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Abstract

When data are scarce, meta-learning can improve a learner’s accuracy by harness-
ing previous experience from related learning tasks. However, existing methods
have unreliable uncertainty estimates which are often overconfident. Addressing
these shortcomings, we introduce a novel meta-learning framework, called
F-PACOH, that treats meta-learned priors as stochastic processes and performs
meta-level regularization directly in the function space. This allows us to directly
steer the probabilistic predictions of the meta-learner towards high epistemic uncer-
tainty in regions of insufficient meta-training data and, thus, obtain well-calibrated
uncertainty estimates. Finally, we showcase how our approach can be integrated
with sequential decision making, where reliable uncertainty quantification is imper-
ative. In our benchmark study on meta-learning for Bayesian Optimization (BO),
F-PACOH significantly outperforms all other meta-learners and standard baselines.

1 Introduction
Learning new concepts and skills from a small number of examples as well as adapting them quickly
in face of changing circumstances is a key aspect of human intelligence. Unfortunately, our machine
learning algorithms lack such adaptive capabilities. Meta-Learning [1, 2] has emerged as a promising
avenue towards enabling systems to learn much more efficiently by harnessing experience from previ-
ous related learning tasks [3–8]. By meta-learning probabilistic prior beliefs, we not only make more
accurate predictions when given a small amount of training data, but also improve the self-assessment
machine learning algorithm in the form of epistemic uncertainty estimates [9–12]. Such uncertainty
estimates are critical for sequential decision problems such as Bayesian optimization (BO) [13, 14]
and reinforcement learning [15, 16] which require efficient information gathering and exploration.

However, in most practical settings, there are only few tasks available for meta-training. Hence
we face the risk of overfitting to these few tasks [17] and, consequently impairing the performance
on unseen tasks. To prevent this, recent work has proposed various forms of regularization on the
meta-level [18, 12, 8]. While these methods are effective in preventing meta-overfitting for the
mean predictions, they fail to do so for the associated uncertainty estimates, manifested in gross
overconfidence. Such overconfidence is highly detrimental for downstream sequential decision tasks
that rely on calibrated uncertainty estimates [19, 20] to perform sufficient exploration. For instance, if
the global optimum of the true target function in BO lies outside the model’s 95 % confidence bounds
the acquisition algorithm may never query points close to the optimum and get stuck in sub-optimal
solutions. We hypothesize that previous methods yield overconfident predictions since they do not
meta-regularize the predictive distribution directly. Instead, they perform meta-regularization in
some latent space, for example the method parameters, which is non-trivially associated with the
resulting predictive distribution and thus may not have the indented regularization effects.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).



To overcome the issue of overconfident predictions in meta-learning, we develop a novel approach that
regularizes meta-learned priors directly in the function space. We build on the PAC-Bayesian PACOH
framework [12] which uses a hyper-prior over the latent prior parameters for meta-regularization.
However, we propose to define the hyper-prior as stochastic process, characterized by its marginal
distributions in the function space, and make the associated meta-learning problem tractable by
using an approximation of the KL-divergence between stochastic processes [21]. The functional
KL allows us to directly steer the meta-learned prior towards high epistemic uncertainty in regions
of insufficient meta-training data and, thus, obtain reliable uncertainty estimates. When instantiating
our functional meta-learning framework, referred to as F-PACOH, with Gaussian Processes (GPs),
we obtain a simple algorithm that can be seamlessly integrated into sequential decision algorithms.

In our experiments, we showcase how F-PACOH can facilitate transfer and life-long learning in
the context of BO, and unlike previous meta-learning methods, consistently yields well-calibrated
uncertainty estimates. In our benchmark study on meta-learning for BO and hyper-parameter tuning,
F-PACOH significantly outperforms all other meta-learners and standard baselines. Finally, we
consider lifelong BO, where the meta-BO algorithm faces a sequence of BO tasks and needs build-up
prior knowledge iteratively. In this challenging setting, F-PACOH is the only method that is able to
significantly improve its optimization performance as it gathers more experience. This paves the way
for exciting new applications for meta-learning and transfer such as the recurring re-optimization
and calibration of complex machines and systems under changing external conditions.

2 Background
In this section, we formally introduce PAC-Bayesian meta-learning, the foundation of the functional
meta-learning framework that we develop in Section 4. Moreover, we provide a brief description of
Bayesian Optimization, which serves as the main testing ground for our proposed method.

PAC-Bayesian Meta-Learning. Meta-learning extracts prior knowledge (i.e., inductive bias) from a
set of related learning tasks to accelerate inference in light of a new task. In the context of supervised
learning, the meta-learner is given n datasets D1,T1

, ...,Dn,Tn . Each dataset Di,Ti = (XDi ,y
D
i )

consists of Ti noisy function evaluations yi,t = fi(xi,t) + ε corresponding to a function fi : X 7→ Y
and additive noise ε. In short, we write XDi = (xi,1, ...,xi,Ti)

> for the matrix of function inputs and
yDi = (yi,1, ..., yi,Ti)

> for the vector of corresponding observations. The functions fi ∼ T are sam-
pled from a task distribution T , which can be thought of as a stochastic process that governs a random
function f : X 7→ Y . In standard Bayesian inference, we exogenously presume an – often carefully
manually designed – prior distribution P (h) over learning hypotheses h : X 7→ Y, h ∈ H and
combine it with empirical data to form a posterior Q(h) = P (h|D). In contrast, in meta-learning we
endogenously infer the prior P (h) in a data-driven manner, by using the provided meta-training data.

