
A Some Useful Facts
A.1 Relation of Inverse Covariance Matrix and Partial Correlation
For a covariance matrix of joint distribution for variables X,Y , the covariance matrix is[

ΣXX ΣXY

ΣY X ΣY Y

]
=

[
ΣX1X1 ΣX1X2 ΣX1Y

ΣX2X1 ΣX2X2 ΣX2Y

ΣY X1 ΣX2Y ΣY Y

]
.

Its inverse matrix Σ−1 satisfies

Σ−1 =

[
A ρ
ρ> B

]
.

Here A−1 = ΣXX − ΣXY Σ−1
Y Y ΣY X ≡ cov(X − EL[X|Y], X − EL[X|Y]) := ΣXX·Y , the

partial covariance matrix of X given Y .

A.2 Relation to Conditional Independence

Proof of Lemma D.4.

Fact A.1. When X1⊥X2|Y , the partial covariance between X1, X2 given Y is 0:

ΣX1X2·Y :=cov(X1 − EL[X1|Y], X2 − EL[X2|Y])

≡ΣX1X2
−ΣX1Y Σ−1

Y Y ΣY X2
= 0.

The derivation comes from the following:

Lemma A.1 (Conditional independence (Adapted from [34])). For random variables X1, X2 and a
random variable Y with finite values, conditional independence X1⊥X2|Y is equivalent to:

sup
f∈N1,g∈N2

E[f(X1)g(X2)|Y] = 0. (4)

Here Ni = {f : Rdi → R : E[f(Xi)|Y] = 0}, i = 1, 2.

Notice for arbitrary function f , E[f(X)|Y] = EL[f(X)|φy(Y)] with one-hot encoding of discrete
variable Y . Therefore for any feature map we can also get that conditional independence ensures:

Σφ1(X1)φ2(X2)|Y :=cov(φ1(X1)− EL[φ1(X1)|φy(Y)], φ2(X2)− EL[φ2(X2)|φy(Y)])

=E[φ̄1(X1)φ̄2(X2)>] = 0.

Here φ̄1(X1) = φ1(X1)−E[φ1(X1)|φy(Y)] is mean zero given Y , and vice versa for φ̄2(X2). This
thus finishes the proof for Lemma D.4.

A.3 Technical Facts for Matrix Concentration
We include this covariance concentration result that is adapted from Claim A.2 in [18]:

Claim A.2 (covariance concentration for gaussian variables). Let X = [x1,x2, · · ·xn]> ∈ Rn×d
where each xi ∼ N (0,ΣX). Suppose n� k + log(1/δ) for δ ∈ (0, 1). Then for any given matrix
B ∈ Rd×m that is of rank k and is independent of X , with probability at least 1− δ

10 over X we
have

0.9B>ΣXB �
1

n
B>X>XB � 1.1B>ΣXB. (5)

And we will also use Claim A.2 from [18] for concentrating subgaussian random variable.

Claim A.3 (covariance concentration for subgaussian variables). LetX = [x1,x2, · · ·xn]> ∈ Rn×d
where each xi is ρ2-sub-gaussian. Suppose n� ρ4(k+ log(1/δ)) for δ ∈ (0, 1). Then for any given
matrix B ∈ Rd×m that is of rank k and is independent ofX , with probability at least 1− δ

10 overX
we have

0.9B>ΣXB �
1

n
B>X>XB � 1.1B>ΣXB. (6)

16

Claim A.4. Let Z ∈ Rn×k be a matrix with row vectors sampled from i.i.d Gaussian distribution
N (0,ΣZ). Let P ∈ Rn×n be a fixed projection onto a space of dimension d. Then with a fixed
δ ∈ (0, 1), we have:

‖PZ‖2F . Tr(ΣZ)(d+ log(k/δ)),

with probability at least 1− δ.

Claim A.4. Each t-th column of Z is an n-dim vector that is i.i.d sampled from Gaussian distribution
N (0,Σtt).

‖PZ‖2F =

k∑
t=1

‖Pzt‖2

=

k∑
t=1

z>t Pzt.

Each term satisfy Σ−1
kk ‖Pzt‖2 ∼ χ2(d), and therefore with probability at least 1− δ′ over zt,

Σ−1
kk ‖Pzt‖

2 . d+ log(1/δ′).

Using union bound, take δ′ = δ/k and summing over t ∈ [k] we get:

‖PZ‖2F . Tr(ΣZ)(d+ log(k/δ)).

Theorem A.5 (Vector Bernstein Inequality (Theorem 12 in [26])). Let X1, · · · , Xm be independent
zero-mean vector-valued random variables. Let

N = ‖
m∑
i=1

Xi‖2.

Then

P[N ≥
√
V + t] ≤ exp

(
−t2

4V

)
,

where V =
∑
i E‖Xi‖22 and t ≤ V/(max ‖Xi‖2).

Lemma A.6. Let Z ∈ Rn×d be a matrix whose row vectors are n independent mean-zero (condi-
tional on P being a rank-d projection matrix) σ-sub-Gaussian random vectors. With probability
1− δ:

‖PZ‖2F . σ2(d+ log(d/δ)).

Proof of Lemma A.6. Write P = UU> = [u1, · · · ,ud] where U is orthogonal matrix in Rn×d
where U>U = I . Notice ‖UU>Z‖2F = Tr(Z>UU>UU>Z) = Tr(Z>UU>Z). Therefore:

‖PZ‖2F =‖U>Z‖2F

=

d∑
j=1

‖u>j Z‖2

=

d∑
j=1

‖
n∑
i=1

ujizi‖2,

where each zi ∈ Rk being the i-th row of Z is a centered independent σ sub-Gaussian random
vectors. To use vector Bernstein inequality, we let X :=

∑n
i=1Xi with Xi taking the value of ujizi.

17

We have Xi is zero mean: E[Xi] = E[ujiE[zi|uji]] = E[uji · 0] = 0.

V :=
∑
i

E‖Xi‖22

=
∑
i

E[u2
jiz
>
i zi]

=
∑
i

Euji [u
2
jiE[‖zi‖22|uji]]

≤σ2
∑
i

Euji
[u2
ji]

=σ2.

Therefore by vector Bernstein Inequality, with probability at least 1−δ/d, ‖X‖ ≤ σ(1+
√

log(d/δ)).
Then by taking union bound, we get that ‖PZ‖2 =

∑d
j=1 ‖u>j Z‖2 . σ2d(1 + log(d/δ)) with

probability 1− δ.

B Warm-up: jointly Gaussian variables
We assume X1, X2, Y are jointly Gaussian, and so the optimal regression functions are all linear, i.e.,
E[Y |X1] = EL[Y |X1]. We also assume data is centered: E[Xi] = 0 and E[Y] = 0. Non-centered
data can easily be handled by learning an intercept. All relationships between random variables can
then be captured by the (partial) covariance matrix. Therefore it is easy to quantify the CI property
and establish the necessary and sufficient conditions that make X2 a reasonable pretext task.

Assumption B.1 (Jointly Gaussian). X1, X2, Y are jointly Gaussian.

Assumption B.2 (Conditional independence). X1⊥X2|Y .

Claim B.1 (Closed-form solution). Under Assumption B.1, the representation function and optimal
prediction that minimize the population risk can be expressed as follows:

ψ∗(x1) := EL[X2|X1 = x1] = ΣX2X1
Σ−1
X1X1

x1 (7)

Our target f∗(x1) := EL[Y |X1 = x1] = ΣY X1
Σ−1
X1X1

x1. (8)

Our prediction for downstream task with representation ψ∗ will be: g(·) := EL[Y |ψ∗(X1)]. Recall
from Equation (1) that the partial covariance matrix between X1 and X2 given Y is ΣX1X2|Y ≡
ΣX1X2 −ΣX1Y Σ−1

Y Y ΣY X2 . This partial covariance matrix captures the correlation between X1 and
X2 given Y . For jointly Gaussian random variables, CI is equivalent to ΣX1X2|Y = 0. We first
analyze the approximation error based on the property of this partial covariance matrix.

Lemma B.2 (Approximation error). Under Assumption B.1, B.2, if ΣX2Y has rank k, we have
f∗(x1) ≡W ∗ψ∗(x1), i.e., eapx(ψ

∗) = 0.

Remark B.1. ΣX2Y being full column rank implies that E[X2|Y] has rank k, i.e., X2 depends on all
directions of Y and thus captures all directions of information of Y . This is a necessary assumption
for X2 to be a reasonable pretext task for predicting Y . eapx(ψ

∗) = 0 means f∗ is linear in ψ∗.
Therefore ψ∗ selects d2 out of d1 features that are sufficient to predict Y .

Next we consider the estimation error that characterizes the number of samples needed to learn a
prediction function f(x1) = Ŵψ∗(x1) that generalizes.

Theorem B.3 (Excess risk). Fix a failure probability δ ∈ (0, 1). Under Assumption B.1,B.2, if
n2 � k + log(1/δ), excess risk of the learned predictor x1 → Ŵψ∗(x1) on the target task satisfies

ERψ∗(Ŵ) ≤ O
(

Tr(ΣY Y |X1
)(k + log(k/δ))

n2

)
,

with probability at least 1− δ.

18

Here ΣY Y |X1
≡ ΣY Y −ΣY X1Σ

−1
X1X1

ΣX1Y captures the noise level and is the covariance matrix
of the residual term Y − f∗(X1) = Y −ΣY X1

Σ−1
X1X1

X1. Compared to directly using X1 to predict
Y , self-supervised learning reduces the sample complexity from Õ(d1) to Õ(k). We generalize these
results even when only a weaker form of CI holds.

