∅ for604

any i 6= j, i.e. vi, i ∈ [k] form a k-colored clique in G. In particular sopt = `.605

For our second result, we note that the construction in the proof of Theorem 10 immediately implies606

that BNSL 6=0 is NP-hard even under the following two conditions: (1) `+
∑
v∈V |Γf (v)| ∈ O(|V |2)607
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(i.e., the size of the parent set encoding is quadratic in the number of vertices), and (2) the instances608

are constructed in a way which makes it impossible to achieve a score higher than `. Using this,609

as a fairly standard application of AND-cross-compositions [8] we can exclude the existence of an610

efficient data reduction algorithm for BNSL 6=0 parameterized by lfen:611

Theorem 11. Unless NP ⊆ co-NP/poly, there is no polynomial-time algorithm which takes as612

input an instance I of BNSL 6=0 whose superstructure has lfen k and outputs an equivalent instance613

I ′ = (V ′,F ′, `′) of BNSL 6=0 such that |V ′| ∈ kO(1). In particular, BNSL 6=0 does not admit a614

polynomial kernel when parameterized by lfen.615

Proof Sketch. We describe an AND-cross-composition for the problem while closely following the616

terminology and intuition introduced in Section 15 in the book [8]. Let the input consist of instances617

I1, . . . , It of (unparameterized) instances of BNSL 6=0 which satisfy conditions (1) and (2) mentioned618

above, and furthermore all have the same size and same target value of `1 (which is ensured through619

the use of the polynomial equivalence relation R [8, Definition 15.7]). The instance I produced620

on the output is merely the disjoint union of instances I1, . . . , It where we set ` := t · `1, and we621

parameterize I by lfen.622

Observe now that condition (a) in Definition 15.7 [8] is satisfied by the fact that the local feedback623

edge number of I is upper-bounded by the number of edges in a connected component of I . Moreover,624

the AND- variant of condition (b) in that same definition (see Subsection 15.1.3 [8]) is satisfied as625

well: since none of the original instances can have a score greater than `1, I achieves a score of `1 · t626

if and only if each of the original instances was a Yes-instance.627

This completes the construction of an AND-cross-composition for BNSL 6=0 parameterized by lfen,628

and the claim follows by Theorem 15.12 [8].629

4 Additive Scores and Treewidth630

While the previous section focused on the complexity of BNSL when the non-zero representation631

was used (i.e., BNSL 6=0), here we turn our attention to the complexity of the problem with respect to632

the additive representation. Recall from Subsection 2 that there are two variants of interest for this633

representation: BNSL+ and BNSL+
≤. We begin by showing that, unsurprisingly, both of these are634

NP-hard.635

Theorem 12. BNSL+ is NP-hard. Moreover, BNSL+
≤ is NP-hard for every q ≥ 3.636

Proof. We provide a direct reduction from the following NP-hard problem [23, 10]:637

MINIMUM FEEDBACK ARC SET ON BOUNDED-DEGREE DIGRAPHS (MFAS)

Input: Digraph D = (V,A) whose skeleton has degree at most 3, integer m ≤ |A|.
Question: Is there a subset A′ ⊆ A where |A′| ≤ m such that D −A′ is a DAG?

638

Let (D,m) be an instance of MFAS. We construct an instance I of BNSL+
≤ as follows:639

• V = V (D),640

• fy(x) = 1 for every xy ∈ A(D),641

• fy(x) = 0 for every xy ∈ AV \A(D),642

• ` = |A| −m, and643

• q = 3.644

Assume that (D,m) is a Yes-instance and A′ is any feedback arc set of size m. Let D′ be the DAG645

obtained from D after deleting arcs in A′. Then score(D′) is equal to the number of arcs in D′,646

which is |A| − m, so I is a Yes-instance. On the other hand, if I is a Yes-instance of BNSL+,647

pick any DAG D′ with score(D′) ≥ ` = |A| −m. Without loss of generality we may assume that648

A(D′) ⊆ A, as the remaining arcs have a score of zero and may hence be removed. All the arcs in A649

have a score 1 and hence the DAG D′ contains at least |A| −m arcs, i.e., it can be obtained from D650
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by deleting at most m arcs. Hence (D,m) is also a Yes-instance. To establish the NP-hardness of651

BNSL+, simply disregard the bound q on the input.652

While the use of the additive representation did not affect the classical complexity of BNSL, it makes653

a significant difference in terms of parameterized complexity. Indeed, in contrast to BNSL 6=0:654

Theorem 13. BNSL+ is FPT when parameterized by the treewidth of the superstructure. Moreover,655

BNSL+
≤ is FPT when parameterized by q plus the treewidth of the superstructure.656

Proof. We begin by proving the latter statement, and will then explain how that result can be657

straightforwardly adapted to obtain the former. As our initial step, we apply Bodlaender’s algorithm [4,658

27] to compute a nice tree-decomposition (T , χ) of GI of width k = tw(GI). In this proof we use659

T to denote the set of nodes of T and r ∈ T be the root of T . Given a node t ∈ T , let χ↓t be the set of660

all vertices occurring in bags of the rooted subtree Tt, i.e., χ↓t = {u | ∃t′ ∈ Tt such that u ∈ χ(t′)}.661

Let G↓t be the subgraph of GI induced on χ↓t .662

To prove the theorem, we will design a leaf-to-root dynamic programming algorithm which will663

compute and store a set of records at each node of T , whereas once we ascertain the records for r664

we will have the information required to output a correct answer. Intuitively, the records will store665

all information about each possible set of arcs between vertices in each bag, along with relevant666

connectivity information provided by arcs between vertices in χ↓t and information about the partial667

score. They will also keep track of parent set sizes in each bag.668

Formally, the records will have the following structure. For a node t, let S(t) =669

{(loc, con, inn) | loc, con ⊆ Aχ(t), inn : χ(t)→ [q]0} be the set of snapshots of t. The record Rt670

of t is then a mapping from S(t) to N0 ∪ {⊥}. Observe that |S(t)| ≤ 4k
2

(q + 1)k. To introduce the671

semantics of our records, let Υt be the set of all directed acyclic graphs over the vertex set χ↓t with672

maximal in-degree at most q, and let Dt = (χ↓t , A) be a directed acyclic graph in Υt. We say that the673

snapshot of Dt in t is the tuple (α, β, p) where α = A ∩Aχ(t), β = Con(χ(t), Dt) and p specifies674

numbers of parents of vertices from χ(t) in D, i.e. p(v) = |{w ∈ χ↓t |wv ∈ A}|, v ∈ χ(t). We are675

now ready to define the recordRt. For each snapshot (loc, con, inn) ∈ S(t):676

• Rt(loc, con, inn) = ⊥ if and only if there exists no directed acyclic graph in Υt whose677

snapshot is (loc, con, inn), and678

• Rt(loc, con, inn) = τ if ∃Dt ∈ Υt such that679

– the snapshot of Dt is (loc, con, inn),680

– score(Dt) = τ , and681

– ∀D′t ∈ Υt such that the snapshot of D′t is (loc, con, inn): score(Dt) ≥ score(D′t).682

Recall that for the root r ∈ T , we assume χ(r) = ∅. HenceRr is a mapping from the one-element683

set {(∅, ∅, ∅)} to an integer τ such that τ is the maximum score that can be achieved by any DAG684

D = (V,A) with all in-degrees of vertices upper bounded by q. In other words, I is a YES-instance685

if and only ifRr(∅, ∅, ∅) ≥ `. To prove the theorem, it now suffices to show that the records can be686

computed in a leaf-to-root fashion by proceeding along the nodes of T . We distinguish four cases:687

t is a leaf node. Let χ(t) = {v}. By definition, S(t) = {(∅, ∅, ∅)} andRt(∅, ∅, ∅) = fv(∅).688

t is a forget node. Let t′ be the child of t in T and let χ(t) = χ(t′) \ {v}. We initiate by setting689