While there exist different approaches, we focus on PAC-Bayesian meta-learning [22, 23, 12] due
to its principled foundation in statistical learning theory. The PACOH framework by Rothfuss et al.
[12] presumes a loss function l(h,x, y) and a parametric family {Pφ|φ ∈ Φ} of priors Pφ(h) with
hyperparameter space Φ. In a probabilistic setting, one typically uses the negative log-likelihood
as the loss function, i.e., l(h,x, y) = − ln p(y|h(x)). Given the meta-training data D1, ...,Dn
and a hyper-prior distribution P(φ) over Φ, PACOH aims to infer a hyper-posterior distribution
Q(φ) over the parameters φ of the prior. Using PAC-Bayesian learning theory [24], they derive
a high-probability bound on the transfer error, i.e., the generalization error for posterior inference
on an unseen task f ∼ T with priors sampled from the hyper-posterior Q(φ). This meta-level
generalization bound also serves as an objective for the meta-learner, minimized w.r.t. Q:

J(Q) = − 1

n

n∑
i=1

1

Ti
Eφ∼Q [lnZβ(Di,Ti , Pφ)] +

(
1

λ
+

1

nT̃

)
KL[Q||P] + const. (1)

Here, λ > 0, T̃ = (T−11 + ... + T−1n )−1 is the geometric mean of the dataset sizes,

lnZ(Di,Ti , P ) :=
∫
H P (h) exp

(
−
∑Ti
t=1 l(h,xi,t, yi,t)

)
dh the generalized marginal log-

likelihood and KL(Q||P) the Kullback–Leibler (KL) divergence between hyper-posterior and
hyper-prior. To obtain asymptotically consistent bounds, λ is typically chosen as λ =

√
n.

Bayesian Optimization. Bayesian Optimization (BO) aims to find the global maximizer x∗ =
arg maxx∈X f(x) of a function f : X → R over a bounded domain X . To obtain an estimate of x∗,
the BO algorithm iteratively chooses points x1, ...,xT ∈ X at which to query f , and observes noisy
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Figure 1: Prior / posterior predictions for a Vanilla GP and PACOH / F-PACOH GP meta-trained
on functions from the task distribution displayed left. While PACOH yields over-confident and the
Vanilla GP under-confident predictions, F-PACOH provides the well-calibrated confidence intervals.

feedback y1, ..., yT ∈ R, e.g., via yt = f(xt) + ε, ε ∼ N (0, σ2) with σ2 ≥ [13, 14]. BO methods
form a Bayesian surrogate model of the function f based on previous observations Dt = {(xt, yt)}.
Typically, a Gaussian Process (GP) GP(m(x), k(x,x′)) with mean m(x) and kernel function
k(x,x′) is employed to form a posterior belief p(f(x)|Dt) over function values [25]. In each iteration,
the next query point xt+1 := arg maxx∈X αt(x) is chosen as maximizer of an acquisition function
αt(x) that is typically based on the p(f(x)|Dt) and trades-off exploration and exploitation [26–29].

3 Related Work

Meta-Learning. Common approaches in meta-learning attempt to learn a shared embedding space
[3, 30–32] amortize inference by a meta-learned recurrent model [33–35] or learn the initialization of a
NN so it can be quickly adapted to new tasks [6, 7, 36]. A growing body of work also uses probabilistic
modeling to enable uncertainty quantification in meta-learning [9, 11, 37]. However, when only given
a small number of meta-training tasks such approaches tend to overfit and fail to provide reliable un-
certainty estimates. The problem of overfitting to the meta-training tasks has been brought to attention
by [17, 38], followed by work that discusses potential solutions in the form of meta-regularization [8,
12, 18]. Our meta-learning framework builds on a sequence of work on PAC-Bayesian meta-learning
[22, 23, 12]. However, instead of using a hyper-prior over the latent parameters of the learnable prior,
we define the hyper-prior as stochastic process in the function space which gives us better control
over the behavior of the predictive distributions of our meta-learned model in the absence of data.

Learning hypotheses in the function space. Recent work bridges the gap between stochastic
processes and complex parametric models by developing a variational inference in the function
space [21, 39]. Our framework in the function space heavily builds on these ideas; in particular, the
proposed approximations of the KL-divergence between stochastic processes [21, 40, 41].

Meta-Learning and Transfer for Bayesian Optimization. To improve the sample efficiency of
BO based on previous experience, a basic approach is to warm-start BO by initially evaluating
configurations that have performed well on similar tasks in the past [42–44]. Another common theme
is to form a global GP based model across tasks [45–48]. However, such global GPs quickly become
computationally infeasible as they scale cubically in the number of tasks times the number samples
per task or require hand-designed task features. Conceptually, the most similar to our work is the
approach of learning a neural-network based feature map that is shared across tasks and used for BO
based on a Bayesian linear regression model in the shared feature space [49, 50]. While these methods
are highly scalable, they lack any form meta-level regularization and thus, in face of data-scarcity, are
prone to overfitting and over-overconfident uncertainty estimates. In contrast, our method overcomes
these issues thanks to its principled meta-regularization in the function space.

4 PAC-Bayesian Meta-Learning in the Function Space

In this section, we present our main contribution: a principled framework for meta-learning in the
function space. First, we introduce the general framework, then we discuss particular instantiations
and components of our approach and describe the resulting algorithm. Finally, we elaborate how our
proposed meta-learner can be effectively applied in the context of Bayesian Optimization.

3



4.1 The F-PACOH Framework: Meta-Learning with Stochastic Process Hyper-Priors

We are interested in settings where the number of available meta-training tasks as well as observations
may be small, and thus generalization beyond the meta-training data is challenging. In such scenarios,
regularization on the meta-level plays a vital role to prevent meta-overfitting and ensure positive
transfer [8, 17]. Due to its principled meta-level regularization grounded in statistical learning theory,
we build on the PACOH meta-learning framework of [12] which has been introduced in Section 2.

A critical design choice when attempting to meta-learn with the PACOH objective in (1) is the
hyper-prior P which, through the KL-divergence, becomes the dominant force that shapes the
learned prior Pφ in the absence of sufficient meta-training data. Rothfuss et al. [12] define the hyper-
prior as distribution over the prior parameters φ and, in particular, use a simple Gaussian P(φ) =
N (φ; 0, σ2

PI). While this may act as a form of smoothness regularization on the prior, it is unclear how
such a hyper-prior shapes the predictions of our meta-learned model in the function space, especially
in regions where no training data is available. In such regions of data scarcity, we ideally want our
meta-learned model to make conservative predictions, characterized by high epistemic uncertainty.
As we can observe in Figure 1, PACOH fails to do so, yielding grossly over-confident uncertainty
estimates. This is particularly problematic in sequential decision making, where data is typically
non-i.i.d. and we heavily rely on well-calibrated epistemic uncertainty estimates to guide exploration.