Assumption B.3 (Conditional independence given latent variables). There exists some latent variable
Z ∈ Rm such that X1⊥X2|Ȳ , and ΣX2Ȳ is of rank k +m, where Ȳ = [Y, Z].

This assumption lets introduce some reasonable latent variables that capture the information between
X1 and X2 apart from Y . ΣX2Ȳ being full rank says that all directions of Ȳ are needed to predict
X2, and therefore Z is not redundant. For instance, when Z = X1, the assumption is trivially true
but Z is not the minimal latent information we want to add. Note it implicitly requires d2 ≥ k +m.

Corollary B.4. Under Assumption B.1, B.3, we have f∗(x1) ≡W ∗ψ∗(x1), i.e., the approximation
error eapx(ψ

∗) is 0. We can also generalize Theorem B.3 by replacing k by k +m.

C Omitted Proofs with Conditional Independence
Proof of Lemma B.2.

cov(X1|Y,X2|Y) = ΣX1X2
−ΣX1Y Σ−1

Y Y ΣY X2
= 0.

By plugging it into the expression of EL[X2|X1], we get that

ψ(x1) := EL[X2|X1 = x1] = ΣX2X1
Σ−1
X1X1

x1

= ΣX2Y Σ−1
Y Y ΣY X1Σ

−1
X1X1

x1

=ΣX2Y Σ−1
Y Y E

L[Y |X1].

Therefore, as long as ΣX2Y is rank k, it has left inverse matrix and we get: EL[Y |X1 = x1] =

Σ†X2Y
ΣY Y ψ(x1). Therefore there’s no approximation error in using ψ to predict Y .

Proof of Corollary B.4. Let selector operator Sy be the mapping such that SyȲ = Y , we overload it
as the matrix that ensure SyΣȲ X = ΣY X for any random variable X as well.

From Lemma B.2 we get that there exists W such that EL[Ȳ |X1] = WEL[X2|X1], just plugging in
Sy we get that EL[Y |X1] = (SyW)EL[X2|X1].

Proof of Theorem B.3. Write f∗(X1) = E[Y |X1] = (A∗)>X1. EL[Y |X1 = x1] =

Σ†X2Y
ΣY Y ψ(x1). Let W ∗ = ΣY Y Σ†Y X2

. From Lemma B.2 we know f∗ = W ∗ψ. Recall
noise N = Y − f∗(X1) is mean zero conditional on X1. We writeN = Y − f∗(X1).

First we have the basic inequality,

1

2n2
‖Y − ψ(X1)Ŵ ‖2F ≤

1

2n2
‖Y −X1A

∗‖2F

=
1

2n2
‖Y − ψ(X1)W ∗‖2F =

1

2n2
‖N‖2F .

Therefore by rearranging both sides, we have:

‖ψ(X1)W ∗ − ψ(X1)Ŵ ‖2 ≤2〈N , ψ(X1)W ∗ − ψ(X1)Ŵ 〉
=2〈Pψ(X1)N , ψ(X1)W ∗ − ψ(X1)Ŵ 〉
≤2‖Pψ(X1)N‖F ‖ψ(X1)W ∗ − ψ(X1)Ŵ‖F

⇒ ‖ψ(X1)W ∗ − ψ(X1)Ŵ ‖ ≤2‖Pψ(X1)N‖F

.
√

Tr(ΣY Y |X1
)(k + log k/δ). (from Claim A.4)

19

The last inequality is derived from Claim A.4 and the fact that each row of N follows gaussian
distribution N (0,ΣY Y |X1

). Therefore

1

n2
‖ψ(X1)W ∗ − ψ(X1)Ŵ‖2F .

Tr(ΣY Y |X1
)(k + log k/δ)

n2
.

Next we need to concentrate 1/nX>1 X1 to ΣX . Suppose EL[X2|X1] = B>X1, i.e., ψ(x1) =
B>x1, and ψ(X1) = X1B. With Claim A.2 we have 1/nψ(X1)>ψ(X1) = 1/nB>X>1 X1B
satisfies:

0.9B>ΣXB � 1/n2ψ(X1)>ψ(X1) � 1.1B>ΣXB

Therefore we also have:

E[‖(W ∗ − Ŵ)>ψ(x1)‖2]

=‖Σ1/2
X B(W ∗ − Ŵ)‖2F

≤ 1

0.9n2
‖ψ(X1)W ∗ − ψ(X1)Ŵ ‖2F .

Tr(ΣY Y |X1
)(k + log k/δ)

n2
.

C.1 Omitted Proof for General Random Variables

Proof of Lemma 3.1. Let the representation function ψ be defined as:

ψ(·) := E[X2|X1] =E[E[X2|X1, Y]|X1]

=E[E[X2|Y]|X1] (uses CI)

=
∑
y

P (Y = y|X1)E[X2|Y = y]

=:f(X1)>A,

where f : Rd1 → ∆Y satisfies f(x1)y = P (Y = y|X1 = x1), and A ∈ RY×d2 satisfies Ay,: =
E[X2|Y = y]. Here ∆d denotes simplex of dimension d, which represents the discrete probability
density over support of size d.

LetB = A† ∈ RY×d2 be the pseudoinverse of matrix A, and we getBA = I from our assumption
thatA is of rank |Y|. Therefore f(x1) = Bψ(x1),∀x1. Next we have:

E[Y |X1 = x1] =
∑
y

P (Y = y|X1 = x1)× y

=Y f(x1)

=(Y B) · ψ(X1).

Here we denote by Y ∈ Rk×Y ,Y:,y = y that spans the whole support Y . Therefore letW ∗ = Y B
will finish the proof.

Proof of Theorem 3.2. With Lemma 3.1 we know eapx = 0, and therefore W ∗ψ(X1) ≡ f∗(X1).
Next from basic inequality and the same proof as in Theorem B.3 we have:

‖ψ(X1)W ∗ − ψ(X1)Ŵ ‖ ≤2‖Pψ(X1)N‖F

Notice N is a random noise matrix whose row vectors are independent samples from some centered
distribution. Note we assumed E[‖N‖2|X1] ≤ σ2. Pψ(X1) is a projection to dimension k. From
Lemma A.6 we have:

‖f∗(X1)− ψ(X1)Ŵ ‖ ≤σ
√
k(1 + log k/δ).

20

Next, with Claim A.3 we have when n� ρ4(k + log(1/δ)), sinceW ∗ − Ŵ ∈ Rd2×k,

0.9(W ∗ − Ŵ)>Σψ(W ∗ − Ŵ)

� 1

n2
(W ∗ − Ŵ)>

∑
i

ψ(x
(i)
1)ψ(x

(i)
1)>(W ∗ − Ŵ) � 1.1(W ∗ − Ŵ)>Σψ(W ∗ − Ŵ)

And therefore we could easily conclude that:

E‖Ŵ>ψ(X1)− f∗(X1)‖2 .σ2 k(1 + log(k/δ))

n2
.

C.2 Omitted proof of linear model with approximation error

Proof of Theorem 3.5. First we note that Y = f∗(X1) +N , where E[N |X1] = 0 but Y − (A∗)>X1

is not necessarily mean zero, and this is where additional difficulty lies. Write approximation error
term a(X1) := f∗(X1) − (A∗)>X1, namely Y = a(X1) + (A∗)>X1 + N . Also, (A∗)>X1 ≡
(W ∗)>ψ(X1) with conditional independence.

Second, with KKT condition on the training data, we know that E[a(X1)X>1] = 0.

Recall Ŵ = arg minW ‖Y − ψ(X1)W ‖2F . We have the basic inequality,

1

2n2
‖Y − ψ(X1)Ŵ ‖2F ≤

1

2n2
‖Y −X1A

∗‖2F

=
1

2n2
‖Y − ψ(X1)W ∗‖2F .

i.e.,
1

2n2
‖ψ(X1)W ∗ + a(X1) +N − ψ(X1)Ŵ ‖2F ≤

1

2n2
‖a(X1) +N‖2F .

Therefore

1

2n2
‖ψ(X1)W ∗ − ψ(X1)Ŵ ‖2

≤− 1

n2
〈a(X1) +N , ψ(X1)W ∗ − ψ(X1)Ŵ 〉

=− 1

n2
〈a(X1), ψ(X1)W ∗ − ψ(X1)Ŵ 〉 − 〈N , ψ(X1)W ∗ − ψ(X1)Ŵ 〉 (9)

With Assumption 3.3 and by concentration 0.9 1
n2
X1X

>
1 � ΣX1

� 1.1 1
n2
X1X

>
1 , we have

1
√
n2
‖a(X1)X>1 Σ

−1/2
X1
‖F ≤ 1.1b0

√
k (10)

Denote ψ(X1) = X1B, where B = Σ−1
X1

ΣX1X2
is rank k under exact CI since ΣX1X2

=

ΣX1Y Σ−1
Y ΣY X2

. We have

1

n2
〈a(X1), ψ(X1)W ∗ − ψ(X1)Ŵ 〉

=
1

n2
〈a(X1),X1BW

∗ −X1BŴ 〉

=
1

n2
〈Σ−1/2

X1
X>1 a(X1),Σ

1/2
X1

(BW ∗ −BŴ)〉

≤1.1b0

√
k

n2
‖Σ1/2

X1
(BW ∗ −BŴ)‖F (from Ineq. (10))

21

Back to Eqn. (9), we get

1

2n2
‖ψ(X1)W ∗ − ψ(X1)Ŵ ‖2F

.

√
k

n2
‖Σ1/2

X1
(BW ∗ −BŴ)‖F +

1

n2
‖PX1

N‖F ‖X1(BW ∗ −BŴ)‖F

.