R0
t (loc, con, inn) = ⊥ for each (loc, con, inn) ∈ S(t).690

For each (loc′, con′, inn′) ∈ S(t′), let locv, conv be the restrictions of loc′, con′ to tu-691

ples containing v. We now define loc = loc′ \ locv, con = con′ \ conv, inn =692

inn′ |χ(t) and say that (loc, con, inn) is induced by (loc′, con′, inn′). Set R0
t (loc, con, inn) :=693

max(R0
t (loc, con, inn),Rt′(loc′, con′, inn′)), where ⊥ is assumed to be a minimal element.694

For correctness, it will be useful to observe that Υt = Υt′ . Consider our final computed value of695

R0
t (loc, con, inn) for some (loc, con, inn) ∈ S(t).696

If Rt(loc, con, inn) = τ for some τ 6= ⊥, then there exists a DAG D which wit-697

nesses this. But then D also admits a snapshot (loc′, con′, inn′) at t′ and witnesses698
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Rt′(loc′, con′, inn′) ≥ τ . Note that (loc, con, inn) is induced by (loc′, con′, inn′). So in699

our algorithmR0
t (loc, con, inn) ≥ Rt′(loc′, con′, inn′) ≥ τ .700

701

If on the other hand R0
t (loc, con, inn) = τ for some τ 6= ⊥, then there exists a702

snapshot (loc′, con′, inn′) such that (loc, con, inn) is induced by (loc′, con′, inn′) and703

Rt′(loc′, con′, inn′) = τ . Rt(loc, con, inn) ≥ τ now follows from the existence of a DAG704

witnessing the value ofRt′(loc′, con′, inn′).705

Hence, we can correctly setRt = R0
t .706

t is an introduce node. Let t′ be the child of t in T and let χ(t) = χ(t′) ∪ {v}. We initiate by707

settingR0
t (loc, con, inn) = ⊥ for each (loc, con, inn) ∈ S(t).708

For each (loc′, con′, inn′) ∈ S(t′) and each Q ⊆ {ab ∈ Aχ(t) | {a, b} ∩ {v} 6= ∅}, we define:709

• loc := loc′ ∪Q710

• con := trcl(con′ ∪Q)711

• inn(x) := inn′(x) + |{y ∈ χ(t)|yx ∈ Q}| for every x ∈ χ(t) \ {v}712

inn(v) := |{y ∈ χ(t)|yv ∈ Q}|713

If con is not irreflexive or inn(x) > q for some x ∈ χ(t), discard this branch. Other-714

wise, let R0
t (loc, con, inn) := max(R0

t (loc, con, inn), new) where new = Rt′(loc′, con′, inn′) +715 ∑
ab∈Q fb(a). As before, ⊥ is assumed to be a minimal element here.716

Consider our final computed value ofR0
t (loc, con, inn) for some (loc, con, inn) ∈ S(t).717

For correctness, assume that R0
t (loc, con, inn) = τ for some τ 6= ⊥ and is obtained from718

(loc′, con′, inn′), Q defined as above. Then Rt′(loc′, con′, inn′) = τ −
∑
ab∈Q fb(a). Construct719

a directed graph D from the witness D′ of Rt′(loc′, con′, inn′) by adding the arcs specified in720

Q. As con = trcl(con′ ∪ Q) is irreflexive and D′ is a DAG, D is a DAG as well by 7.721

Moreover, inn(x) ≤ q for every x ∈ χ(t) and the rest of vertices have in D the same parents722

as in D′, so D ∈ Υt. In particular, (loc, con, inn) is a snapshot of D in t and D witnesses723

Rt(loc, con, inn) ≥ Rt′(loc′, con′, inn′) +
∑
ab∈Q fb(a) = τ .724

On the other hand, if Rt(loc, con, inn) = τ for some τ 6= ⊥, then there must exist a directed725

acyclic graph D = (χ↓t , A) in Υt that achieves a score of τ . Let Q be the restriction of A to726

arcs containing v, and let D′ = (χ↓t \ v,A \ Q), clearly D′ ∈ Υt′ . Let (loc′, con′, inn′) be the727

snapshot of D′ at t′. Observe that loc = loc′ ∪Q, con = trcl(con′ ∪Q), inn differs from inn′728

by the numbers of incoming arcs in Q and the score of D′ is precisely equal to the score τ of D729

minus
∑

(a,b)∈Q fb(a). ThereforeRt′(loc′, con′, inn′) ≥ τ −
∑

(a,b)∈Q fb(a) and in the algorithm730

R0
t (loc, con, inn) ≥ Rt′(loc′, con′, inn′) +

∑
(a,b)∈Q fb(a) ≥ τ . Equality then follows from the731

previous direction of the correctness argument.732

Hence, at the end of our procedure we can correctly setRt = R0
t .733

t is a join node. Let t1, t2 be the two children of t in T , recall that χ(t1) = χ(t2) = χ(t). By the734

well-known separation property of tree-decompositions, χ↓t1 ∩ χ
↓
t2 = χ(t) [12, 8]. We initiate by735

settingR0
t (loc, con, inn) := ⊥ for each (loc, con, inn) ∈ S(t).736

Let us branch over each loc, con1, con2 ⊆ Aχ(t) and inn1, inn2 : χ(t) → [q]0. For every b ∈ χ(t)737

set inn(b) = inn1(b) + inn2(b)− |{a|ab ∈ loc}|. If:738

• trcl(con1 ∪ con2) is not irreflexive and/or739

• Rt1(loc, con1, inn1) = ⊥, and/or740

• Rt2(loc, con2, inn2) = ⊥, and/or741

• inn(b) > q for some b ∈ χ(t)742
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then discard this branch. Otherwise, set con = trcl(con1 ∪ con2), doublecount =
∑
ab∈loc fb(a)743

and new = Rt1(loc, con1) + Rt2(loc, con2) − doublecount. We then set R0
t (loc, con, inn) :=744

max(R0
t (loc, con, inn), new) where ⊥ is once again assumed to be a minimal element.745

At the end of this procedure, we setRt = R0
t .746

For correctness, assume thatR0
t (loc, con, inn) = τ 6= ⊥ is obtained from loc, con1, con2, inn1, inn2747

as above. Let D1 = (χ↓t1 , A1) and D2 = (χ↓t2 , A2) be DAGs witnessing Rt1(loc, con1, inn1)748

and Rt2(loc, con2, inn2) correspondingly. Note that common vertices of D1 and D2 are precisely749

χ(t). In particular, if D1 and D2 share an arc ab, then a, b ∈ χ(t) and therefore ab ∈ loc. On750

the other hand, loc ⊆ A1, loc ⊆ A2, so loc = A1 ∩ A2. Hence inn specifies the number of751

parents of every b ∈ χ(T ) in D = D1 ∪ D2. Rest of vertices v ∈ V (D) \ χ(t) belong to752

precisely one of Di and their parents in D are the same as in this Di. As trcl(con1 ∪ con2) is753

irreflexive, D is a DAG by Lemma 7, so D ∈ Υt. The snapshot of D in t is (loc, con, inn) and754

score(D) =
∑
ab∈A(D) fb(a) =

∑
ab∈A1

fb(a)+
∑
ab∈A2

fb(a)−
∑
ab∈loc fb(a) = score(D1)+755

score(D2)− doublecount = Rt1(loc, con1, inn1) +Rt2(loc, con2, inn2)− doublecount = τ .756

So D witnesses thatRt(loc, con, inn) ≥ τ .757

For the converse, assume that Rt(loc, con, inn) = τ 6= ⊥ and D is a DAG witnessing this. Let758

D1 and D2 be restrictions of D to χ↓t1 and χ↓t2 correspondingly, then by the same arguments as759

above A(D1) ∩ A(D2) = loc, in particular D = D1 ∪ D2. Let (loc, coni, inni) be the snapshot760

of Di in ti, i = 1, 2, then Rti(loc, coni, inni) ≥ score(Di). By the procedure of our algorithm,761