Hyper-prior in function space. Aiming to make meta-learned models behave more predictably
outside the support of the data, we devise a hyper-prior in the function space. We assume that the
hyper-prior P is a stochastic process, indexed in X and taking values in Y , i.e., a random function h :
X 7→ Y . Furthermore, we assume that for any finite measurement set X := [x1, ...,xk] ∈ X k, k ∈ N,
the corresponding marginal distribution of function values ρ(hX) := ρ(h(x1), ...h(xk)) exists and
fulfills the exchangability and consistency conditions of the Kolmogorov Extension Theorem [51].
Similarly, we treat the prior Pφ as a stochastic process from which we can either sample parameters
θ that correspond to functions hθ : X 7→ Y or we even have direct access to its finite marginals
p(hX) = p(h(x1), ..., h(xk)), e.g., multivariate normal distributions in the case of a GP. Likewise,
function samples from the hyper-posterior can be obtained by hierarchical sampling (hθ(·) with θ ∼
Pφ, φ ∼ Q) and finite marginals by forming a mixture distribution q(hX) = Eφ∼Q

[
pφ(hX)

]
.

Characterizing the prior, hyper-prior, and hyper-posterior as stochastic processes, we need to re-
consider how to define and compute KL[Q||P]. For this purpose, we build on the result of Sun et al.
[21] who show that the KL-divergence between two stochastic processes q and ρ can be expressed as
a supremum of KL-divergences between their finite marginals:

KL[q, ρ] = sup
n∈N,X∈Xn

KL[q(hX)||ρ(hX)] (2)

This supremum is highly intractable, and without further specifications on the measurement set X
it does not present a viable optimization objective [40, 41]. We thus follow a sample-based approach
to computing (2), for which Sun et al. [21] provide consistency guarantees.

Enforcing the hyper-prior. A-priori, we want our meta-learned priors to match the structure of the
hyper-prior both near the meta-training data and in regions of the domain where no data is available
at all. Thus, for each task, we build measurement sets Xi = [XDi,s,X

M
i ] by selecting a random subset

XDi,s of the meta-training inputs XDi as well as random points XM
i

iid∼ U(X ) sampled independently
and uniformly from the bounded domain X . In expectation over these random measurement sets,
we then compute the KL-divergence between the marginal distributions of the stochastic processes,
giving us EXi [KL

[
q(hXi)||ρ(hXi)

]
] as approximation of (2). Intuitively, to obtain a low expected

KL-divergence, q must closely resemble the behavior our stochastic process ρ hyper-prior across the
entire domain. Hence, in the absence of meta-training data, the hyper-prior gives us direct control
over the a-priori behavior of our meta-learner in the function space. In Figure 1, we can observe how
a Vanilla GP as hyper-prior shapes the predictions of our meta-learned model.

In summary, by defining the hyper-prior in the function space and using sampling-based measurement
sets Xi to compute the functional KL divergence, we obtain the following meta-learning objective:

JF (Q)=
1

n

n∑
i=1

(
− 1

Ti
Eφ∼Q[ lnZ(Di,Ti , Pφ)︸ ︷︷ ︸

marginal log-likelihood

]+

(
1√
n

+
1

nTi

)
EXi

[
KL[q(hXi)||ρ(hXi)]

]︸ ︷︷ ︸
functional KL-divergence

)
(3)
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In here, the marginal log-likelihood forces the meta-learned prior towards a good fit of the
meta-training data while the functional KL-divergence pushes the prior towards resembling the
hyper-prior’s behavior in the function space. Since JF (Q) is inspired by the PACOH framework
of [12] but works with meta-learning hypotheses in the function space, we refer to algorithms that
minimize JF (Q) as Functional-PACOH (F-PACOH).

4.2 Instantiations and Components of the F-PACOH framework

In the following, we discuss various instantiations of the introduced F-PACOH framework and their
implications on the two main components of the meta-learning objective in (3) — the (generalized)
marginal log-likelihood and the functional KL-divergence.

Representing the hyper-posterior Q. To optimize the functional meta-learning objective JF w.r.t.
Q we may choose a variational family of hyper-posteriors {Qξ(φ), ξ ∈ Ξ} from which we can
sample φ in a re-parameterizable manner. This allows us to obtain low-variance gradient estimates of
the expectations∇ξEφ∼Qξ [lnZ(Di,Ti , Pφ)] and∇ξ ln qξ(h

X) = ∇ξ lnEφ∼Qξ
[
pφ(hX)

]
.

Alternatively, we can form a maximum a posteriori (MAP) estimate of the hyper-posterior which
approximatesQ by a Dirac delta function Q̂(φ) = δ(φ− φ̂) in a single prior parameter φ̂. As a result,
the corresponding expectations become trivial to to solve, turning (3) into a much simpler objective
to minimize and making the overall meta-learning approach more practical. Thus, we focus on the
MAP approximation in main body of the paper and discuss variational hyper-posteriors in Appx. A.

The marginal log-likelihood. In case of GPs, the marginal log-likelihood lnZ(Di,Ti , Pφ) =
ln p(yDi |XDi , φ) can be computed in closed form as (see Appx. A.1). In most other cases, e.g.
when the hypothesis spaceH = {hθ, θ ∈ Θ} corresponds to the parameters θ of a neural network,
we need to form an approximation of the (generalized) marginal log-likelihood ln p(yD|XD, φ) =

lnEθ∼Pφ
[
e−

∑Ti
t=1 l(hθ(xi,t),yi,t)

]
. For further discussions on this matter, we refer to [12, 52, 53].

Gradients of the KL-divergence. Generally, we only require re-parametrizable sampling of
functions from our prior. Following [21], we can write the gradients of the KL-divergence as

∇φKL[p(hX)||ρ(hX)] = EhX∼pφ
[
∇φhX

(
∇h ln pφ(hX)−∇h ln ρ(hX)

)]
(4)

Here,∇φhX is the Jacobian of a function sample hX w.r.t. the prior parameters θ. Thus, it remains to
estimate the score of the prior ∇h ln pφ(hX) and the score of hyper-prior ∇h ln ρφ(hX). In various
scenarios, the marginal distributions p(hX) or ρ(hX) in the function space may be intractable and
we can only sample from it. For instance, when our prior Pφ(θ) is a known distribution over neural
network (NN) parameters θ, associated with NN functions hθ : X 7→ Y , its marginals pφ(hX) in the
function space are typically intractable. In such cases, we can use either the Spectral Stein Gradient
Estimator (SSGE) [54] or sliced score matching [55] to estimate the respective score from samples.
Whenever the marginal densities are available in closed form, we use automatic differentiation to
compute their score. Finally, if both the prior and the hyper-prior are GPs, we use the closed-form
KL-divergence between multivariate normal distributions.