(√
k

n2
+

1

n2
‖PX1

N‖F

)
‖X1(BW ∗ −BŴ)‖F

=⇒ 1
√
n2
‖ψ(X1)W ∗ − ψ(X1)Ŵ ‖F .

√
k(1 + log k/δ)

n2
. (from Lemma A.6)

Finally, by concentration we transfer the result from empirical loss to excess risk and get:

E[‖ψ(X1)W ∗ − ψ(X1)Ŵ ‖2] .
k(1 + log(k/δ))

n2
.

C.3 Argument on Denoising Auto-encoder or Context Encoder
Remark C.1. We note that since X1⊥X2|Y ensures X1⊥h(X2)|Y for any deterministic function h,
we could replace X2 by h(X2) and all results hold. Therefore in practice, we could use h(ψ(X1))
instead of ψ(X1) for downstream task. Specifically with denoising auto-encoder or context encoder,
one could think about h as the inverse of decoder D (h = D−1) and use D−1ψ ≡ E the encoder
function as the representation for downstream tasks, which is more commonly used in practice.

This section explains what we claim in Remark C.1. For context encoder, the reconstruction loss
targets to find the encoder E∗ and decoder D∗ that achieve

min
E

min
D

E‖X2 −D(E(X1))‖2F , (11)

where X2 is the masked part we want to recover and X1 is the remainder.

If we naively apply our theorem we should use D∗(E∗(·)) as the representation, while in practice we
instead use only the encoder part E∗(·) as the learned representation. We argue that our theory also
support this practical usage if we view the problem differently. Consider the pretext task to predict
(D∗)−1(X2) instead of X2 directly, namely,

Ē ← arg min
E

E‖(D∗)−1(X2)− E(X1)‖2, (12)

and then we should indeed use E(X1) as the representation. On one hand, when X1⊥X2|Y , it
also satisfies X1⊥(D∗)−1(X2)|Y since (D∗)−1 is a deterministic function of X2 and all our theory
applies. On the other hand, the optimization on (11) or (12) give us similar result. Let

E∗ = arg min
E

E[‖X2 −D∗(E(X1))‖2],

and E‖X2 −D∗(E∗(X1))‖2 ≤ ε, then with pretext task as in (12) we have that:

E‖(D∗)−1(X2)− E∗(X1)‖2 =E‖(D∗)−1(X2)− (D∗)−1 ◦D∗(E∗(X1))‖2

≤‖(D∗)−1‖2LipE‖X2 −D∗(E∗(X1))‖2

≤L2ε,

where L := ‖(D∗)−1‖Lip is the Lipschitz constant for function (D∗)−1. This is to say, in practice,
we optimize over (11), and achieves a good representation E∗(X1) such that εpre ≤ L

√
ε and thus

performs well for downstream tasks. (Recall εpre is defined in Theorem 4.2 that measures how well
we have learned the pretext task.)

22

D Omitted Proofs Beyond Conditional Independence
D.1 Warm-up: Jointly Gaussian Variables
As before, for simplicity we assume all data is centered in this case.

Assumption D.1 (Approximate Conditional Independent Given Latent Variables). Assume there
exists some latent variable Z ∈ Rm such that

‖Σ−1/2
X1

ΣX1,X2|Ȳ ‖F ≤ εCI,

σk+m(Σ†
Y Ȳ

ΣȲ X2
) = β > 0 8 and ΣX2,Ȳ is of rank k +m, where Ȳ = [Y,Z].

When X1 is not exactly CI of X2 given Y and Z, the approximation error depends on the norm of
‖Σ−1/2

X1
ΣX1,X2|Ȳ ‖2. Let Ŵ be the solution from Equation uses CI.

Theorem D.1. Under Assumption D.1 with constant εCI and β, then the excess risk satisfies

ERψ∗ [Ŵ] := E[‖Ŵ>ψ∗(X1)− f∗(X1)‖2F] .
ε2CI

β2
+ Tr(ΣY Y |X1

)
d2 + log(d2/δ)

n2
.

Proof of Theorem D.1. Let V := f∗(X1) ≡ X1Σ
−1
X1X1

Σ1Y be our target direction. Denote the
optimal representation matrix by Ψ := ψ(X1) ≡X1A (whereA := Σ−1

X1X1
ΣX1X2

).

Next we will make use of the conditional covariance matrix:

ΣX1X2|Ȳ := ΣX1X2
−ΣX1Ȳ Σ−1

Ȳ
ΣȲ X2

,

and plug it in into the definition of Ψ:

Ψ =X1Σ
−1
X1X1

ΣX1Ȳ Σ−1
Ȳ

ΣȲ X2
+X1Σ

−1
X1X1

ΣX1X2|Ȳ

=:L+E,

where L := X1Σ
−1
X1X1

ΣX1Ȳ Σ−1
Ȳ

ΣȲ X2
and E := X1Σ

−1
X1X1

ΣX1X2|Ȳ . We analyze these two
terms respectively.

For L, we note that span(V) ⊆span(L): LΣ†
X2Ȳ

ΣȲ = X1Σ
−1
X1X1

ΣX1Ȳ . By right multiplying

the selector matrix SY we have: LΣ†
X2Ȳ

ΣȲ Y = X1Σ
−1
X1X1

ΣX1Y , i.e., LW̄ = V , where W̄ :=

Σ†
X2Ȳ

ΣȲ Y . From our assumption that σr(Σ
†
Ȳ Y

ΣȲ X2
) = β, we have ‖W̄ ‖2 ≤ ‖Σ†X2Ȳ

ΣȲ ‖2 ≤
1/β. (Or we could directly define β as σk(Σ†

Y Ȳ
ΣȲ X2

) ≡ ‖W̄ ‖2.)

By concentration, we have E = X1Σ
−1
X1X1

ΣX1X2|Ȳ converges to Σ
−1/2
X1X1

ΣX1X2|Ȳ . Specifically,

when n � k + log 1/δ, ‖E‖F ≤ 1.1‖Σ−1/2
X1X1

ΣX1X2|Ȳ ‖F ≤ 1.1εCI (by using Lemma A.2).
Together we have ‖EW̄ ‖F . εCI/β.

Let Ŵ = arg minW ‖Y −ΨW ‖2. We note that Y = N + V = N + ΨW̄ −EW̄ where V is
our target direction andN is random noise (each row ofN has covariance matrix ΣY Y |X1

).

From basic inequality, we have:

‖ΨŴ − Y ‖2F ≤‖ΨW̄ − Y ‖2F = ‖N −EW̄ ‖2F .
=⇒ ‖ΨŴ − V −EW̄ ‖2 ≤2〈ΨŴ − V −EW̄ ,N −EW̄ 〉
=⇒ ‖ΨŴ − V −EW̄ ‖ ≤‖P[Ψ,E,V]N‖+ ‖EW̄ ‖

=⇒ ‖ΨŴ − V ‖ .‖E‖F ‖W̄ ‖+ (
√
d2 +

√
log 1/δ)

√
Tr(ΣY Y |X1

).

(from Lemma A.4)

≤
√
n2
εCI

β
+ (
√
d2 +

√
log 1/δ)

√
Tr(ΣY Y |X1

).

(from Assumption D.1)

8σk(A) denotes k-th singular value of A, and A† is the pseudo-inverse of A.

23

Next, by the same procedure that concentrates 1
n2
X>1 X1 to ΣX1X1 with Claim A.2, we could easily

get

ER[Ŵ] := E[‖Ŵ>ψ(X1)− f∗(X1)‖2] .
ε2CI

β2
+ Tr(ΣY Y |X1

)
d2 + log 1/δ

n2
.

D.2 Measuring conditional dependence with cross-covariance operator
L2(PX) denotes the Hilbert space of square integrable function with respect to the measure PX , the
marginal distribution of X . We are interested in some function classHx ⊂ L2(PX) that is induced
from some feature maps:

Definition D.2 (General and Universal feature Map). We denote feature map φ : X → F that maps
from a compact input space X to the feature space F . F is a Hilbert space associated with inner
product: 〈φ(x), φ(x′)〉F . The associated function class is: Hx = {h : X → R|∃w ∈ F , h(x) =
〈w, φ(x)〉F ,∀x ∈ X}. We call φ universal if the inducedHx is dense in L2(PX).

Linear model is a special case when feature map φ = Id is identity mapping and the inner product is
over Euclidean space. A feature map with higher order polynomials correspondingly incorporate high
order moments [20, 24]. For discrete variable Y we overload φ as the one-hot embedding.

Remark D.1. For continuous data, any universal kernel like Gaussian kernel or RBF kernel induce
the universal feature map that we require [41]. Two-layer neural network with infinite width also
satisfy it, i.e., ∀x ∈ X ⊂ Rd, φNN (x) : Sd−1 × R→ R, φNN (x)[w, b] = σ(w>x+ b) [7].

When there’s no ambiguity, we overload φ1 as the random variable φ1(X1) over domain F1, andH1

as the function class over X1. Next we characterize CI using the cross-covariance operator.

Definition D.3 (Cross-covariance operator). For random variables X ∈ X , Y ∈ Y with joint
distribution P : X × Y → R, and associated feature maps φx and φy, we denote by Cφxφy

=

E[φx(X)⊗ φy(Y)] =
∫
X×Y φx(x)⊗ φy(y)dP (x, y), the (un-centered) cross-covariance operator.

Similarly we denote by CXφy = E[X ⊗ φy(Y)] : Fy → X .