R0
t (loc, con, inn) ≥ Rt1(loc, con1, inn1) +Rt2(loc, con2, inn2)− doublecount ≥ score(D1) +762

score(D2)−
∑
ab∈loc fb(a) = score(D) = τ.763

Hence the resulting recordRt is correct, which concludes the correctness proof of the algorithm.764

Since the nice tree-decomposition T has O(n) nodes, the runtime of the algorithm is upper-bounded765

by O(n) times the maximum time required to process each node. This is dominated by the time766

required to process join nodes, for which there are at most (2k
2

)3((q+1)k)2 = 8k
2 ·(q+1)2k branches767

corresponding to different choices of loc, con1, con2, inn1, inn2. Constructing trcl(con1 ∪ con2)768

and verifying that it is irreflexive can be done in time O(k3). Computing doublecount and inn769

takes time at most O(k2). So the record for a join node can be computed in time 2O(k2) · qO(k).770

Hence, after we have computed a width-optimal tree-decomposition for instance by Bodlaender’s771

algorithm [4], the total runtime of the algorithm is upper-bounded by 2O(k2) · qO(k) · n.772

Finally, to obtain the desired result for BNSL+, we can simply adapt the above algorithm by773

disregarding the entry inn and disregard all explicit bounds on the in-degrees (e.g., in the definition774

of Υt). The runtime for this dynamic programming procedure is then 2O(k2) · n.775

This completely resolves the parameterized complexity of BNSL+ w.r.t. all parameters depicted776

on Figure 1. However, the same is not true for BNSL+
≤: while a careful analysis of the algorithm777

provided in the proof of Theorem 13 reveals that BNSL+
≤ is XP-tractable when parameterized by the778

treewidth of the superstructure alone, it is not yet clear whether it is FPT—in other words, do we779

need to parameterize by both q and treewidth to achieve fixed-parameter tractability?780

We conclude this section by answering this question affirmatively. To do so, we will aim to reduce781

from the following problem, which can be seen as a dual to the W[1]-hard MULTIDIMENSIONAL782

SUBSET SUM problem considered in recent works [21, 18].783

UNIFORM DUAL MULTIDIMENSIONAL SUBSET SUM (UDMSS)

Input: An integer k, a set S = {s1, . . . , sn} of item-vectors with si ∈ Nk for every i
with 1 ≤ i ≤ n, a uniform target vector t = (r, . . . , r) ∈ Nk, and an integer d.

Parameter: k.
Question: Is there a subset S′ ⊆ S with |S′| ≥ d such that

∑
s∈S′ s ≤ t?

784

We first begin by showing that this variant of the problem is W[1]-hard by giving a fairly direct785

reduction from the originally considered problem, and then show how it can be used to obtain the786

desired lower-bound result.787
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Lemma 14. DMSS is W[1]-hard.788

Proof. The W[1]-hard MULTIDIMENSIONAL SUBSET SUM problem is stated as follows:789

MULTIDIMENSIONAL SUBSET SUM (MSS)

Input: An integer k, a set S = {s1, . . . , sn} of item-vectors with si ∈ Nk for every i
with 1 ≤ i ≤ n, a target vector t = (t1, . . . , tk) ∈ Nk, and an integer d.

Parameter: k.
Question: Is there a subset S′ ⊆ S with |S′| ≤ d such that

∑
s∈S′ s ≥ t?

790

Consider its dual version, obtained by reversing both inequalities:791

DUAL MULTIDIMENSIONAL SUBSET SUM (DMSS)

Input: An integer k, a set S = {s1, . . . , sn} of item-vectors with si ∈ Nk for every i
with 1 ≤ i ≤ n, a target vector t = (t1, . . . , tk) ∈ Nk, and an integer d.

Parameter: k.
Question: Is there a subset S′ ⊆ S with |S′| ≥ d such that

∑
s∈S′ s ≤ t?

792

Given an instance I = (S, t, k, d) of MSS, we construct an instance Id = (S, z − t, k, n − d) of793

DMSS, where z =
∑
s∈S s. Note that S′ is a witness of I if and only if S \ S′ is a witness of Id.794

The observation establishes W[1]-hardness of DMSS.795

Now it remains to show that DMSS is W[1]-hard even if we require all the components of the target796

vector t to be equal. Let I = (S, t, k, d) be the instance of DMSS. We construct an equivalent797

instance Ieq = (Seq, teq, k + 1, d+ 1) of UDMSS with teq = (d · tmax, . . . , d · tmax), where tmax =798

max{ti : i ∈ [k]}. Seq is obtained from S by setting the (k + 1)-th entries equal to tmax, plus one799

auxiliary vector to make the target uniform: Seq = {(a1, . . . , ak, tmax)|(a1, . . . , ak) ∈ S} ∪ {b},800

where b = (dtmax − t1, . . . , dtmax − tk, 0).801

For correctness, assume that I is a Yes-instance, in particular, we can choose S′ with |S′| = d802

and
∑
s∈S′ s ≤ t. Then S′eq = {(a1, . . . , ak, tmax)|(a1, . . . , ak) ∈ S′} ∪ {b} witnesses that Ieq is803

a Yes-instance. For the converse direction, let Ieq be a Yes-instance, we choose S′eq with |S′eq| =804

d + 1 and
∑
s∈S′

eq
≤ teq. If b 6∈ Seq, sum of the (k + 1)-th entries in S′eq would be at least805

(d+ 1)tmax, so b must belong to S′eq. Then S′eq \ {b} consists of precisely d vectors with sum at most806

teq − b = (t1, . . . , tk, dtmax). Restrictions of these vectors to k first coordinates witness that I is a807

Yes-instance.808

Theorem 15. BNSL+
≤ is W[1]-hard when parameterized by the treewidth of the superstructure.809

Proof. Let I = (S, t, k, d) be an instance of UDMSS with t = (r, . . . , r), and w.l.o.g. assume that810

r is greater than the parameter k. We construct an equivalent instance (V,F , `, r) of BNSL+
≤. Let811

us start from the vertex set V . For every i ∈ [k], we add to V a vertex vi corresponding to the i-th812

coordinate of the target vector t. Further, for every s = (s1, . . . , sk) ∈ S, we add vertices as, bs and813

s1 + · · ·+sk many vertices sij , i ∈ [k], j ∈ [si]. Intuitively, taking s into S′ will correspond to adding814

arcs from sij to vi for every i ∈ [k], j ∈ [si]. The upper bound r for each coordinate of the sum in S′815

is captured by allowing vi to have at most r many parents. Formally, for every s ∈ S, i ∈ [k], j ∈ [si]816

the scores are defined as follows (for convenience we list them as scores per arc): f(sijv
i) = 2,817

f(bsas) = Ms = 2 ·
∑
i∈[k] s

i − 1. We call the arcs mentioned so far light. Note that for every818

fixed s ∈ S,
∑
i∈[k]

∑
j∈[si] f(sijv

i) = 2 ·
∑
i∈[k] s

i = Ms + 1 so the sum of scores of light arcs is819

L =
∑
s∈S(2Ms + 1). We finally set f(ass

i
j) = f(vibs) = L for every s ∈ S, i ∈ [k] and j ∈ [si].820

Now the number of arcs yielding the score of L is m = k|S|+
∑
s∈S

∑
i∈[k] s

i; we call these arcs821

heavy. We set the scores of all arcs not mentioned above to zero and we set ` = mL+
∑
s∈SMs + d.822

This finishes our construction; see Figure 3 for an illustration. Note that the superstructure graph has823

treewidth of at most k + 2: the deletion of vertices vi, i ∈ [k], makes it acyclic.824
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Figure 3: An example of
our main gadget encoding
the vector s = (1, 3, 2) with
k = 3. Heavy arcs are marked
in green, while purple and
blue arcs are light.
Intuitively, the reduction
forces a choice between
using the blue edge or all the
purple edges; the latter case
provides a total score that is
1 greater than the former, but
is constrained by the upper
bound r on the in-degrees of
v1, v2, v3.