4.3 The F-PACOH-MAP Algorithm

When focusing on the MAP approximation of the hyper-posterior, where we directly meta-learn the
prior’s parameter vector φ, we arrive at a simple algorithm for meta-learning reliable priors in the
function space. After initializing Pφ, we iteratively perform stochastic gradient steps on the functional
meta-learning objective JF (φ) in (3). In each step, we iterate through all the meta-training tasks, com-
pute the corresponding (generalized) marginal log-likelihood lnZ(Di,Ti , Pφ), sample a measurement
set Xi and estimate the gradient of the functional KL-divergence DKL[p(hXi)||ρ(hXi)] based on Xi.
In accordance with (3), we compute a weighted sum of these components and average the resulting
gradients over the tasks. Finally, we use our gradient estimate∇φJF (φ) to perform a gradient update
on φ. The overall procedure, which we denote by F-PACOH-MAP, is summarized in Algorithm 1.

While the proposed function-space approach brings us many benefits, it also comes at a cost: Estimat-
ing the expectation over measurement sets Xi by uniform sampling and Monte Carlo estimation is
subject to the curse of dimensionality. Hence, we do not expect it to work well for high-dimensional
data (d > 50) such as images. For such purposes, future work may investigate alternative approxima-
tion / sampling schemes that take the data manifold into account.
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Algorithm 1 F-PACOH-MAP: Meta-Learning Reliable Priors
Input: Datasets D1,T1

, ...,Dn,Tn , parametric family {Pφ|φ ∈ Φ} of priors, learning rate α
Input: Stochastic process hyper-prior with marginals ρ(·)

1: Initialize the parameters φ of prior Pφ
2: while not converged do
3: for i = 1, ..., n do . Iterate over meta-training tasks
4: Xi = [XDi,s,X

M
i ],where XDi,s ⊆ XDi ,X

M
i

iid∼ U(X ) . Sample measurement set
5: Estimate or compute∇φ lnZ(XDi , Pφ) and ∇φKL[pφ(hXi)||ρ(hXi)]

6: ∇φJF,i = − 1
Ti
∇φ lnZ(Di,Ti , Pφ) +

(
1√
n

+ 1
nTi

)
∇φKL[p(hXi)||ρ(hXi)]

7: end for
8: φ← φ− α 1

n

∑n
i=1∇φJF,i . Update prior parameter

9: end while

4.4 Application: Meta-Learning Reliable GP Priors for Bayesian Optimization

To harness the reliable uncertainty estimates of our proposed meta-learner towards improving
sequential-decision making, we employ it in the context of BO. We assume that we either face a
sequence of related BO problems corresponding to n target functions f1, ..., fn ∼ T or have access
to the function evaluations from multiple such optimization runs. We use the previously collected
function evaluations for meta-training with F-PACOH. Then we employ the UCB algorithm [26, 27]
together with our meta-learned model to perform BO on a new target function f ∼ T .

To be able to extract sufficient prior knowledge from the data of previous BO runs, we need to
choose a sufficiently rich parametrization of the GP prior Pφ(h) = GP (h|mφ(x), kφ(x, x′)). Hence,
following [56, 38], we instantiate mφ and kφ as neural networks (NN), where the parameter vector φ
corresponds to the weights and biases of the NN. To ensure the positive-definiteness of the kernel, we
use the neural network as feature map Φφ(x) on top of which we apply a squared exponential kernel.

In the standard BO setting, we would usually use a Vanilla GP with constant mean function and
a conservative SE or Matérn kernel. Hence, in the absence of sufficient meta-training data, we
ideally want to fall back on the behavior of such a Vanilla GP. For this reason, we use a GP prior
with zero-mean and SE kernel with a small lengthscale as hyper-prior1. Correspondingly, the
marginals pφ(hX) = N (mX,φ,KX,φ) of the prior and the hyper-prior ρ(hX) = N (0,KX,SE)
are multivariate normal distributions. Thus, the marginal log-likelihood (see Section A.1) and the
KL-divergence are available in closed form. We provide more details in Appx. A.4 and Algorithm
3. Due to the closed-form computations, the resulting FPACOH-MAP algorithm for GPs has an
asymptotic runtime complexity of O(nT 3 + nL3) per iteration. In that, T = maxi Ti is the maximal
number of observations in one of the meta-training datasets and L = maxi |Xi| is the number
of points per measurement set which can be chosen freely. In our experiment, we use L = 20.
However, BO is most relevant when function evaluations are costly and data is scarce, i.e., both T
and n are small. Thus, the cubic runtime is hardly a concern in practice. Alternatively, sparse GP
approximations can be used to reduce the runtime complexity [57, 58]

5 Experiments
First, we investigate the effect of our functional meta-regularization on the uncertainty estimates
of the meta-learned model. To assess the utility of the uncertainty for sequential decision making,
we then evaluate our F-PACOH approach in meta-learning for BO as well as a challenging life-long
BO setting. Details on the experiments can be found in Appendix B.

5.1 Calibration and Uncertainty Quantification
To study and illustrate our proposed meta-regularization in the function space, we use a simulated task
distribution of 1-dimensional functions. Random samples from this task distribution are displayed
left in Fig. 1. Using F-PACOH-MAP and PACOH-MAP [12], we meta-train a GP with n = 10
tasks and T = 10 function evaluations per task, collected with Vanilla GP-UCB [27]. PACOH-MAP
corresponds to a MAP approximation of (1) with a Gaussian hyper-prior on the prior parameters φ.

1Note that we standardize the inputs x and observations y based on the empirical mean and variance of the
meta-training data. The GP prior is applied in the standardized data space
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Figure 2: Calibration plots of posterior predictions
corresponding to T = 1 and 8 training points.
Only F-PACOH yields well-calibrated predictions.

Fig. 1 displays the prior and posterior predic-
tions of the meta-learned models along those of
a Vanilla GP with zero mean and SE kernel. We
observe that the 95 % confidence intervals of
the PACOH posterior are strongly concentrated
around the mean predictions, even far away
from the training points. Unlike a Vanilla
GP whose confidence regions contract locally
around the training points, the uncertainty
estimates of PACOH contract uniformly across
the domain, even far away from the training
data. The fact that the true target function
lies mostly outside of the confidence intervals
reflects the over-confidence of PACOH-MAP. In
contrast, while also reflecting useful meta-learned prior knowledge, the predictions of the F-PACOH
model exhibit the behavior we desire, i.e., small uncertainty close to the training points, higher
uncertainty far away from the data.