To understand what Cφxφy
is, we note it is of the same shape as φx(x) ⊗ φy(y) for each in-

dividual x ∈ X , y ∈ Y . It can be viewed as an operator: Cφxφy : Fy → Fx, Cφxφyf =∫
X×Y〈φy(y), f〉φx(x)dP (x, y),∀f ∈ Fy. For any f ∈ Hx and g ∈ Hy, it satisfies:
〈f, Cφxφy

g〉Hx
= EXY [f(X)g(Y)][6, 20]. CI ensures Cφ1X2|φy

= 0 for arbitrary φ1, φ2:

Lemma D.4. With one-hot encoding map φy and arbitrary φ1, X1⊥X2|Y ensures:

Cφ1X2|φy
:= Cφ1X2 − Cφ1φyC−1

φyφy
CφyX2 = 0. (13)

A more complete discussion of cross-covariance operator and CI can be found in [20]. Also, recall
that an operator C : Fy → Fx is Hilbert-Schmidt (HS) [50] if for complete orthonormal systems
(CONSs) {ζi} of Fx and {ηi} of Fy, ‖C‖2HS :=

∑
i,j〈ζj , Cηi〉2Fx

<∞. The Hilbert-Schmidt norm
generalizes the Frobenius norm from matrices to operators, and we will later use ‖Cφ1X2|φy

‖ to
quantify approximate CI.

We note that covariance operators [21, 20, 6] are commonly used to capture conditional dependence
of random variables. In this work, we utilize the covariance operator to quantify the performance of
the algorithm even when the algorithm is not a kernel method.

D.3 Omitted Proof in General Setting

Claim D.5. For feature maps φ1 with universal property, we have:

ψ∗(X1) :=E[X2|X1] = EL[X2|φ1]

=CX2φ1
C−1
φ1φ1

φ1(X1).

Our target f∗(X1) :=E[Y |X1] = EL[Y |φ1]

=CY φ1C−1
φ1φ1

φ1(X1).

24

For general feature maps, we instead have:

ψ∗(X1) := arg min
f∈Hd2

1

EX1X2‖X2 − f(X1)‖22

=CX2φ1
C−1
φ1φ1

φ1(X1).

Our target f∗(X1) := arg min
f∈Hk

1

EX1Y ‖Y − f(X1)‖22

=CY φ1C−1
φ1φ1

φ1(X1).

To prove Claim D.5, we show the following lemma:

Lemma D.6. Let φ : X → Fx be a universal feature map, then for random variable Y ∈ Y we
have:

E[Y |X] = EL[Y |φ(X)].

Proof of Lemma D.6. Denote by E[Y |X = x] =: f(x). Since φ is dense in X , there exists a linear
operator a : X → R such that

∫
x∈X a(x)φ(x)[·]dx = f(·) a.e. Therefore the result comes directly

from the universal property of φ.

Proof of Claim D.5. We want to show that for random variables Y,X , where X is associated with a
universal feature map φx, we have E[Y |X] = CY φx(X)C−1

φx(X)φx(X)φx(X).

First, from Lemma D.6, we have that E[Y |X] = EL[Y |φx(X)]. Next, write A∗ : Fx → Y as the
linear operator that satisfies

E[Y |X] = A∗φx(X)

s.t. A∗ = arg min
A

E[‖Y −Aφx(X)‖2].

Therefore from the stationary condition we have A∗EX [φx(X)⊗ φx(X)] = EXY [Y ⊗ φx(X)]. Or
namely we get A∗ = CY φx

C−1
φxφx

simply from the definition of the cross-covariance operator C.

Claim D.7. ‖C−1/2
φ1φ1
Cφ1X2|φȳ

‖2HS = EX1 [‖E[X2|X1]− EȲ [E[X2|Ȳ]|X1]‖2] = ε2CI.

Proof.

‖C−1/2
φ1φ1
Cφ1X2|φȳ

‖2HS

=

∫
X1

∥∥∥∥∫
X2

(
pX1X2

(x1,x2)

pX1(x1)
−
pX1⊥X2|Y (x1,x2)

pX1(x1)

)
X2dpx2

∥∥∥∥2

dpx1

=EX1
[‖E[X2|X1]− EȲ [E[X2|Ȳ]|X1]‖2].

D.4 Omitted Proof for Main Results
We first prove a simpler version without approximation error.

Theorem D.8. For a fixed δ ∈ (0, 1), under Assumption 4.1, 3.2, if there is no approximation error,
i.e., there exists a linear operator A such that f∗(X1) ≡ Aφ1(X1), if n1, n2 � ρ4(d2 + log 1/δ),
and we learn the pretext tasks such that:

E‖ψ̃(X1)− ψ∗(X1)‖2F ≤ ε2pre.

Then we are able to achieve generalization for downstream task with probability 1− δ:

E[‖f∗H1
(X1)− Ŵ>ψ̃(X1)‖2] ≤ Õ{σ2 d2

n2
+
ε2CI

β2
+
ε2pre

β2
}. (14)

25

Proof of Theorem D.8. We follow the similar procedure as Theorem D.1. For the setting of no
approximation error, we have f∗ = f∗H1

, and the residual term N := Y − f∗(X1) is a mean-
zero random variable with E[‖N‖2|X1] . σ2 according to our data assumption in Section 3.
N = Y − f∗(Xdown

1) is the collected n2 samples of noise terms. We write Y ∈ Rd3 . For
classification task, we have Y ∈ {ei, i ∈ [k]} ⊂ Rk (i.e, d3 = k) is one-hot encoded random variable.
For regression problem, Y might be otherwise encoded. For instance, in the yearbook dataset, Y
ranges from 1905 to 2013 and represents the years that the photos are taken. We want to note that our
result is general for both cases: the bound doesn’t depend on d3, but only depends on the variance of
N .

Let Ψ∗,L,E,V be defined as follows:

Let V = f∗(Xdown
1) ≡ f∗H1

(Xdown
1) ≡ φ(Xdown

1)C−1
φ1
Cφ1Y be our target direction. Denote the

optimal representation matrix by

Ψ∗ :=ψ∗(Xdown
1)

=φ(Xdown
1)C−1

φ1φ1
Cφ1X2

=φ(Xdown
1)C−1

φ1φ1
Cφ1φȳC−1

φȳ
ΣφȳX2 + φ(Xdown

1)C−1
φ1φ1
Cφ1X2|φȳ

=:L+E,

where L = φ(Xdown
1)C−1

φ1φ1
Cφ1φȳC−1

φȳ
CφȳX2 and E = φ(Xdown

1)C−1
φ1φ1
Cφ1X2|Ȳ .

In this proof, we denote SY as the matrix such that SY φȳ = Y . Specifically, if Y is of dimension d3,
SY is of size d3 × |Y||Z|. Therefore SY ΣφyA = ΣY A for any random variable A.

Therefore, similarly we have:

LΣ†X2φȳ
Σφȳφȳ

S>Y = LΣ†X2φȳ
ΣφȳY = LW̄ = V

where W̄ := Σ†X2φȳ
ΣφȳY satisfies ‖W̄ ‖2 = 1/β. Therefore span(V) ⊆span(L) since we have

assumed that Σ†X2φȳ
ΣφȳY to be full rank.

On the other hand,E = φ1(Xdown
1)C−1

φ1φ1
Cφ1X2|Ȳ concentrates to C−1/2

φ1φ1
Cφ1X2|φȳ

. Specifically, when

n� c+ log 1/δ, 1
n2
‖E‖2F ≤ 1.1‖C−1/2

φ1φ1
Cφ1X2|φȳ

‖2F ≤ 1.1ε2CI (by using Lemma A.3). Together we
have ‖EW̄ ‖F . εCI/β.

We also introduce the error from not learning ψ∗ exactly: Epre = Ψ−Ψ∗ := ψ̃(Xdown
1)−ψ∗(Xdown

1).
With proper concentration and our assumption, we have that E‖ψ(X1) − ψ∗(X1)‖2 ≤ εpre and

1√
n2
‖ψ(Xdown

1)− ψ∗(Xdown
1)‖2 ≤ 1.1εpre.

Also, the noise term after projection satisfies ‖P[Ψ,E,V]N‖ .
√
d2(1 + log d2/δ)σ as using Corol-

lary A.6. Therefore Ψ = Ψ∗ −Epre = L+E −Epre.

Recall that Ŵ = arg minW ‖ψ(Xdown
1)W−Y ‖2F .And with exactly the same procedure as Theorem

D.1 we also get that:

‖ΨŴ − V ‖ ≤2‖EW̄ ‖+ 2‖EpreW̄ ‖+ ‖P[Ψ,E,V ,Epre]N‖

.
√
n2
εCI + εpre

β
+ σ

√
d2(1 + log(d2/δ)).

With the proper concentration we also get:

E[‖Ŵ>ψ(X1)− f∗H1
(X1)‖2] .

ε2CI + ε2pre

β2
+ σ2 d2(1 + log(d2/δ))

n2
.

Next we move on to the proof of our main result Theorem 4.2 where approximation error oc-
curs.

26

Proof of Theorem 4.2. The proof is a combination of Theorem 3.5 and Theorem D.8. We follow the
same notation as in Theorem D.8. Now the only difference is that an additional term a(Xdown

1) is
included in Y :

Y =N + f∗(Xdown
1)

=N + Ψ∗W̄ + a(Xdown
1)

=N + (Ψ +Epre)W̄ + a(Xdown
1)

=ΨW̄ + (N +EpreW̄ + a(Xdown
1)).