For correctness, assume that I = (S, t, k, d) is a Yes-instance of UDMSS, let S′ be a subset of825

S of size d witnessing it. We add all the heavy arcs, resulting in a total score of mL. Further, for826

every s = (s1, . . . , sk) ∈ S′, we add all the arcs sijv
i, i ∈ [k], j ∈ [si], which increases the total827

score by Ms + 1. For every s ∈ S \ S′, we add an arc bsas, augmenting the total score by Ms.828

Denote the resulting digraph by D, then score(D) = mL +
∑
s∈S′(Ms + 1) +

∑
s∈S\S′ Ms =829

mL+
∑
s∈SMs + d = `. We proceed by checking parent set sizes. Note that every sij has precisely830

one incoming arc assij in D, every as has at most one in-neighbour bs and in-neighbours of every831

bs are vi, i ∈ [k]. Finally, for every i ∈ [k], PD(vi) = {sij |s ∈ S′, j ∈ [si]} by construction, so832

|PD(vi)| =
∑
s∈S′ si ≤ r as S′ is a solution to UDMSS. Therefore all the vertices in D have at833

most r in-neighbours. It remains to show acyclicity of D. As any cycle in the superstructure contains834

vi for some i ∈ k, the same holds for any potentional directed cycle C in D. Two next vertices of835

C after vi can be only bs and as for some s ∈ S. In particular, by our construction, s ∈ S \ S′.836

Then, again by construction, D doesn’t contain an arc sijv
i for any i ∈ [k], j ∈ [si], so vi is not837

reachable from as, which contradicts to C being a cycle. Therefore D witnesses that (V,F , `, r) is a838

Yes-instance.839

For the opposite direction, let (V,F , `, r) be a Yes-instance of BNSL+
≤ and let D be a DAG840

witnessing this. Then D contains all the heavy arcs. Indeed, sum of scores of all light arcs in F is L,841

so if at least one heavy arc is not in A(D), then score(D) ≤ (m− 1)L+ L = mL < `. For every842

s ∈ S, let As = {sijvi|i ∈ [k], j ∈ [si]}. If D doesn’t contain an arc bsas and some of arcs from As,843

the total score of A(D)∩As is at most Ms − 1. In this case we modify D by deletion of A(D)∩As844

and addition of arc bsas, which increases score(D) and may only decrease the parent set sizes of845

vi, i ∈ k. After these modifications, let S′′ = {s ∈ S|D contains an arc bsas}. Note that whenever846

s ∈ S′′, D cannot contain any of the arcs sijv
i, i ∈ [k], j ∈ [si], as this would result in directed cycle847

vi → bs → as → sij → vi. Therefore for every s ∈ S, D contains either an arc bsas (yielding the848

score of Ms) or all of arcs sijv
i, i ∈ [k], j ∈ [si] (yielding the score of Ms + 1 in total), so the sum of849

scores of light arcs in D is
∑
s∈S\S′′(Ms + 1) +

∑
s∈S′′ Ms =

∑
s∈SMs + |S \S′′|, which should850

be at least `−mL =
∑
s∈SMs + d. So |S \ S′′| ≥ d, we claim that S′ = S \ S′′ is a solution to851

I = (S, t, k, d). Indeed, for every i ∈ [k], r ≥ |PD(vi)| = |{sij |s ∈ S′, j ∈ [si]}| =
∑
s∈S′ si.852

5 Implications for Polytree Learning853

Here, we discuss how the results of Sections 3 and 4 can be adapted to POLYTREE LEARNING (PL).854

Theorem 3: Data Reduction. Recall that the proof of Theorem 3 used two data reduction rules.855

While Reduction Rule 1 carries over to PL 6=0, Reduction Rule 2 has to be completely redesigned to856

preserve the (non-)existence of undirected paths between a and c. By doing so, we obtain:857
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Theorem 16. There is an algorithm which takes as input an instance I of PL 6=0 whose superstructure858

has feedback edge number k, runs in time O(|I|2), and outputs an equivalent instance I ′ =859

(V ′,F ′, `′) of PL 6=0 such that |V ′| ≤ 24k.860

Proof. Note that Reduction Rule 1 acts on the superstructure graph by deleting leaves and therefore861

preserves not only optimal scores but also (non-)existance of polytrees achiving the scores. Hence we862

can safely apply the rule to reduce the instance of PL 6=0. After the exhaustive application, all the863

leaves of the superstructure graph G are the endpoints of edges in feedback edge set, so there can be864

at most 2k of them. To get rid of long induced paths in G, we introduce the following rule:865

Reduction Rule 3. Let a, b1, . . . , bm, c be a path in G such that for each i ∈ [m], bi has degree866

precisely 2. For every B ⊆ {a, c} and p ∈ {0, 1}, let `p(B) be the maximum sum of scores that can867

be achieved by b1, . . . , bm under the conditions that (1) there exists an undirected path between b1868

and bm if and only if p = 1; (2) b1 (and analogously bm) takes a (c) into its parent set if and only if869

a ∈ B (c ∈ B).870

We construct a new instance I ′ = (V ′,F ′, `) as follows:871

• V ′ := V ∪ {b, b′1, b′′1 , b′m, b′′m} \ {b1 . . . bm};872

• Γf ′(b′1) = Γf ′(b′′1) = Γf ′(b′m) = Γf ′(b′′m) = ∅;873

• The scores for a (analagously c) are obtained from F by simply replacing every occurence874

of b1 by b′1 and b′′1 (bm by b′m and b′′m), formally:875

– Γf ′(a) is a union of {P ∈ Γf (a)|b1 6∈ P}, where f ′a(P ) := fa(P ) and876

{P \ b1 ∪ {b′1, b′′1}|b1 ∈ P, P ∈ Γf (a)}, where f ′a(P \ b1 ∪ {b′1, b′′1}) := fa(P );877

– Γf ′(c) is a union of {P ∈ Γf (c)|bm 6∈ P}, where f ′c(P ) := fc(P ), and878

{P \ bm ∪ {b′m, b′′m}|bm ∈ P, P ∈ Γf (c)}, where f ′c(P \ bm ∪ {b′m, b′′m}) := fc(P ).879

• Γf ′(b) consists of eight sets, yielding corresponding scores f ′b: {a, c, b′1, b′′1 , b′m, b′′m} →880

l1({a, c}), {b′1, b′′1 , b′m, b′′m} → l0({a, c}), {b′1, b′m} → l1(∅), ∅ → l0(∅), {a, b′1, b′′1 , b′m} →881

l1({a}), {b′1, b′′1} → l0({a}), {b′m, b′′m} → l1({c}), {b′1, b′m, b′′m, c} → l0({c}).882

Parent sets of b are defined in a way to cover all the possible configurations on solutions to I restricted883

to a, b1, . . . , bm, c; the corresponding scores of b are intuitively the sums of scores that bi, i ∈ [m],884

receive in the solutions. The eight cases that may arise are illustrated in Figure 4.885

Claim 2. Reduction Rule 3 is safe.886

Proof. We will show that a score of at least ` can be achieved in the original instance I if and only if887

a score of at least ` can be achieved in the reduced instance I ′.888

Assume that D is a polytree that achieves a score of ` in I . We will construct a polytree D′, called the889

reduct ofD, with f ′(D′) ≥ `. To this end, we first modifyD by removing the vertices b1, . . . , bm and890

adding b, b′1, b
′′
1 , b
′
m, b

′′
m. We also add arcs b′1a and b′′1a (b′mc and b′′mc correspondingly) if and only if891

b1a ∈ A(D) (bmc ∈ A(D)). Let us denote the DAG obtained at this point D∗. Note that scores of a892

and c in D∗ are the same as in D. Further modifications of D∗ depend only on D[a, b1...bm, c] and893

change only the parent set of b. We distinguish the 8 cases listed below (see also Figure 4):894