How reliable uncertainty estimates are can be quantified by the concept of calibration [19, 20]. We
say that a probabilistic predictor is calibrated, if, in expectation, its α% confidence intervals contain
α% of the true function values. Fig. 2 visualizes this by plotting the fraction of the true function values
covered by the posterior’s confidence intervals at varying levels of α. Here, the Vanilla-GP model
is consistently under-confident, while PACOH-MAP makes grossly over-confident predictions. In
contrast, F-PACOH yields well-calibrated uncertainty estimates across the entire range of confidence
levels. For a more thorough analysis, Table 5 in Appendix B.5.1 reports the calibration error for
all the methods and BO environments, presented Section 5.2. There, F-PACOH yields significantly
lower calibration errors than the other methods in the majority of the environments. All in all, this
empirically supports our claim that, through its meta-regularization in the function space, F-PACOH
is able to meta-learn priors that yield reliable uncertainty estimates.

5.2 Meta-Learning for Bayesian Optimization: Setup of the Benchmark Study

We present a comprehensive benchmark study on meta-learned priors and multi-task methods for
BO in which we compare our proposed method F-PACOH-MAP against various related approaches.
We use the UCB aquisition algorithm [26, 27] across all the models.

Baselines. We compare against approaches that also meta-learn a GP prior. PACOH-MAP [12] is
the most similar to our approach as it meta-learns a neural-network based GP prior. However, it uses
a hyper-prior over prior parameters φ instead of our stochastic process formulation. Similarly, ABLR
[50] meta-learns the feature map and prior of a Bayesian linear regression model. As a simple baseline,
we meta-train a GP prior with constant mean and SE kernel by maximizing the sum of marginal
log-likelihoods across tasks (Learned GP). We also compare with neural processes (NP) [11] and rank-
weighted GPs (RWGP) [47]. Finally, we use a Vanilla GP as a baseline that does not perform transfer
across tasks and, if the regret definition permits2, also report the performance of Random Search.

Simulated Benchmark Environments. We use three simulated function environments as well as
three hyper-parameter optimization environments as benchmarks. Two of the simulated environments
are based on the well-known Branin and Hartmann6 functions for global optimization [59].
Following [60], we replace the function parameters with distributions over them in order to obtain
a task distribution. Another simulated function is based on the Camelback function [61] which we
overlay with a product of sinusoids of varying amplitude, phase and shifts along the two dimensions.

Hyper-Parameter Optimization for machine learning algorithms. As practical application of
meta-learning for BO, we consider hyper-parameter tuning of machine learning algorithms on
different datasets. In this setting, the domain X is an algorithm’s hyper-parameter space and the
target function f(x) represents the test performance under the hyper-parameter configuration x. The
different functions fi ∼ T correspond to training and testing the machine learning algorithm on
different datasets. The goal is to gather knowledge from hyper-parameter optimizations on different
datasets so that tuning of the same algorithm on a new dataset can be done more efficiently.

2Since random search performs no model-based inference, we can only report its simple regret.
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Figure 3: Performance of BO with meta-learned models on simulated function environments (top)
and hyper-parameter tuning (bottom). Reported is the simple regret, averaged over seeds and function
samples, alongside 95% confidence intervals. While other methods improve slowly or saturate in
sub-optimal solutions, BO based on F-PACOH consistently finds near-optimal solutions quickly.

In particular, we consider three machine learning algorithms for this purpose: Generalized linear
models with elastic NET regularization (GLMNET) [62], recursively partitioning trees (RPart)
[63, 64] and XGBoost [65]. Following previous work [e.g. 50, 60], we replace the costly training and
evaluation step by a cheap table lookup based on a large number of hyper-parameter evaluations [66]
on 38 classification datasets from the OpenML platform [67]. In these hyper-parameter experiments,
we use the area under the ROC curve (AUROC) as test metric to optimize.

5.3 Meta-Learning for BO: Offline Meta-Training
The first scenario we consider is where we have offline access to data of previous BO runs. In
particular, using Vanilla GP-UCB, we collect Ti function evaluations on n tasks sampled from
the task distribution T . Depending on the dimensionality of X we vary n and Ti across the task
distributions (see Tab. 1 in Appx. B). With this meta-training data D1,Ti , ...,D1,Tn , we meta-train
F-PACOH and the considered baselines. To obtain statistically robust results, we perform independent
BO runs on 10 unseen target functions / tasks and we repeat the whole meta-training & -testing
process for 25 random seeds to initialize the meta-learner. To assess the performance, we report the
simple regret rf,t = f(x∗)−maxt′≤t f(xt′) as well as the inference regret r̂f,t = f(x∗)− f(x̂∗t ),
wherein x∗ = arg maxx∈X f(x) is the global optimum, xt the point the BO algorithm chooses to
evaluate in iteration t and x̂∗t is the optimum predicted by the model at time t.

Fig. 3 displays the results. The inference regret is reported in Fig. 5 in Appx. B and reflects the
same patterns. While PACOH-MAP yields relatively low regret after few iterations, it saturates in
performance very early on and gets stuck in sub-optimal solutions. This supports our hypothesis
that meta-learning with a hyper-prior in the parameter space leads to unreliable uncertainty estimates
that result in poor BO solutions. Similar early saturation behavior can be observed for the other
the other meta-learners, i.e., ABLR, NPs and Learned GPs. F-PACOH also yields good solutions
quickly, but then continues to improve throughout the course of the optimization. Across all the
environments, it yields significantly lower regret and better final solutions than the other methods.
This demonstrates that, due to our novel meta-level regularization in the function space, F-PACOH
achieves strongly positive transfer in BO without loosing the reliability and long-run performance
of well-established algorithms like GP-UCB.