From re-arranging 1
2n2
‖Y −ΨŴ ‖2F ≤ 1

2n2
‖Y −ΨW̄ ‖2F ,

1

2n2
‖Ψ(W̄ − Ŵ) + (N +Epre + a(Xdown

1))‖2F ≤
1

2n2
‖N +EpreW̄ + a(Xdown

1)‖2F (15)

⇒ 1

2n2
‖Ψ(W̄ − Ŵ)‖2F ≤

1

n2
〈Ψ(W̄ − Ŵ),N +EpreW̄ + a(Xdown

1)〉. (16)

Then with similar procedure as in the proof of Theorem 3.5, and write Ψ as φ(Xdown
1)B, we have:

1

n2
〈Ψ(W̄ − Ŵ), a(Xdown

1)〉

=
1

n2
〈B(W̄ − Ŵ), φ(Xdown

1)>a(Xdown
1)〉

=
1

n2
〈C1/2
φ1
B(W̄ − Ŵ), C−1/2

φ1
φ(Xdown

1)>a(Xdown
1)〉

≤
√
d2

n2
‖C1/2
φ1
B(W̄ − Ŵ)‖F

≤1.1
1
√
n2

√
d2

n2
‖φ(Xdown

1)B(W̄ − Ŵ)‖F

=1.1

√
d2

n2
‖Ψ(W̄ − Ŵ)‖F .

Therefore plugging back to (16) we get:

1

2n2
‖Ψ(W̄ − Ŵ)‖2F ≤

1

n2
〈Ψ(W̄ − Ŵ),N +EpreW̄ + a(Xdown

1)〉

⇒ 1

2n2
‖Ψ(W̄ − Ŵ)‖F ≤

1

2n2
‖EpreW̄ ‖F +

1

2n2
‖PΨN‖F + 1.1

√
d2

n2
.

⇒ 1

2
√
n2
‖ΨŴ − f∗H1

(Xdown
1)‖F − ‖EW̄ ‖F ≤

1
√
n2

(1.1
√
d2 + ‖EpreW̄ ‖+

√
d2 + log(d2/δ))

⇒ 1

2
√
n2
‖ΨŴ − f∗H1

(Xdown
1)‖F .

√
d2(1 + log d2/δ)

n2
+
εCI + εpre

β
.

Finally by concentrating 1
n2

Ψ>Ψ to E[ψ̃(X1)ψ̃(X1)>] we get:

E[‖Ŵ>ψ̃(X1)− f∗H1
(X1)‖22] .

d2(1 + log d2/δ

n2
) +

ε2CI + ε2pre

β2
,

with probability 1− δ.

D.5 Principal Component Regression

Claim D.9 (Approximation Error of Principle Component Analysis). Let matrixA = L+E ∈ Rn×d
where L has rank r <size of A.Let Ar be the rank-r PCA of A. Then we have: ‖Ar − L‖F ≤
2‖E‖F , and ‖Ar −L‖2 ≤ 2‖E‖2.

27

Proof. Due to the property of PCA, ‖Ar −A‖F ≤ ‖E‖F and ‖Ar −A‖2 ≤ ‖E‖2.

‖Ar −L‖2 =‖Ar −A+A−L‖2
≤‖Ar −A‖F + ‖E‖F
≤2‖E‖2.

Similarly we have ‖Ar −L‖F ≤ 2‖E‖F .

This technical fact could be used to complete the proof for Remark 4.1.

Proof of Remark 4.1. We replace the key steps of D.8.

Recall Ψ∗,L,E,V are defined as follows:

Ψ∗ := ψ∗(Xdown
1) is the optimal representation matrix. Ψr is the features obtained from r-PCA

of Ψ∗. Ψ∗ = L + E which is low rank plus small norm. (L = φ(Xdown
1)C−1

φ1φ1
Cφ1φȳ

C−1
φȳ
CφȳX2

and E = φ(Xdown
1)C−1

φ1φ1
Cφ1X2|Ȳ . Suppose r = |Y||Z|.) Let V = f∗(Xdown

1) ≡ f∗H1
(Xdown

1) ≡
φ(Xdown

1)C−1
φ1
Cφ1Y = LW̄ be our target direction, where W̄ := Σ†X2φȳ

ΣφȳY .

Due to representation learning error (finite sample in the first stage) and approximate conditional
independence, the target direction V is not perfectly linear in Ψ∗ or its r-PCA features Ψ.

Now with PCR we learn the linear model with Ŵ ← arg minW ‖ΨrW − Y ‖2F . Together with D.9
and the same procedure as Theorem D.8 we also get that:

Let Ē = L−Ψr is of rank at most 2r.

‖ΨrŴ − Y ‖2F ≤‖ΨrW̄ − Y ‖2F = ‖N − ĒW̄ ‖2F .
=⇒ ‖ΨrŴ − V − ĒW̄ ‖2 ≤2〈ΨrŴ − V − ĒW̄ ,N − ĒW̄ 〉
=⇒ ‖ΨrŴ − V − ĒW̄ ‖ ≤‖P[Ψr,L]N‖+ ‖ĒW̄ ‖

=⇒ ‖ΨrŴ − V ‖ ≤2‖Ē‖F ‖W̄ ‖+ ‖P2rN‖

.‖E‖F ‖W̄ ‖+ σ
√
r(1 +

√
log(r/δ)).

With concentration on the downstream labeled samples we also get the result in Remark 4.1:

E[‖Ŵ>ψr(X1)− f∗H1
(X1)‖2] .

ε2CI + ε2pre

β2
+ σ2 r(1 + log(r/δ))

n2
.

Here r = |Y||Z| .

E Omitted Proofs Beyond Conditional Independence
E.1 Proof for topic modeling example
Proof for Theorem 5.1. We will construct a latent variable Ȳ such that εCI = 0. We pick the domain
of Ȳ to be [k] and the distribution P (Ȳ |X1) to be the distribution E [µ|X1] ∈ ∆[k], and define
P
(
X2|Ȳ = i

)
= P (X2|µ = ei). More specifically we have

P (Ȳ = i|X1) = E [µ|X1] (i) = E [µ(i)|X1] and thus E
[
Ȳ |X1

]
= E [µ|X1]

P
(
X2|Ȳ = i

)
= P (X2|µ = ei) and thus E

[
X2|Ȳ = i

]
= E [X2|µ = ei]

To show εCI = 0, from Definition 4.1 we need to show E [X2|X1] = E
[
E
[
X2|Ȳ

]
|X1

]
. Since X2 is

the bag of words representation, we know that X2 = 2
N

∑N
i=N/2+1 ewi

. So for any µ ∈ ∆[k] we get

E [X2|µ] =(a) 2

N

N∑
i=N/2+1

E [ewi
|µ] =(b) 2

N

N∑
i=N/2+1

Aµ = Aµ

28

where (a) follows from linearity of expectation and (b) follows from the linearity of the probability
distribution of each word given µ for topic models. Thus from the definition of Ȳ , E

[
X2|Ȳ = i

]
=

E [X2|µ = ei] = Aei. To check if εCI = 0, we compute the following

E
[
E
[
X2|Ȳ

]
|X1

]
=

k∑
i=1

E
[
X2|Ȳ = i

]
P (Ȳ = i|X1)

=

k∑
i=1

Aei E [µ(i)|X1] = A

k∑
i=1

E [µ(i)ei|X1]

= E [Aµ|X1] = E [E [X2|µ] |X1]

Due to the topic modeling assumption and the independent sampling of words given µ, we know that
X1 ⊥ X2|µ and thus E [X2|X1] = E [E [X2|µ] |X1]. Combining with the above calculation, we get
that E

[
E
[
X2|Ȳ

]
|X1

]
= E [X2|X1], thus giving εCI = 0. This proves points 1. and 2.

For point 3., note that E[Y |X1] = E[w>µ|X1] = w>E[µ|X1] = w>E[Ȳ |X1].

Finally for point 4., we use the definition 1/β = ‖ΣY φȳ
Σ†X2φȳ

‖2. For the first term, we note that
E [φȲ |µ] = E [E [φȲ |X1] |µ] = E [E [µ̄|X1] |µ] = µ

ΣY φȳ
= Eµ∼τ

[
Y φ>Ȳ

]
= Eµ∼τ

[
w>µφ>Ȳ

]
= Eµ∼τ

[
w>µE

[
φ>Ȳ |µ

]]
= Eµ∼τ

[
w>µµ>

]
= w>Γ

where Γ was defined as the topic covariance Γ = Eµ∼τ
[
µµ>

]
. The second term is

ΣX2φȳ
= Eµ∼τ

[
E [X2|µ]E

[
φ>Ȳ |µ

]]
= Eµ∼τ

[
Aµµ>

]
= AΓ

The upper bound for 1/β can be computed as follows

1/β =
∥∥∥ΣY φȳ

Σ†X2φȳ

∥∥∥
2

=
∥∥∥w>Γ (AΓ)

†
∥∥∥

2

≤ ‖w‖2 λmax(Γ) λmax

(
(AΓ)

†
)

= ‖w‖2 λmax(Γ) λmin (AΓ)
−1

≤ ‖w‖2 λmax(Γ) λmin (A)
−1

λmin (Γ)
−1

= ‖w‖2
λmax(Γ)

λmin (Γ)
−1 λmin (A)

−1
=

κ‖w‖2
λmin (A)

For λmin (A), we need to lower bound min‖v‖2=1 ‖Av‖2 for which we will use the anchor word
assumption. Let π(i) be the anchor word for topic i ∈ [k]; so Ai(π(i)) ≥ p and Ai′(π(i)) = 0
for i′ 6= i. Using the assumption, for any v ∈ Rk with ‖v‖2 = 1, we get that |(Av)(π(i))| =
|vi| Ai(π(i)) ≥ p|vi| and thus ‖Av‖22 ≥

∑
i(Av)(π(i))2 ≥ p2

∑
i v

2
i = p2. This shows that

λmin (A) ≥ p, thus combining with the above calculation to prove point 4. and completing the
proof.

F General Results and Comparison to [57]
We now show a more general form of our results and also connect the multi-view redundancy
assumption from [57] to ours.