• case 1.1 (1.2): ab1, cbm ∈ A(D), b1 and bm are (not) connected by path in D. We add895

incoming arcs to b from a, c, b′1, b
′′
1 , b
′
m, b

′′
m (b′1, b

′′
1 , b
′
m, b

′′
m only) resulting in f ′b(PD′(b)) =896

l1({a, c}) (f ′b(PD′(b)) = l0({a, c})).897

• case 2.1 (2.2): ab1, cbm 6∈ A(D), b1 and bm are (not) connected by path in D. We add898

incoming arcs to b from b′1 and b′m (leave D∗ unchanged) yielding f ′b(PD′(b)) = l1(∅)899

(f ′b(PD′(b)) = l0(∅)).900

• case 3.1 (3.2): ab1 ∈ A(D), cbm 6∈ A(D), b1 and bm are (not) connected by path in D.901

We add incoming arcs to b from a, b′1, b
′′
1 , b
′
m (b′1 and b′′1 only), then f ′b(PD′(b)) = l1({a})902

(f ′b(PD′(b)) = l0({a})).903

• case 4.1 (4.2): ab1 6∈ A(D), cbm ∈ A(D), b1 and bm are (not) connected by path in D. The904

cases are symmetric to 3.1 (3.2)905
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Figure 4: Top: The eight possible scenarios for solutions to I . Bottom: The corresponding arcs in the
gadget after the application of Reduction Rule 2’ (the scores of b are specified below).

Note that D′ contains a path between a and c if and only if D does. By definition of l0 and l1, the906

score of b in D′ is at least as large as the sum of scores of bi, i ∈ [m], in D. Moreover, each vertice907

in V (D) ∩ V (D′) receives equal scores in D and D′. Hence D′ is a polytree with f ′(D′) ≥ `,908

as desired. ith a score at least `. For the converse direction, note that the polytrees constructed in909

cases 1.1-4.2 cover all optimal configurations which may arise in I ′: if there is a polytree D′′ in910

I ′ with a score of `′, we can always modify it to a polytree D′ with a score of at least `′ such that911

D′[a, b′1, b
′′
1 , b, b

′
m, b

′′
m, c] has one of the forms depicted at the bottom line of the figure. But every912

such D′ is a reduct of some polytree D of the original instance with the same score.913

We apply Reduction Rule 3 exhaustively, until there is no more path to shorten. Bounds on the914

running time of the procedure and size of the reduced instance can be obtained similarly to the case915

of BNSL 6=0. In particular, every long path is replaced with a set of 5 vertices, resulting in at most916

4k + 4k · 5 = 24k vertices.917

Theorem 6: Fixed-parameter tractability. Analagously to BNSL 6=0 a data reduction procedure918

as the one provided in Theorem 16 does not exist for PL 6=0 parametrized by lfen unless NP ⊆919

co-NP/poly, since the lower-bound result provided in Theorem 11 can be straightforwardly adapted920

to PL 6=0. But similarly as for BNSL we can provide an FPT algorithm using the same ideas as in921

the proof of Theorem 6. The algorithm proceeds by dynamic programming on the spanning tree T of922

G with lfen(G,T ) = lfen(G) = k. The records will, however, need to be modified: for each vertex923

v, instead of the path-connectivity relation on δ(v), we store connected components of the inner924

boundary δ(v) ∩ Vv and incoming arcs to Tv .We provide a full description of the algorithm below.925

Theorem 17. PL 6=0 is fixed-parameter tractable when parameterized by the local feedback edge926

number of the superstructure.927

Proof. As before, given an instance I with a superstructure graph G = GI such that lfen(G) = k,928

we start from computing the spanning tree T of G with lfen(G,T ) = lfen(G) = k; pick a root r in929

T . We keep all the notations Tv, Vv, V̄v, δ(v) for v ∈ V (T ) from the subsection 3.2. In addition,930

we define the inner boundary of v ∈ V (T ) to be δin(v) := δ(v) ∩ Vv i.e. part of boundary that931

belongs to subtree of T rooted in v. The remaining part we call the outer boundary of v and denote by932

δout(v) := δ(v) \ δin(v). For any set A of arcs, we define Ã = {uv|uv ∈ A or vu ∈ A}. Obviously,933
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the claims of Observation 8 still hold. Moreover, for every closed v, δin(v) contains only v itself and934

δout(v) is either the parent of v in T or ∅ (for v = r).935

Let Rv be binary relation on δin(v), Av ⊆ δout(v)× δin(v), sv is integer. Then (Rv, Av, sv) is a936

record for v if and only if there exist a polytree D on V̄v with all arcs oriented inside Vv such that:937

• Av = {xy ∈ A(D)| x ∈ δout(v), y ∈ δin(v)}938

• Rv = {xy| x, y ∈ δin(v) are in the same connected component of D[Vv]}939

• sv =
∑
u∈Vv

fu(PD(u))940

Note that Rv is an equivalence relation on δin(v), number of its equivalence classes is equal to941

number of connected components of D[Vv] that intersect δ(v).942

Record (Rv, Av, sv) is called valid if and only if sv is maximal for fixedRv, Av among all the records943

for v. Denote byR(v) the set of all valid records for v, then |R(v)| ≤ 2(2k+2)2 . Indeed, Rv and Av944

can be uniquely determined by the choice of some relation on δ(v)× δ(v). As |δ(v)| ≤ 2k+ 2, there945

are at most 2(2k+2)2 possible relations.946

The root r of T has a single valid record (∅, ∅, sI), where sI is the maximum score that can be947

achieved by a solution to I. For any closed v 6= r,R(v) consists of precisely two valid records: one948

for Av = ∅, Rv = {vv} and another for Av = {wv}, Rv = {vv}, where w is a parent of v in T .949

We proceed by computing our records in a leaf-to-root fashion along T .950

Let v be a leaf. Start by innitiating R∗(v) := ∅, then for each P ∈ Γf (v) add to R∗(v) the triple951

({vv}, {uv|u ∈ P}, fv(P )). Note thatR∗(v) is by definition precisely the set of all records for v, so952

we can correctly setR(v) = {(Rv, Av, sv) ∈ R∗(v)|sv is maximal for fixed Rv, Av}.953

Assume that v has m children {vi : i ∈ [m]} in T , where vi, i ∈ [t], are open and vi, i ∈ [m] \ [t],954

are closed. The following claim shows how (and under which conditions) the records of children of v955

can be composed into a record of v.956

Claim 3. Let P ∈ Γf (v),D0 is a polytree on V0 = v∪P with arc setA0 = {uv|u ∈ P}, (Ri, Ai, si)957

are records for vi witnessed by Di, i ∈ [m]. Let Ainloc be the set of arcs in
⋃
i∈[t]0

Ai which have both958

endpoints in Vv, R = trcl(Ãinloc ∪
⋃
i∈[t]0

Ri). Then D = ∪mi=0Di is a polytree if and only if the959

following two conditions hold:960

1. Ai = ∅ for each closed child vi ∈ P .961

2.
∑t
i=0Ni − |Ainloc| −

∑
y∈Y (ny − 1) = N , where962

• N is the number of equivalence classes in trcl(
⋃
i∈[t]0

(Ãi ∪Ri))963

• Ni is the number of equivalence classes in Ri, i ∈ [t]964

• Y is the set of endpoints of arcs in
⋃
i∈[t]0

Ai which don’t belong to any Vi, i ∈ [m].965

• For every y ∈ Y , ny is the number of arcs in A0 ∪ ... ∪At having endpoint y.966

In this case D witnesses the record (Rv, Av, sv), where:967

Rv = R|δin(v)×δin(v), Av = (
⋃
i∈[t]0

Ai)|δout(v)×δin(v), sv =
∑m
i=0 si + fv(P ).968

If (Rv, Av, sv) ∈ R(v), then (Ri, Ai, si) ∈ R(vi), i ∈ [m]. Moreover, for any closed child vi 6∈ P ,969

there is no (R′i, A
′
i, s
′
i) ∈ R(vi) with s′i > si.970

We will prove the claim at the end, let us show how it can be exploited to compute valid records of971

v. We start from initial setting R∗(v) := ∅, then branch over all parent sets P ∈ Γf (v) and triples972