5.4 Lifelong Bayesian Optimization
Finally, we consider the scenario of lifelong BO where we face a sequence f0, ..., fN−1 ∼ T
of related target functions which we want to optimize efficiently, one after another. This is a
common problem setup when complex systems / machines such as the Swiss Free-Electron laser
(SwissFEL) [68] that are subject to external and internal effects (e.g., drift, hysteresis). As a result,
the system / machine responds differently to parameter configurations over time and needs to be
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Figure 4: Lifelong BO performance on two simulated function environments and one hyper-parameter
tuning benchmark (RPart). The reported results are averages over seeds and random sequences of
tasks alongside 95% confidence intervals. While other meta-learners struggle to achieve positive
transfer, F-PACOH is able to significantly improve the BO perfomance as it gathers more experience.

re-calibrated/optimized on a frequent basis. Our aim is to incrementally improve our performance
from run to run by meta-learning with data collected in previous BO runs. This setup is more
challenging than gathering meta-training offline for two reasons: 1) in the beginning, the meta-learner
has much fewer meta-training tasks and 2) the meta-learned models and the collected meta-train
data become interdependent, resulting in a feedback-loop between predictions and data collection
on the task level. In short, this can be seen as an exploration-exploitation trade-off on the meta-level,
which our calibrated uncertainty helps to effectively navigate.

Overall, we sequentially conduct n = 10 BO runs with Ti = 20 steps each. In the initial BO run (i =
0), we start without meta-training data, i.e.M0 = ∅ and thus use Vanilla GP-UCB. After each run, we
add the collected function evaluations to the meta-training data, i.e.,Mi+1 =Mt ∪ {Di,T }. For the
following runs (i > 0), we first perform meta-training withMi and then run BO with the meta-learned
model. As performance metric, we compute the cumulative inference regret, i.e., the sum of inference
regrets of all the previous steps and runs as well as the simple regret rfi,20 at the end of each run. We
repeat the experiment for 5 random sequences of target functions and 5 random model seeds each.

Figure 4 displays the results of our lifelong BO study for the Random Branin, Camelback Sin-Noise
and RPart environment. Similar results for more environments can be found in Appx. B. At first
glance, meta-learning seems to result in lower cumulative inference regret overall. However, this is
mainly due to the fact that the meta-learned models start with better initial predictions which, in case
of most meta-learning baselines, hardly improve within a run. Similarly, we observe that the majority
of meta-learning baselines fail to consistently find better solution than a Vanilla GP. F-PACOH in
stark contrast is able to significantly improve the BO perfomance as it gathers more experience, and
finds better solutions by the end of a run than the other methods. This further highlights the reliability
of our proposed method. Finally, the fact that F-PACOH shows strong positive transfer despite this
challenging setting is highly promising, as many real-world applications may benefit from it.

6 Conclusion
We have introduced a novel meta-learning framework that treats meta-learned priors as stochastic
processes and performs meta-level regularization directly in the function space. This gives us much
better control over the behavior of predictive distribution of the meta-learned model beyond the
training data. Our experiments empirically confirm that the resulting F-PACOH meta-learning
method alleviates the major issue of over-confidence plaguing prior work, and yields well-calibrated
confidence intervals. Our extensive experiments on lifelong learning for Bayesian Optimization
demonstrate that F-PACOH is able to facilitate strong positive transfer in challenging sequential
decision problems – well beyond what existing meta-learning methods are able to do. This opens
many new avenues for exciting applications such as continually improving the efficiency with which
we re-calibrate/-optimize complex machines and systems.
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Broader Impact
Our work focuses on meta-learning reliable priors with a small number of meta-tasks and thus
a the potential to implact applications that can be cast in such as setting. Since it ensures more
reliable uncertainty estimates, the proposed method is of particular interest for interactive machine
learning systems that actively gather information, e.g., active learning, Bayesian optimization and
reinforcement learning. For instance, the meta-learning for BO method featured in Section 5.3 and
5.4 could be applied in robotics for tuning controllers more efficiently, or in biochemistry / molecular
medicine to develop novel therapeutics through protein optimization. Other potential applications
include recommender systems and targeted advertisement. While improving medical applications
and the control of robots promises positive impact, misuse can never be avoided.
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A F-PACOH: Details and Additions

A.1 Estimating / Computing the Marginal Log-Likelihood

In case of GPs with Gaussian likelihood, the marginal log-likelihood lnZ(Di,Ti , Pφ) =
ln p(yDi |XDi , φ) can be computed in closed form as

ln p(yD|XD, φ) = −1

2

(
yD −mXD,φ

)>
K̃−1

XD,φ

(
yD −mXD,φ

)
− 1

2
ln |K̃XD,φ| −

T

2
ln 2π (5)

where K̃XD,φ = KXD,φ + σ2I , with kernel matrix KXD,φ = [kφ(xl,xk)]Til,k=1, likelihood
variance σ2, and mean vector mXD,φ = [mφ(x1), ...,mφ(xTi)]

>. In most other cases, e.g.
when the hypothesis space H = {hθ, θ ∈ Θ} corresponds to the parameters θ of a neural
network, we need to form an approximation of the (generalized) marginal log-likelihood
ln p(yD|XD, φ) = lnEθ∼Pφ

[
e−

∑Ti
t=1 l(hθ(xi,t),yi,t)

]
. For a more detailed discussion on this matter,

we refer to [12, 52, 53].

A.2 Gradients of the KL-divergence

For notational brevity, we assume a MAP approximation of the hyper-posterior so that the finite
marginals of the hyper-posterior coincide with those of the prior Pφ, i.e., q(hXi) = pφ(hXi).
However, the concepts discussed in the remainder straightforwardly apply to the case when Q is
a full and non-Dirac posterior distribution. In the most general case, we only require that we can
sample functions from our prior in a re-parametrizable manner, i.e., there exists a map ϕ and a noise
distribution p(ε) such that for ε ∼ p(ε) we have hX = ϕ(X, φ, ε) ∼ p(hX). Following [21], we
can derive the gradients of the KL-divergence as

∇φKL[p(hX)||ρ(hX)] = EhX∼pφ
[
∇φ ln pφ(hX)

]︸ ︷︷ ︸
= 0

+Eε
[
∇φhX

(
∇h ln pφ(hX)−∇h ln ρ(hX)

)]
Here, the expected score of pφ is zero and ∇φhX = ∇φϕ(X, φ, ε) is the Jacobian of ϕ. Thus, it
remains to estimate the score of the prior∇h ln pφ(hX) and the score of hyper-prior∇h ln ρφ(hX). In
various scenarios, the marginal distributions p(hX) or ρ(hX) in the function space may be intractable
and we can only sample from it. For instance, when our prior Pφ(θ) is a known distribution over
neural network (NN) parameters θ, associated with NN functions hθ : X 7→ Y , its marginals pφ(hX)
in the function space are typically intractable since the NN map is not injective w.r.t. to θ. In such
cases, we can use either the Spectral Stein Gradient Estimator (SSGE) [54] or sliced score matching
[55] to estimate the respective score from samples. Whenever the marginal densities are available in
closed form, we use automatic differentiation to compute their score. Finally, if both the prior and the
hyper-prior are GPs, we use the closed-form KL-divergence between multivariate normal distributions.