F.1 General Results
We first note that all our results hold for a generalized version of Assumption 4.1 and Definition 4.1
that we state below.

Assumption F.1. Suppose Ȳ with |Ȳ | ≤ m is a discrete latent variable that satisfies

1. Ȳ makes X1 and X2 approximately CI as in Definition 4.1, i.e.

ε2CI := EX1

[
‖E[X2|X1]− EȲ [E[X2|Ȳ]|X1]‖2

]
29

2. Ȳ also makes X1 and Y approximately CI with

ε2Ȳ := EX1

[
‖E[Y |X1]− EȲ [E[Y |Ȳ]|X1]‖2

]
3. ΣφȳX2

is full column rank and ‖ΣY φȳ
Σ†X2φȳ

‖2 = 1/β, where A† is pseudo-inverse, and
φȳ is the one-hot embedding for Ȳ .

Note that our assumptions from the main paper are a special case of Assumption F.1, with εȲ =
0 being satisfied automatically as Ȳ = [Y,Z] is explicitly defined to contain Y in it. Unlike
Assumption 4.1, we do not need Y to be a discrete variable, but just need Ȳ to be discrete. We state
the generalization of Theorem 4.2 below

Theorem F.1. For a fixed δ ∈ (0, 1), under Assumptions F.1, 4.2 for ψ̃ and ψ∗ and 3.2 for non-
universal feature maps, if n1, n2 � ρ4(d2 + log 1/δ), and we learn the pretext tasks such that:
E‖ψ̃(X1)− ψ∗(X1)‖2F ≤ ε2pre. Then the generalization error for downstream task w.p. 1− δ is:

EX1

[
‖E[Y |X1]− Ŵ>ψ̃(X1)‖22

]
≤ Õ

(
σ2 d2

n2
+
ε2CI

β2
+
ε2pre

β2
+ ε2Ȳ

)
(17)

The result is pretty much the same as Theorem 4.2, except for an additional term of ε2
Ȳ

. The proof is
also very similar, the difference being that E[E[Y |Ȳ]|X1] can now be expressed as a linear function
of ψ∗ instead of E[Y |X1], and the additional error incurred during to the mismatch between E[Y |X1]
and E[E[Y |Ȳ]|X1] that is ε2

Ȳ
will be incurred.

F.2 Comparison to [57]
We show guarantees for our algorithm under the assumption from [57] in the following special case
that satisfies: (1) X1 and X2 are exactly CI given Ȳ (thus εCI = 0), (2) the variation in the target Y is
small given X1 and X2. The assumption from [57], in our setting, is equivalent to saying that εX1

and εX2
are small, where

ε2Xi
= E

[
‖E[Y |Xi]− E[Y |X1, X2]‖2

]
, i ∈ {1, 2}

A similar assumption of multi-view redundancy also appears in [58]; however they state it in terms
of information-theoretic quantities instead. We will show that these assumptions are also almost
sufficient to show results in our setting. In particular we show that if Y |X1, X2 is almost deterministic
(which makes sense for a many regression tasks) and if ε2X2

is small, then εȲ defined in the previous
subsection will be small and thus we have meaningful guarantees.

Lemma F.2. Let σ2
Y = Var[Y |X1, X2] be the variance of Y . Ȳ is as defined in Assumption F.1 with

the extra condition that X1 and X2 are exactly CI given Ȳ . Then we have

εȲ ≤
√

2(σY + εX2
)

Plugging this into Theorem F.1 will give us the desired result. Note however that we did not even use
the fact that εX1

is small. Using this part of the assumption, we can get an even stronger result that
shows that even though our learned representation will only X1, if will still predict Y |X1, X2 well.

Corollary F.3. For a fixed δ ∈ (0, 1), under Assumptions F.1, 4.2 for ψ̃ and ψ∗ and 3.2 for non-
universal feature maps, if n1, n2 � ρ4(d2 + log 1/δ), and we learn the pretext tasks such that:
E‖ψ̃(X1)− ψ∗(X1)‖2F ≤ ε2pre. Then the generalization error for downstream task w.p. 1− δ is:

EX1,X2

[
‖E[Y |X1, X2]− Ŵ>ψ̃(X1)‖22

]
≤ Õ

(
σ2 d2

n2
+
ε2pre

β2
+ ε2X̄1

+ ε2X̄2
+ σ2

Y

)

Thus we see that the assumption from [57] is strong enough for us to be able to show stronger results
than just our assumption. We complete this section by proving Lemma F.2

Lemma F.2. We will also make use of the following lemma that is easily proved using Cauchy-
Schwarz inequality

30

Lemma F.4. For random variables Z1, . . . , Zn for which E[‖Zi‖2] <∞ for every i ∈ [n], we have

E[‖Z1 + · · ·+ Zn‖2] ≤
(√

E[‖Z1‖2] + · · ·+
√
E[‖Zn‖2]

)2

The proof follows from the following sequence of inequalities that uses Jensen’s inequality, condi-
tional independence of X1 and X2 and the above lemma. For simplicity we assume that Y is a scalar
random variable, the proof is the same for vector values Y , except squared values will replaced by
norm squared values.

ε2Ȳ = EX1

[
(E[Y |X1]− EȲ [E[Y |Ȳ]|X1])2

]
= EX1

[
(EȲ [E[Y |Ȳ , X1]|X1]− EȲ [E[Y |Ȳ]|X1])2

]
≤ EX1,Ȳ

[
(E[Y |X1, Ȳ]− E[Y |Ȳ])2

]
= EȲ EX1|Ȳ EX′1|Ȳ

[
(E[Y |X1, Ȳ]− E[Y |X ′1, Ȳ])2

]
=

1

2
EȲ EX1|Ȳ EX′1|Ȳ

[
(EX2

[E[Y |X1, X2, Ȳ]|Ȳ]− EX2
[E[Y |X ′1, X2, Ȳ]|Ȳ])2

]
≤ 1

2
EȲ EX1|Ȳ EX′1|Ȳ EX2|Ȳ

[
(E[Y |X1, X2, Ȳ]− E[Y |X ′1, X2, Ȳ])2

]
=

1

2
E
[
(Z1 + Z2 + Z3 + Z4)2

]
where Z1 = E[Y |X1, X2, Ȳ] − E[Y |X1, X2], Z2 = −E[Y |X ′1, X2, Ȳ] + E[Y |X ′1, X2], Z3 =
E[Y |X1, X2]−E[Y |X2] and Z4 = −E[Y |X ′1, X2] + E[Y |X2]. The first and third inequality follow
from Jensen’s inequality, second inequality follows from E[(X − E[X])2] = 1

2E[(X −X ′)2], and
the third equality follows from the CI assumption.

We will bound E[Z2
1] = E[Z2

2] ≤ E[(E[Y |X1, X2, Ȳ] − E[Y |X1, X2])2] ≤ E[(Y −
E[Y |X1, X2])2] = σ2

Y again from Jensen’s inequality. Z3 and Z4 can be handled by observing
that E[Z2

3] = E[Z2
4] = E[(E[Y |X1, X2]− E[Y |X2])2] = ε2X2

.

Thus using the above lemma, we get the desired upper bound on εȲ .

G Showing E[Y |X1] ≈ E[Y |X1, X2]

Our main result Theorem 4.2 shows that self-supervised learning can help approximate E[Y |X1] as a
linear function of the learned features ψ̃. In practice, however, it is more common to predict the label
Y using the entire input X = (X1, X2) rather than just X1. We show here that learning E[Y |X1] is
sufficient, under mild assumptions on the task being solved: the Bayes error of the classification task
(X1, Y) is low. We first upper bound the discrepancy between E[Y |X1] and E[Y |X1, X2] based on
the Bayes error rate.

Lemma G.1. Suppose ‖Y ‖ ≤ 1 and k = |Y|. Denote the Bayes error for distribution PX1,Y to be
Bayes-error(PX1,Y) = EX1

[1−maxy P (y|X1)]9. Then we have

EX1,X2

[
‖E[Y |X1]− E[Y |X1, X2]‖2

]
≤ 2k Bayes-error(PX1,Y)

We will show below (forH = Hu) that if PX1,Y has low Bayes error, then predicting E[Y |X1] is as
good as predicting E[Y |X1, X2] up to this small additive error.

Theorem G.2. Suppose εBayes = Bayes-error(PX1,Y) and that ψ̃ is ε2pre-optimal on the SSL task (as
in Theorem 4.2). Under the same conditions as Theorem 4.2, with probability 1− δ we have

EX1,X2

[
‖E[Y |X1, X2]− Ŵ>ψ̃(X1)‖22

]
≤ Õ

(
σ2 d2

n2
+
ε2CI

β2
+
ε2pre

β2

)
+ 2εBayes

Proof. The law of total expectation gives EX2
[E[Y |X1, X2]|X1] = E[Y |X1], thus it is easy to obtain

the following decomposition

EX1,X2

[
‖E[Y |X1, X2]− Ŵ>ψ̃(X1)‖22

]
=EX1

[
‖E[Y |X1]− Ŵ>ψ̃(X1)‖22

]
+ EX1,X2

[
‖E[Y |X1]− E[Y |X1, X2]‖22

]
9We abuse notation and use P (y|X1) instead of PX1,Y (y|X1).