(Ri, Ai, si) ∈ R(vi) for open children vi. For each closed child vi 6∈ P take (Ri, Ai, si) ∈ R(vi)973

with maximal si, for each closed child vi ∈ P take (Ri, Ai, si) ∈ R(vi) with Ai = ∅. Now the first974

condition of Claim3 holds, if the second one holds as well, we add toR∗(v) the triple (Rv, Av, sv).975
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According to Claim 3,R∗(v) computed in such a way consists only of records for v and, in particular,976

contains all the valid records. Therefore we can correctly setR(v) = {(Rv, Av, sv) ∈ R∗(v)|sv is977

maximal for fixed Rv, Av}.978

To constructR∗(v) for node v with children vi, i ∈ [m], we branch over at most n possible parent979

sets of v and at most 2(2k+2)2 valid records for every open child of v. Number of open children is980

bounded by 2k, so we have at most O((2(2k+2)2)2k · n) ≤ 2O(k3) · n branches. In a fixed branch we981

compute scores for closed children in O(n), application of Claim 3 requires time polynomial in k.982

SoR∗(v) is computed in time 2O(k3) · n2 that majorizes running time for leaves. As the number of983

vertices in T is at most n, total running time of the algorithm is 2O(k3) · n3 assuming that T is given984

as a part of the input.985

proof of Claim 3 (⇐). We start from checking whether D = ∪mi=0Di is a polytree. As the first986

condition implies that a polytree of every closed child vi is connected to the rest of D by at most987

one arc viv or vvi, it is sufficient to check whether Dt = ∪ti=0Di is polytree. Number of connected988

components of Dt is N ′ + N , where N ′ is the total number of connected components of Di that989

don’t intersect δ(vi), i ∈ [t]. Note that Dt can be constructed as follows:990

1. Take a disjoint union of polytrees D′i = Di[Vi], i ∈ [t]0, then the resulting polytree has991

N ′ +
∑t
i=0Ni connected components.992

2. Add arcs between D′i and D′j that occur in D for every i, j ∈ [t]0, i.e. the arcs specified by993

Ainloc. Resulting digraph is a polytree if and only if every added arc decreases the number994

of connected components by 1, i.e. the number of connected components after this step is995

N ′ +
∑t
i=0Ni − |Ainloc|.996

3. Add all remaining vertices y of D together with their adjacent arcs in D. Note that such y997

precisely form the set Y , so Dt is a polytree if and only if we obtained a polytree after the998

previous step and every y ∈ Y decreased it’s number of connected components by (ny − 1),999

i.e. the number N ′ + N of connected components in Dt is equal to N ′ +
∑t
i=0Ni −1000

|Ainloc| −
∑
y∈Y (ny − 1). But this is precisely the condition 2 of the claim.1001

Now, assuming that D is a polytree, we will show that it witnesses (Rv, Av, sv). Parent sets of1002

vertices from each Vi in D are the same as in Di, parent set of v in D is P . So sv =
∑m
i=0 si+fv(P )1003

is indeed the sum of scores over Vv in D.1004

There are two kinds of arcs in D starting outside of Vv: incoming arcs to v and incoming arcs to the1005

subtrees of open children. Thus A(D)|δout(v)×δin(v) = (
⋃
i∈[t]0

Ai)|δout(v)×δin(v) = Av .1006

Take any u,w ∈ δin(v), u 6= w, note that u and w can not belong to subtrees of closed children.1007

So u and w are in the same connected component of D[Vv] if and only if they are connected by1008

some undirected path π in the skeleton of D using only vertices from Dt ∩ Vv. In this case Ri1009

captures the segmens of π which are completely contained in Di[Vi], i ∈ [t]. Rest of edges in π1010

either connect v to some Vi, i ∈ [t], or have enpoints in different Vi and Vj for some i, j ∈ [t]. Edges1011

of this kind precisely form the set Ãinloc, so uw belongs to R = trcl(
⋃
i∈[t]Ri ∪ Ãinloc). Therefore1012

Rv = R|δin(v)×δin(v) indeed represents connected components of δin(v) in D[Vv].1013

(⇒) Condition 1 obviously holds, otherwise D would contain a pair of arcs with the same endpoints1014

and different directions. In (⇐) we actually showed the necessity of condition 2 when 1 holds.1015

For the last statement, assume that (Rv, Av, sv) ∈ R(v) but (Ri, Ai, si) 6∈ R(vi) for some i. Then1016

there is (Ri, Ai, si + ∆) ∈ R(vi) for some δ > 0. Let D′i be a witness of (Ri, Ai, si + ∆), then1017

D′ =
⋃
j∈[m]\{i}Dj ∪D′i is a polytree witnessing (Rv, Av, sv + ∆). But this contradicts to validity1018

of (Rv, Av, sv). By the same arguments records for closed children vi 6∈ P are the ones with maximal1019

si among two (Ri, Ai, si) ∈ R(vi). �1020

As for treecut width, we remark that a recent reduction for PL 6=0 [24, Theorem 4.2] immediately1021

implies that the problem is W[1]-hard when parameterized by the treecut width(the superstructure1022

graphs obtained in that reduction have a vertex cover of size bounded in the parameter, and the1023

vertices outside of the vertex cover have degree at most 2).1024
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Theorem 13: Additive Representation. We remark that, like BNSL+ and BNSL+
≤, a simple1025

reduction shows that PL+
≤ is NP-hard for a fixed value of q, in this case q = 1.1026

Theorem 18. PL+
≤ is NP-hard when q = 1.1027

Proof. We reduce from the classical HAMILTONIAN PATH problem. Given a graph G, we construct1028

an instance I of PL+
≤ with q = 1 and the same vertex set. Whenever G contains an edge ab, we set1029

fa(b) = fb(a) = 1; all other cost functions are set to 0. ` is set to |V | − 1.1030

Consider a solution D for I. Since D is a DAG, it must contain a source; by construction, all other1031

vertices in D must have an in-degree of 1. This implies that the arcs of D form a Hamiltonian path1032

in G. Conversely, given a Hamiltonian path in G, one can construct a solution D by choosing one1033

endpoint of the path as the source and then adding all arcs along the path.1034

Moreover, the dynamic programming algorithm for BNSL+
≤ parameterized by treewidth and q can1035

be adapted to also solve PL+
≤. For completeness, we provide a full proof below; however one should1036

keep in mind that the ideas are very similar to the proof of Theorem 13.1037

Theorem 19. PL+ is FPT when parameterized by the treewidth of the superstructure. Moreover,1038

PL+
≤ is FPT when parameterized by q plus the treewidth of the superstructure.1039

Proof. We begin by proving the latter statement, and will then explain how that result can be1040

straightforwardly adapted to obtain the former. As our initial step, we apply Bodlaender’s algorithm [4,1041

27] to compute a nice tree-decomposition (T , χ) of GI of width k = tw(GI). We keep the notations1042

T , r, and χ↓t G
↓
t from the proof of Theorem 13. For any arc set A we denote Ã = {uw,wu|uw ∈ A}.1043

We will design a leaf-to-root dynamic programming algorithm which will compute and store a1044

set of records at each node of T , whereas once we ascertain the records for r we will have the1045

information required to output a correct answer. The set of snapshots and structure of records will1046

be the same as in the proof of Theorem 13. However, semantics wil slightly differ: in contrast to1047

information about directed paths via forgotten nodes, con will now specify whether vertices of the1048

bag belong to the same connected component of the partial polytree. Formally, let Ψt be the set1049

of all polytrees over the vertex set χ↓t with maximal in-degree at most q, and let Dt = (χ↓t , A) be1050

a polytree in Ψt. We say that the snapshot of Dt in t is the tuple (α, β, p) where α = Aχ(t) ∩ A,1051