A.3 F-PACOH-VI

While we mainly focus on a maximum a-posteriori approximation of the hyper-posterior Q in the
main paper (see Section 4.3), we now discuss the more general case of a variational approximation of
the hyper-posterior.

IN this case, we presume a parametric variational family {Q̂ξ(φ), ξ ∈ Ξ} of hyper-posterior dis-
tributions that are supported on the parameter space Φ of the prior. Moreover, we require that
we can sample φ in a re-parameterizable manner, i.e., there exists a differentiable function g and
a noise distribution p(ε) such that g(ξ, ε) ∼ Q̂ξ for ε ∼ p(ε). An example of such variational
family are Gaussians N (φ;µQ, diag(σ2

Q)) with diagonal covariance matrices such that the varia-
tional parameters ξ = (µQ, σ

2
Q) coincide with the mean and the variance of the distribution. We

can obtain re-parametrized samples with φ = g(ξ, ε) = µQ + σQε and p(ε) = N (0, I). Overall,
re-parametrizable sampling allows us to obtain low-variance pathwise stochastic gradient estimators
[69] of the expectation∇ξEφ∼Qξ [lnZ(Di,Ti , Pφ)] in (3).
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Algorithm 2 F-PACOH-VI: Meta-Training with GP priors
Input: Datasets D1,T1

, ...,Dn,Tn , parametric family {Pφ|φ ∈ Φ} of GP priors, learning rate α
Input: Parametric family of hyper-posteriors {Q̂ξ(φ), ξ ∈ Ξ}
Input: Stochastic process hyper-prior with marginals ρ(·)

1: Initialize the parameters ξ of the hyper-posterior Qξ(φ)
2: while not converged do
3: for i = 1, ..., n do . Iterate over meta-training tasks
4: Xi = [XDi,s,X

M
i ],where XDi,s ⊆ XDi ,X

M
i

iid∼ U(X ) . Sample measurement set
5: φ← g(ξ, εQ) with εQ ∼ p(εQ) . Sample prior parameters from Q̂ξ
6: Compute ∇φ lnZ(XDi , Pφ) in closed form . cf. (5)
7: ∇h ln qφ(hX)← SSGE(qφ,h

X) . estimate hyper-posterior score

8: hXi ←mXi,φ + K
1
2

Xi,φ
εP with εP ∼ N (0, I) . Sample function values from GP prior

9: ∇ξKL[qξ(h
Xi)||ρ(hXi)]← ∇ξhXi

(
∇h ln qφ(hXi)−∇h ln ρ(hXi)

)
10: ∇ξJF,i = 1

Ti
∇ξg(ξ, εQ)∇φ lnZ(Di,Ti , Pφ) +

(
1√
n

+ 1
nTi

)
∇ξKL[q(hXi)||ρ(hXi)]

11: end for
12: ξ ← ξ − α 1

n

∑n
i=1∇ξJF,i . Update hyper-posterior parameter

13: end while

A bigger challenge becomes estimating the gradient of the functional KL divergence w.r.t. the
hyper-posterior parameters ξ, i.e.,

∇ξEX

[
KL[qξ(h

X)||ρ(hX)]
]

=EX

[
∇ξEhX∼qξ

[
ln qξ(h

X)− ln ρ(hX)]
]]

(6)

=EX

∇ξ EhX∼qξ
[
ln qξ(h

X)
]︸ ︷︷ ︸

− entropy

−∇ξ EhX∼qξ
[
ln ρ(hX)]

]︸ ︷︷ ︸
− cross-entropy

 (7)

In particular, since we now have a full distribution over priors, the hyper-posterior marginals

q(hX) = Eφ∼Q̂ξ
[
pφ(hX)

]
(8)

are generally intractable mixing distributions, even if the prior is a GP and its marginals are tractable
multivariate normal distributions. While we can still get an unbiased pathwise gradient estimator of
the cross-entropy, a simple Monte Carlo gradient estimate of the negative entropy will be biased due
to the concavity of the logarithm outside the expectation in∇ξ ln qξ(h

X) = ∇ξ lnEφ∼Qξ
[
pφ(hX)

]
[53].

As discussed in Section 4.2, we may resort to score estimation techniques such as [54, 55] to obtain
an estimate of KL-divergence. In particular, we rewrite the gradient of the KL-divergence as

∇ξKL[qξ(h
X)||ρ(hX)] = EεQ,εP

[
∇ξhX

(
∇h ln qφ(hX)−∇h ln ρ(hX)

)]
, (9)

wherein ∇ξhX = ∇ξϕ(g(ξ, εQ), εP ) is the Jacobian for the concatenation g ◦ ϕ of the re-
parametrization maps for the prior and the hyper-posterior. Finally, we propose to use SSGE [54] for
obtaining a sampling based estimate of ∇h ln qφ(hX). If we use a GP as hyper-prior, ∇h ln ρ(hX)
is the score of a multivariate normal distribution and thus available in closed form. Algorithm 2
summarizes the resulting meta-training procedure for GP priors.

A.4 Implementation Details for F-PACOH-MAP with GPs

In the following, we provide details on our implementation of the the F-PACOH-MAP algorithm
which has been introduced in Section 4.3.