31

The first term can be upper bounded using Theorem 4.2: EX1

[
‖E[Y |X1]− Ŵ>ψ̃(X1)‖22

]
=

ERψ̃(Ŵ) ≤ Õ
(
σ2 d2

n2
+

ε2CI
β2 +

ε2pre

β2

)
. The second term is upper bounded by 2εBayes by invoking

Lemma G.1, and this completes the proof

Proof of Lemma G.1. Notice the following inequality

EX1,X2

[
‖E[Y |X1]− E[Y |X1, X2]‖2

]
= EX1,X2

∥∥∥∥∥∥
∑
y∈Y

y (P (y|X1)− P (y|X1, X2))

∥∥∥∥∥∥
2

≤ |Y|(max
y
‖y‖2)EX1,X2

[∑
y

(P (y|X1)− P (y|X1, X2))
2

]

≤ kEX1

[
EX2

[∑
y

(P (y|X1)− P (y|X1, X2))
2 | X1

]]
where the first inequality follows from Cauchy-Schwartz and second inequality follows from ‖Y ‖ ≤ 1.
Thus the problem reduces to bounding the inner expectation for every X1. We first note that for every
X1, y, we have P (y|X1) = EX2

[P (y|X1, X2)|X1] from the law of total expectation. This gives

EX2

[∑
y

(P (y|X1)− P (y|X1, X2))
2 | X1

]
=
∑
y

EX2

[
P (y|X1, X2)2|X1

]
− P (y|X1)2

≤
∑
y

EX2
[P (y|X1, X2)|X1]− P (y|X1)2 = EX2

[∑
y

P (y|X1, X2)|X1

]
−
∑
y

P (y|X1)2

= 1−
∑
y

P (y|X1)2 ≤ 1−max
y

P (y|X1)2 ≤ 2(1−max
y

P (y|X1))

where the first inequality follows because P (y|X1, X2) ∈ [0, 1] and second follows trivially
and third follows from 1 − x2 ≤ 2(1 − x) for x ∈ [0, 1]. Combining everything, we get
EX1,X2

[
‖E[Y |X1]− E[Y |X1, X2]‖2

]
≤ 2kEX1

[1−maxy P (y|X1)] = 2k Bayes-error(PX1,Y),
thus proving the result.

H Theoretical analysis for classification tasks
H.1 Classification tasks
We now consider the benefit of learning ψ from a classH1 on linear classification task for label set
Y = [k]. The performance of a classifier is measured using the standard logistic loss

Definition H.1. For a task with Y = [k], classification loss for a predictor f : X1 → Rk is

`clf(f) = E[`log(f(X1), Y)] , where `log(ŷ, y) =

[
− log

(
eŷy∑
y′ e

ŷy′

)]
The loss for representation ψ : X1 → Rd1 and linear classifierW ∈ Rk×d1 is denoted by `clf(Wψ).

We note that the function `log is 1-Lipschitz in the first argument. The result will also hold for the
hinge loss `hinge(ŷ, y) = (1− ŷy + maxy′ 6=y ŷy′)+ which is also 1-Lipschitz, instead of `log.

We assume that the optimal regressor f∗H1
for one-hot encoding also does well on linear classification.

Assumption H.1. The best regressor for 1-hot encodings in H1 does well on classification, i.e.
`clf(γf

∗
H1

) ≤ εone-hot is small for some scalar γ.

Remark H.1. Note that ifH1 is universal, then f∗H1
(x1) = E[Y |X1 = x1] and we know that f∗H1

is the Bayes-optimal predictor for binary classification. In general one can potentially predict the
label by looking at arg maxi∈[k] f

∗
H1

(x1)i. The scalar γ captures the margin in the predictor f∗H1
.

32

We now show that using the classifier Ŵ obtained from linear regression on one-hot encoding with
learned representations ψ̃ will also be good on linear classification. The proof is in Section H

Theorem H.2. For a fixed δ ∈ (0, 1), under the same setting as Theorem 4.2 and Assumption H.1,
we have:

`clf

(
γŴ ψ̃

)
≤ Õ

γ
√
σ2
d2

n2
+
ε2

β2
+
ε2pre

β2

+ εone-hot,

with probability 1− δ.

Proof of Theorem H.2. We simply follow the following sequence of steps

`clf

(
γŴ ψ̃

)
= E[`log

(
γŴ ψ̃(X1), Y

)
]

≤(a) E
[
`log
(
γf∗H1

(X1), Y
)

+ γ‖Ŵ ψ̃(X1)− f∗H1
(X1)‖

]
≤(b) εone-hot + γ

√
E
[
‖Ŵ ψ̃(X1)− f∗H1

(X1)‖2
]

= εone-hot + γ
√

ERψ̃[Ŵ]

where (a) follows because `log is 1-Lipschitz and (b) follows from Assumption H.1 and Jensen’s
inequality. Plugging in Theorem 4.2 completes the proof.

I Four Different Ways to Use CI
In this section we propose four different ways to use conditional independence to prove zero approxi-
mation error, i.e.,

Claim I.1 (informal). When conditional independence is satisfied: X1⊥X2|Y , and some non-
degeneracy is satisfied, there exists some matrixW such that E[Y |X1] = WE[X2|X1].

We note that for simplicity, most of the results are presented for the jointly Gaussian case, where
everything could be captured by linear conditional expectation EL[Y |X1] or the covariance matri-
ces. When generalizing the results for other random variables, we note just replace X1, X2, Y by
φ1(X1), φ2(X2), φy(Y) will suffice the same arguments.

I.1 Inverse Covariance Matrix
Write Σ as the covariance matrix for the joint distribution PX1X2Y .

Σ =

[
ΣXX ΣXY

Σ>Y Y ΣY Y

]
, Σ−1 =

[
A ρ
ρ> B

]
whereA ∈ R(d1+d2)×(d1+d2), ρ ∈ R(d1+d2)×k,B ∈ Rk×k. Furthermore

ρ =

[
ρ1

ρ2

]
; A =

[
A11 A12

A21 A22

]
for ρi ∈ Rdi×k, i = 1, 2 andAij ∈ Rdi×dj for i, j ∈ {1, 2}.
Claim I.2. When conditional independence is satisfied, A is block diagonal matrix, i.e., A12 and
A21 are zero matrices.

Lemma I.3. We have the following
E[X1|X2] = (A11 − ρ̄1ρ̄

>
1)−1(ρ̄1ρ̄2

> −A12)X2 (18)

E[X2|X1] = (A22 − ρ̄2ρ̄
>
2)−1(ρ̄2ρ̄1

> −A21)X1 (19)

E[Y |X] = −B− 1
2 (ρ̄>1 X1 + ρ̄>2 X2) (20)

where ρ̄i = ρiB
− 1

2 for i ∈ {1, 2}. Also,

(A11 − ρ̄1ρ̄
>
1)−1ρ̄1ρ̄

>
2 =

1

1− ρ̄>1 A
−1
11 ρ̄1

A−1
11 ρ̄1ρ̄

>
2

(A22 − ρ̄2ρ̄
>
2)−1ρ̄2ρ̄

>
1 =

1

1− ρ̄>2 A
−1
22 ρ̄2

A−1
22 ρ̄2ρ̄

>
1

33

Proof. We know that E[X1|X2] = Σ12Σ
−1
22 X2 and E[X2|X1] = Σ21Σ

−1
11 x1, where

ΣXX =

[
Σ11 Σ12

Σ21 Σ22

]
First using ΣΣ−1 = I , we get the following identities

ΣXXA+ ΣXY ρ
> = I (21)

Σ>XYA+ ΣY Y ρ
> = 0 (22)

ΣXXρ+ ΣXYB = 0 (23)

Σ>XY ρ+ ΣY YB = I (24)

From Equation (23) we get that ΣXY = −ΣXXρB
−1 and plugging this into Equation (21) we get

ΣXXA−ΣXXρB
−1ρ> = I

=⇒ ΣXX = (A− ρB−1ρ>)−1 = (A− ρ̄ρ̄>)−1

=⇒
[
Σ11 Σ12

Σ21 Σ22

]
=

([
A11 − ρ̄1ρ̄

>
1 A12 − ρ̄1ρ̄

>
2

A21 − ρ̄2ρ̄
>
1 A22 − ρ̄2ρ̄

>
2

])−1

We now make use of the following expression for inverse of a matrix that uses Schur complement:
M/α = δ − γα−1β is the Schur complement of α forM defined below

IfM =

[
α β
γ δ

]
, then,M−1 =

[
α−1 + α−1β(M/α)−1γα−1 −α−1β(M/α)−1

−(M/α)−1γα−1 (M/α)−1

]
ForM = (A− ρ̄ρ̄>), we have that ΣXX = M−1 and thus

Σ12Σ
−1
22 = −α−1β(M/α)−1((M/α)−1)−1

= −α−1β

= (A11 − ρ̄1ρ̄
>
1)−1(ρ̄1ρ̄

>
2 −A12)

This proves Equation (18) and similarly Equation (19) can be proved.

For Equation (20), we know that E[Y |X = (X1, X2)] = ΣY XΣ−1
XXX = Σ>XY Σ−1

XXX . By using
Equation (23) we get ΣXY = −ΣXXρB

−1 and thus

E[Y |X = (X1, X2)] = −B−1ρ>ΣXXΣ−1
XXX

= −B−1ρ>X = B−1(ρ>1 X1 + ρ>2 X2)

= −B− 1
2 (ρ̄>1 X1 + ρ̄>2 X2)

For the second part, we will use the fact that (I − ab>)−1 = I + 1
1−a>bab

>. Thus

(A11 − ρ̄1ρ̄
>
1)−1ρ̄1ρ̄2 = (I −A−1

11 ρ̄1ρ̄
>
1)A−1

11 ρ̄1ρ̄
>
2

= (I +
1

1− ρ̄>1 A
−1
11 ρ̄1

A−1
11 ρ̄1ρ̄1)A−1

11 ρ̄1ρ̄
>
2

= A−1
11 (I +

1

1− ρ̄>1 A
−1
11 ρ̄1

ρ̄1ρ̄1A
−1
11)ρ̄1ρ̄

>
2

= A−1
11 (ρ̄1ρ̄

>
2 +

ρ̄1A
−1
11 ρ̄1

1− ρ̄>1 A
−1
11 ρ̄1

ρ̄1ρ̄
>
2)

= A−1
11 ρ̄1ρ̄

>
2 (1 +

ρ̄1A
−1
11 ρ̄1

1− ρ̄>1 A
−1
11 ρ̄1

)

=
1

1− ρ̄>1 A
−1
11 ρ̄1

A−1
11 ρ̄1ρ̄

>
2

The other statement can be proved similarly.