β = Aχ(t)∩{uw|u and w belong to the same connected component of Dt} and p specifies numbers1052

of parents of vertices from χ(t) in D, i.e. p(v) = |{w ∈ χ↓t |wv ∈ A}|, v ∈ χ(t). We will call a1053

connected component of Dt active if it intersects χ(t). Note that the number of equivalence classes1054

of con is equal to the number of active connected components of Dt. We are now ready to define the1055

recordRt. For each snapshot (loc, con, inn) ∈ S(t):1056

• Rt(loc, con, inn) = ⊥ if and only if there exists no polytree in Ψt whose snapshot is1057

(loc, con, inn), and1058

• Rt(loc, con, inn) = τ if ∃Dt ∈ Ψt such that1059

– the snapshot of Dt is (loc, con, inn),1060

– score(Dt) = τ , and1061

– ∀D′t ∈ Ψt such that the snapshot of D′t is (loc, con, inn): score(Dt) ≥ score(D′t).1062

Recall that for the root r ∈ T , we assume χ(r) = ∅. HenceRr is a mapping from the one-element1063

set {(∅, ∅, ∅)} to an integer τ such that τ is the maximum score that can be achieved by any polytree1064

D = (V,A) with all in-degrees of vertices upper bounded by q. In other words, I is a YES-instance1065

if and only ifRr(∅, ∅, ∅) ≥ `. To prove the theorem, it now suffices to show that the records can be1066

computed in a leaf-to-root fashion by proceeding along the nodes of T . We distinguish four cases:1067

t is a leaf node. Let χ(t) = {v}. By definition, S(t) = {(∅, ∅, ∅)} andRt(∅, ∅, ∅) = fv(∅).1068

t is a forget node. Let t′ be the child of t in T and let χ(t) = χ(t′) \ {v}. We initiate by setting1069

R0
t (loc, con, inn) = ⊥ for each (loc, con, inn) ∈ S(t).1070
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For each (loc′, con′, inn′) ∈ S(t′), let locv, conv be the restrictions of loc′, con′ to tuples con-1071

taining v. We now define loc = loc′ \ locv, con = con′ \ conv, inn = inn′ |χ(t) and set1072

R0
t (loc, con, inn) := max(R0

t (loc, con, inn),Rt′(loc′, con′, inn′)), where ⊥ is assumed to be a1073

minimal element. Finally we set Rt = R0
t , correctness can be argued analogously to the case of1074

BNSL+
≤ .1075

t is an introduce node. Let t′ be the child of t in T and let χ(t) = χ(t′) ∪ {v}. We initiate by1076

settingR0
t (loc, con, inn) = ⊥ for each (loc, con, inn) ∈ S(t).1077

For each (loc′, con′, inn′) ∈ S(t′) and each Q ⊆ {ab ∈ Aχ(t) | {a, b} ∩ {v} 6= ∅}, we define:1078

• loc := loc′ ∪Q1079

• con := trcl(con′ ∪ Q̃)1080

• inn(x) := inn′(x) + |{y ∈ χ(t)|yx ∈ Q}| for every x ∈ χ(t) \ {v}1081

inn(v) := |{y ∈ χ(t)|yv ∈ Q}|1082

Let N and N ′ be the numbers of equivalence classes in con and con′ correspondingly. If N 6= N ′ +1083

1− |Q| or inn(x) > q for some x ∈ χ(t), discard this branch. Otherwise, letR0
t (loc, con, inn) :=1084

max(R0
t (loc, con, inn), new) where new = Rt′(loc′, con′, inn′) +

∑
ab∈Q fb(a). As before, ⊥ is1085

assumed to be a minimal element here.1086

Consider our final computed value ofR0
t (loc, con, inn) for some (loc, con, inn) ∈ S(t).1087

For correctness, assume that R0
t (loc, con, inn) = τ for some τ 6= ⊥ and is obtained from1088

(loc′, con′, inn′), Q defined as above. Then Rt′(loc′, con′, inn′) = τ −
∑
ab∈Q fb(a). Construct a1089

directed graph D from the witness D′ ofRt′(loc′, con′, inn′) by adding v and the arcs specified in1090

Q. The equality N = N ′ + 1 − |Q| garantees that every such arc decreases the number of active1091

connected components by one, so D is a polytree. Moreover, inn(x) ≤ q for every x ∈ χ(t) and the1092

rest of vertices have in D the same parents as in D′, so D ∈ Ψt. In particular, (loc, con, inn) is a1093

snapshot of D in t and D witnessesRt(loc, con, inn) ≥ Rt′(loc′, con′, inn′) +
∑
ab∈Q fb(a) = τ .1094

On the other hand, if Rt(loc, con, inn) = τ for some τ 6= ⊥, then there must exist a polytree1095

D = (χ↓t , A) in Ψt that achieves a score of τ . Let Q be the restriction of A to arcs containing v,1096

and let D′ = (χ↓t \ v,A \ Q), clearly D′ ∈ Ψt′ . Let (loc′, con′, inn′) be the snapshot of D′ at1097

t′. Observe that loc = loc′ ∪Q, con = trcl(con′ ∪Q̃), inn differs from inn′ by the numbers of1098

incoming arcs in Q and the score of D′ is precisely equal to the score τ of D minus
∑

(a,b)∈Q fb(a).1099

Therefore Rt′(loc′, con′, inn′) ≥ τ −
∑

(a,b)∈Q fb(a) and in the algorithm R0
t (loc, con, inn) ≥1100

Rt′(loc′, con′, inn′) +
∑

(a,b)∈Q fb(a) ≥ τ . Equality then follows from the previous direction of the1101

correctness argument.1102

Hence, at the end of our procedure we can correctly setRt = R0
t .1103

t is a join node. Let t1, t2 be the two children of t in T , recall that χ(t1) = χ(t2) = χ(t). We1104

initiate by settingR0
t (loc, con, inn) := ⊥ for each (loc, con, inn) ∈ S(t).1105

Let us branch over each loc, con1, con2 ⊆ Aχ(t) and inn1, inn2 : χ(t) → [q]0. For every b ∈ χ(t)1106

set inn(b) = inn1(b) + inn2(b) − |{a|ab ∈ loc}|. Let N1 and N be the numbers of equivalence1107

classes in con1 and trcl(con1 ∪ con2) correspondingly. If:1108

• con1 ∩ con2 6= trcl(l̃oc), and/or1109

• N −N1 6= 1
2 | con2 \trcl(l̃oc)|, and/or1110

• Rt1(loc, con1, inn1) = ⊥, and/or1111

• Rt2(loc, con2, inn2) = ⊥, and/or1112

• inn(b) > q for some b ∈ χ(t)1113
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then discard this branch. Otherwise, set con = trcl(con1 ∪ con2), doublecount =
∑
ab∈loc fb(a)1114

and new = Rt1(loc, con1) + Rt2(loc, con2) − doublecount. We then set R0
t (loc, con, inn) :=1115

max(R0
t (loc, con, inn), new) where ⊥ is once again assumed to be a minimal element.1116

At the end of this procedure, we setRt = R0
t .1117

For correctness, assume thatR0
t (loc, con, inn) = τ 6= ⊥ is obtained from loc, con1, con2, inn1, inn21118

as above. Let D1 = (χ↓t1 , A1) and D2 = (χ↓t2 , A2) be polytrees witnessing Rt1(loc, con1, inn1)1119

and Rt2(loc, con2, inn2) correspondingly. Recall from the proof of Theorem 13 that common1120

vertices of D1 and D2 are precisely χ(t), loc = A1 ∩ A2 and inn specifies the number of parents1121

of every b ∈ χ(T ) in D = D1 ∪D2. Numbers of active connected components of D and D1 are1122