Claim I.4.
E[X2|X1] = (A22 − ρ̄2ρ̄

>
2)−1ρ̄2ρ̄

>
1 X1.E[Y |X1] = −B−1/2ρ̄>1 X1 −B−1/2ρ̄>2 E[X2|X1]

Therefore E[Y |X1] is in the same direction as E[X2|X1].

34

I.2 Closed form of Linear Conditional Expectation
Refer to Claim B.1 and proof of Lemma B.2. As this is the simplest proof we used in our paper.

I.3 From Law of Iterated Expectation

EL[X2|X1] =EL[EL[X2|X1, Y]|X1]

=E

[
[ΣX2X1

,ΣX2Y]

[
ΣX1X1 ΣX1Y

ΣY X1
ΣY Y

]−1 [
X1

Y

]
| X1

]
=AX1 +BEL[Y |X1].

Using block matrix inverse,

A = (ΣX2X1
−ΣX2Y Σ−1

Y Y ΣY X1
)(ΣX1X1

−ΣX1Y Σ−1
Y Y ΣY X1

)−1 ∈ Rd2×d1

= ΣX1X2|Y (ΣX1X1|Y)−1

B = ΣX2Y |X1
(ΣY Y |X1

)−1 ∈ Rd2×Y .

Therefore in general (without conditional independence assumption) our learned representation will
be ψ(x1) = Ax1 +Bf∗(x1), where f∗(·) := EL[Y |X1].

It’s easy to see that to learn f∗ from representation ψ, we need A to have some good property, such
as light tail in eigenspace, and B needs to be full rank in its column space.

Notice in the case of conditional independence, ΣX1X2|Y = 0, and A = 0. Therefore we could
easily learn f∗ from ψ if X2 has enough information of Y such that ΣX2Y |X1

is of the same rank as
dimension of Y .

I.4 From E[X2|X1, Y] = E[X2|Y]

Proof. Let the representation function ψ be defined as follows, and let we use law of iterated
expectation:

ψ(·) := E[X2|X1] =E[E[X2|X1, Y]|X1]

=E[E[X2|Y]|X1] (uses CI)

=
∑
y

P (Y = y|X1)E[X2|Y = y]

=:f(X1)>A,

where f : Rd1 → ∆Y satisfies f(x1)y = P (Y = y|X1 = x1), and A ∈ RY×d2 satisfies Ay,: =
E[X2|Y = y]. Here ∆d denotes simplex of dimension d, which represents the discrete probability
density over support of size d.

LetB = A† ∈ RY×d2 be the pseudoinverse of matrixA, and we getBA = I from our assumption
that A is of rank |Y|. Therefore f(x1) = Bψ(x1),∀x1. Next we have:

E[Y |X1 = x1] =
∑
y

P (Y = y|X1 = x1)× y

=Ŷ f(x1)

=(Ŷ B) · ψ(X1).

Here we denote by Ŷ ∈ Rk×Y , Ŷ:,y = y that spans the whole support Y . Therefore letW ∗ = Ŷ B
will finish the proof.

35

Figure 3: Left: MSE of using ψ to predict Y versus using X1 directly to predict Y . Using ψ
consistently outperforms using X1. Right: MSE of ψ learned with different n1. The MSE scale with
1/n2 as indicated by our analysis. Simulations are repeated 100 times, with the mean shown in solid
line and one standard error shown in shadow.

Figure 4: Left: Mean Squared Error comparison of predicting gender and predicting date. Right: the
spectrum comparison of covariance condition on gender and condition on date.

J More on the experiments
In this section, we include more experiment setup and results.

Simulations. All the experiments are performed on a desktop computer with Intel i7-8700K,
16GB RAM.

Following Theorem 4.2, we know that the Excessive Risk (ER) is also controlled by (1) the number
of samples for the pretext task (n1), and (2) the number of samples for the downstream task (n2),
besides k and εCI as discussed in the main text. In this simulation, we enforce strict conditional
independence, and explore how ER varies with n1 and n2. We generate the data the same way as
in the main text, and keep α = 0, k = 2, d1 = 50 and d2 = 40 We restrict the function class to
linear model. Hence ψ is the linear model to predict X2 from X1 given the pretext dataset. We use
Mean Squared Error (MSE) as the metric, since it is the empirical version of the ER. As shown in
Figure 3, ψ consistently outperforms X1 in predicting Y using a linear model learnt from the given
downstream dataset, and ER does scale linearly with 1/n2, as indicated by our analysis.

Computer Vision Task. For the context encoder part, we use all the recommended hyperparameter
as in the provided source codes. For the downstream resnet18 regression, we perform grid search
over the hyperparameters to achieve best performance. Specifically, we set the batch size to be 24,
and traing the resnet18 for 50 epoches. One pass of training (loops over all the settings with different
number of labeled data) is finished within 6 hours. All the experiments are performed on a desktop
computer with Intel i7-8700K, 16GB RAM, and NVIDIA Geforce 1080. Training of the context
encoder is finished within 12 hours. The yearbook dataset is distributed under BSD license.

Following the same procedure, we try to predict the gender YG. We normalize the label (YG, YD) to
unit variance, and confine ourself to linear function class. That is, instead of using a context encoder to
impaint X2 from X1, we confine ψ to be a linear function. As shown on the left of Figure 4, the MSE

36

Figure 5: Performance on SST of baseline φ1(x1), i.e. bag-of-words, and learned ψ(x1) for the two
settings. Left: Classification accuracy, Right: Regression MSE.

of predicting gender is higher than predicting dates. We find that ‖Σ−1/2
X1X1

ΣX1X2|YG
‖F = 9.32,

while ‖Σ−1/2
X1X1

ΣX1X2|YD
‖F = 8.15. Moreover, as shown on the right of Figure 4, conditioning on

YD cancels out more spectrum than conditioning on YG. In this case, we conjecture that, unlike YD,
YG does not capture much dependence between X1 and X2. And as a result, εCI is larger, and the
downstream performance is worse, as we expected.

NLP Task. We look at the setting where both X1 and X2 are the set of sentences and perform
experiments by enforcing CI with and without latent variables. The downstream task is sentiment
classification with the Stanford Sentiment Treebank (SST) dataset [53], where inputs are movie
reviews and the label set Y is {±1}. We learn a linear representation ψ(X1) = Bφ(X1) in the SSL
phase as defined in Section 4. Here we X1, we pick φ(X1) to be the bag-of-words representations of
the movie review X1, which has a vocabulary size of 13848 For X2 we use a d2 = 300 dimensional
embedding of the sentence, that is the mean of word vectors (random Gaussians) for the words
in the review X2. For SSL data we consider 2 settings, (a) enforce CI with the labels Y , (b)
enforce CI with extra latent variables, for which we use fine-grained version of SST with label
set Ȳ = {1, 2, 3, 4, 5}10.. In this setting, for every label y ∈ Y (or ȳ ∈ Ȳ), we independently
sample movie reviews X1 and X2 from the class y (or ȳ), thus simulating the CI (or approximate CI)
condition. We test the learned ψ on SST binary task with linear regression and linear classification;
results are presented in Figure 5. We observe that in both settings ψ outperforms φ1, especially
in the small-sample-size regime. Exact CI is better than CI with latent variables, as suggested by
theory.

The function ψ (or equivalently matrixB ∈ R300×13848) is learnt by minimizing ‖X2 −Bφ(X1)‖2
averaged over the SSL train data with an ‖ · ‖2F penalty on the matrix B. We use the scikit-learn
RidgeRegressionCV11 solver for this with regularizer parameters in the list [0.001, 0.1, 10, 1000].
Plotting Figure 5 took less than an hour when using 8 Intel(R) Xeon(R) Silver 4214 CPUs on a
cluster.

10Ratings {1, 2} correspond to y = −1 and {4, 5} correspond to y = 1
11https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.
RidgeCV.html

37

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.RidgeCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.RidgeCV.html

	Some Useful Facts
	Relation of Inverse Covariance Matrix and Partial Correlation
	Relation to Conditional Independence
	Technical Facts for Matrix Concentration

	Warm-up: jointly Gaussian variables
	Omitted Proofs with Conditional Independence
	Omitted Proof for General Random Variables
	Omitted proof of linear model with approximation error
	Argument on Denoising Auto-encoder or Context Encoder

	Omitted Proofs Beyond Conditional Independence
	Warm-up: Jointly Gaussian Variables
	Measuring conditional dependence with cross-covariance operator
	Omitted Proof in General Setting
	Omitted Proof for Main Results
	Principal Component Regression

	Omitted Proofs Beyond Conditional Independence
	Proof for topic modeling example

	General Results and Comparison to tosh2020contrastive1
	General Results
	Comparison to tosh2020contrastive1

	Showing E[Y|X1]E[Y|X1,X2]
	Theoretical analysis for classification tasks
	Classification tasks

	Four Different Ways to Use CI
	Inverse Covariance Matrix
	Closed form of Linear Conditional Expectation
	From Law of Iterated Expectation
	From E[X2|X1,Y]=E[X2|Y]

	More on the experiments