N and N1 correspondingly. Observe that D can be constructed from D1 by adding vertices and1123

arcs of D2. As con1 ∩ con2 = trcl(l̃oc), we can only add a path between vertices in χ(t) if it1124

didn’t exist in D1. Hence 1
2 | con2 \trcl(l̃oc)| specifies the number of paths between vertices in1125

χ(t) via forgotten vertices of χ↓t2 . The equality N1 −N = 1
2 | con2 \trcl(l̃oc)| means that adding1126

every such path decreases the number of active connected components of D1 by one. As D1 is1127

a polytree, D is a polytree as well, so D ∈ Ψt. The snapshot of D in t is (loc, con, inn) and1128

score(D) =
∑
ab∈A(D) fb(a) =

∑
ab∈A1

fb(a)+
∑
ab∈A2

fb(a)−
∑
ab∈loc fb(a) = score(D1)+1129

score(D2)− doublecount = Rt1(loc, con1, inn1) +Rt2(loc, con2, inn2)− doublecount = τ .1130

So D witnesses thatRt(loc, con, inn) ≥ τ .1131

For the converse, assume that Rt(loc, con, inn) = τ 6= ⊥ and D is a polytree witnessing this. Let1132

D1 and D2 be restrictions of D to χ↓t1 and χ↓t2 correspondingly, then A(D1) ∩ A(D2) = loc,1133

in particular D = D1 ∪ D2. Let (loc, coni, inni) be the snapshot of Di in ti, i = 1, 2.1134

D = D1 ∪ D2 is a polytree, so any pair of vertices in χ(t) can not be connected by differ-1135

ent paths in D1 and D2, i.e. con1 ∩ con2 = trcl(l̃oc). By the procedure of our algorithm,1136

R0
t (loc, con, inn) ≥ Rt1(loc, con1, inn1) +Rt2(loc, con2, inn2)− doublecount ≥ score(D1) +1137

score(D2)−
∑
ab∈loc fb(a) = score(D) = τ.1138

Hence the resulting recordRt is correct, which concludes the correctness proof of the algorithm.1139

Since the nice tree-decomposition T has O(n) nodes, the runtime of the algorithm is upper-bounded1140

by O(n) times the maximum time required to process each node. This is dominated by the time1141

required to process join nodes, for which there are at most (2k
2

)3((q+1)k)2 = 8k
2 ·(q+1)2k branches1142

corresponding to different choices of loc, con1, con2, inn1, inn2. Constructing trcl(con1 ∪ con2)1143

and computing numbers of active connected components can be done in time O(k3). Computing1144

doublecount and inn takes time at most O(k2). So the record for a join node can be computed1145

in time 2O(k2) · qO(k). Hence, after we have computed a width-optimal tree-decomposition for1146

instance by Bodlaender’s algorithm [4], the total runtime of the algorithm is upper-bounded by1147

2O(k2) · qO(k) · n.1148

Finally, to obtain the desired result for PL+, we can simply adapt the above algorithm by disregarding1149

the entry inn and disregard all explicit bounds on the in-degrees (e.g., in the definition of Ψt). The1150

runtime for this dynamic programming procedure is then 2O(k2) · n.1151

The situation is, however, completely different for PL+: unlike BNSL+, this problem is in fact1152

polynomial-time tractable. Indeed, it admits a simple reduction to the classical minimum edge-1153

weighted spanning tree problem.1154

Observation 20. PL+ is polynomial-time tractable.1155

Proof. Consider an the superstructure graph G of an instance I = (V,F , `) of PL+ where we assign1156

to each edge ab ∈ E(G) a weight w(ab) = max fa(b), fb(a), and recall that we can assume w.l.o.g.1157

that G is connected. Each spanning tree T of G with weight p can be transformed to a DAG D1158

over V with a score of p and whose skeleton is a tree by simply replacing each edge ab with the1159

arc ab or ba, depending on which achieves a higher score. On the other hand, each solution to I1160

can be transformed into a spanning tree T of the same score by reversing this process. The claim1161

then follows from the fact that a minimum-weight spanning tree of a graph can be computed in time1162

O(|V | · log |V |).1163
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This coincides with the intuitive expectation that learning simple, more restricted networks could be1164

easier than learning general networks. We conclude our exposition with an example showcasing that1165

this is not true in general when comparing PL to BNSL. Grüttemeier et al. [24] recently showed that1166

PL 6=0 is W[1]-hard when parameterized by the number of dependent vertices, which are vertices with1167

non-empty sets of candidate parents in the non-zero representation. For BNSL 6=0 we can show:1168

Theorem 21. BNSL 6=0 is fixed-parameter tractable when parameterized by the number of dependent1169

vertices.1170

Proof. Consider an algorithm B for BNSL 6=0 which proceeds as follows. First, it identifies the set1171

X of dependent vertices in the input instance I = (V,F , `), and then it branches over all possible1172

choices of arcs with both endpoints in X , i.e., it branches over each arc set A ⊆ AX . This results1173

in at most 3k
2

branches, where k = |X|. In each branch and for each vertex x ∈ X , it now finds1174

the highest-scoring parent set among those which precisely match A on X , i.e., it first computes1175

ΓAf (x) = {P ∈ parentsets(x) | ∀w ∈ X \ {x} : w ∈ P ⇐⇒ wp ∈ A } and then computes1176

score
A(x) = maxP∈ΓA

f (x)(fx(P )). It then compares
∑
x∈X score

A(x) to `; if the former is at1177

least as large as the latter in at least one branch then B outputs “Yes”, and otherwise it outputs no.1178

The runtime of this algorithm is upper-bounded by O(3k
2 · k · |I|). As for correctness, if I admits1179

a solution D then we can construct a branch such that B will output “Yes”: in particular, this must1180

occur when A is equal to the arcs of the subgraph of D induced on X . On the other hand, if B outputs1181

“Yes” for some choice of A, we can construct a DAG D with a score of at least ` by extending A as1182

follows: for each x ∈ X we choose a parent set P ∈ ΓAf (x) which maximizes fx(P ) and we add1183

arcs from each vertex in P \X to x. The score of this DAG will be precisely
∑
x∈X score

A(x),1184

which concludes the proof.1185

6 Concluding Remarks1186

Our results provide a new set of tractability results that counterbalance the previously established1187

algorithmic lower bounds for BAYESIAN NETWORK STRUCTURE LEARNING and POLYTREE1188

LEARNING on “simple” superstructures. In particular, even though the problems remain W[1]-hard1189

when parameterized by the vertex cover number of the superstructure [36, 24], we obtained fixed-1190

parameter tractability and a data reduction procedure using the feedback edge number and its localized1191

version. Together with our lower-bound result for treecut width, this completes the complexity map1192

for BNSL w.r.t. virtually all commonly considered graph parameters of the superstructure. Moreover,1193

we showed that if the input is provided with an additive representation instead of the non-zero1194

representation considered in previous theoretical works, the problems admit a dynamic programming1195

algorithm which guarantees fixed-parameter tractability w.r.t. the treewidth of the superstructure.1196

This theoretical work follows up on previous complexity studies of the considered problems, and as1197

such we do not claim any immediate practical applications of the results. That being said, it would be1198

interesting to see if the polynomial-time data reduction procedure introduced in Theorem 3 could be1199

adapted and streamlined (and perhaps combined with other reduction rules which do not provide a1200

theoretical benefit, but perform well heuristically) to allow for a speedup of previously introduced1201

heuristics for the problem [43, 42], at least for some sets of instances.1202

Last but not least, we’d like to draw attention to the local feedback edge number parameter introduced1203

in this manuscript specifically to tackle BNSL. This generalization of the feedback edge set has not1204

yet been considered in graph-theoretic works; while it is similar in spirit to the recent push towards1205

measuring the so-called elimination distance of a graph to a target class, it is not captured by that1206

notion. Crucially, we believe that the applications of this parameter go beyond BNSL; all indications1207

suggest that it may be used to achieve tractability also for purely graph-theoretic problems where1208

previously only tractability w.r.t. fen was known.1209
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