The NN-based GP prior Following [38, 56], we parameterize the GP prior Pφ(h) =
GP (h|mφ(x), kφ(x,x′)), particularly the mean mφ and kernel function kφ, as neural networks
(NN). Here, the parameter vector φ corresponds to the weights and biases of the NN. To ensure the
positive-definiteness of the kernel, we use the neural network as feature map Φφ(x) : X 7→ Rd that
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Algorithm 3 F-PACOH-MAP: Meta-Learning GP Priors
Input: Datasets D1,T1

, ...,Dn,Tn , parametric family {Pφ|φ ∈ Φ} of GP priors, learning rate α
Input: GP hyper-prior with marginals ρ(hX) = N (0,KX,P)

1: Initialize the parameters φ of the GP prior Pφ(h) = GP (h|mφ(x), kφ(x,x′))
2: while not converged do
3: Sample batch Ibatch ⊆ {1, ..., n} of H tasks
4: for i ∈ Ibatch do . Iterate over meta-training tasks
5: Xi = [XDi,s,X

M
i ],where XDi,s ⊆ XDi ,X

M
i

iid∼ U(X ) . Sample measurement set

6: lnZi,φ ← − 1
2

(
yDi −mXDi ,φ

)>
K̃−1

XDi ,φ

(
yDi −mXDi ,φ

)
− 1

2 ln |K̃XDi ,φ
| − T

2 ln 2π

7: KLi,φ ← 1
2

(
tr
(
K−1Xi,PKXi,φ

)
+ m>Xi,φ

K−1Xi,PmXi,φ − L+ ln
|KXi,P |
|KXi,φ

|

)
8: ∇φJF,i = − 1

Ti
∇φ lnZ(Di,Ti , Pφ) +

(
κ√
n

+ κ
nTi

)
∇φKLi,φ

9: end for
10: φ← AdamOptimizer(φ, α, 1

H

∑
i∈Ibatch ∇φJF,i) . Update prior parameter

11: end while
Output: Meta-learned GP prior Pφ(h)

maps to a d-dimensional real-values feature space in which we apply a squared exponential kernel.
Accordingly, the parametric kernel reads as

kφ(x, x′) = νP exp
(
−||Φφ(x)− Φφ(x′)||2/(2lP )

)
. (10)

Both mφ(x) and Φφ(x) are fully-connected neural networks with 3 layers with each 32 neurons and
tanh non-linearities. The kernel variance νP and lengthscale lP as well as the Gaussian likelihood
variance σ2

P p(y|h(x)) = N (y;h(x), σ2
P ) are also learnable parameters which are appended to the

NN parameters φ. Since lP and σ2
P need to be positive, we represent and optimize them in log-space.

The hyper-prior We use a Vanilla GP GP(0, kP(x, x′)) as hyper-prior stochastic process. In that,

kP(x, x′) = νP exp
(
−||x− x′||2/(2lP)

)
(11)

is a SE kernel with variance νP and lengthscale lP . Both are treated as hyper-parameters. Corre-
spondingly, the finite marginals of the hyper-prior ρ(hX) = N (0,KX,P) are multivariate normal
distributions.

Minimizing the functional meta-learning objective In case of the MAP approximation, we aim
to minimize the functional meta-learning objective in (12) directly w.r.t. the prior parameters φ. To
minimize the objective we use mini-batching on the task level, i.e., in each iteration we sample a
random subset Ibatch ⊂ {1, ..., n} with H = |Ibatch| task indices and only compute the average over
the mini-batch of tasks. This stochastic estimate is unbiased and much faster to optimize than the
entire sum over tasks. Since the weighting term (1/

√
n + 1/(nTi)) in front of the KL divergence

originates from conservative worst-case bounds on transfer error, it may be sub-optimal in expectation.
Thus, following [23, 12] we add a scalar weight κ > 0 in front of it and treat it as hyper-parameter. As
described in Algorithm 1, we need to also sample random measurement sets Xi in each iteration and
for each of the tasks in the batch. In particular, we sample 10 random points XDi,s without replacement
from the inputs XDi corresponding to task i and sample another 10 points XM

i
iid∼ U(X ) uniformly

and independently from the bounded domain X . The final measurement set Xi = [XDi,s,X
M
i ] is the

concatenation of both sets and thus contains L = 20 points. Then we compute the sample-based
objective

JMAP
F (φ)= − 1

H

∑
i∈Ibatch

(
1

Ti
lnZ(Di,Ti , Pφ) +

(
κ√
n

+
κ

nTi

)
KL[q(hXi)||ρ(hXi)]

)
(12)

wherein the marginal log-likelihood (see A.1) and the KL-divergence KL[pθ(h
X)|ρ(hX)] are avail-

able in closed form. In particular, we use GPyTorch [70] to perfom these computations numerically
stable and automatic differentiation to compute the gradients ∇φJMAP

F (φ). To perform gradient
updates to φ, we use the adaptive learning rate method AdamW [71] with learning rate α and weight
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T dim(X ) n Ti

Random Mixture 1d 1 10 10
Random Branin 2 20 20

Camelback Sin-Noise 2 20 20
Random Hartmann6 6 30 100

GLMNET 2 20 10
RPart 4 20 20

XGBoost 10 20 50

Table 1: Summary of meta-BO benchmark environments

decay ω. In addition, we decay the learning rate every 1000 iterations by a factor η ∈ (0, 1). Both α,
ω and eta as well as the overall number of iterations are treated are hyper-parameters. Algorithm 3
summarizes the F-PACOH-MAP meta-learning procedure for GPs.

B Experiment Details and Further Results

B.1 Benchmark Environments

In the following, we provide further details on benchmark environments that were used in the experi-
ments in Section 5. Table 1 displays a summary of the environments, specifying the dimensionality
of the domain, the number of meta-training tasks n and the number of evaluation points Ti per task
used in the experiments of Section 5.1 and Section 5.3.

B.1.1 Simulated Benchmarks

Random Mixture Environment (1D) The environment corresponds to an affine combination of
un-normalized Cauchy and Gaussian probability density functions:

p1(x) =
1

π(1 + ||x− µ1||2)
, p2(x) =

1√
2π
e−
||x−µ2||

2

8 , p3(x) =
1

π
(

1 + ||x−µ3||2
4

) . (13)

The target function follows as
f(x) = 2 · w1 · p1(x) + 1.5 · w2 · p2(x) + 1.8 · w3 · p2(x) + 1 (14)

wherein the mixing weights w1, w2, w3 are sampled independently from U(0.6, 1.4) and the location
parameters are sampled from the Gaussians

µ1 ∼ N (−2, 0.32), µ ∼ N (3, 0.32), µ3 ∼ N (−8, 0.32) . (15)
The domain is the one dimensional interval X = [−10, 10]>. Function samples from the environment
are illustrated in Fig. 1.

Random Branin The environment corresponds to random Branin functions [59] with the 2-
dimensional cube X = [−5, 10] × [0, 15] as domain. We denote x = (x1, x2)>. Since we phrase
BO as maximization problem, we used the negative Branin function:

f(x1, x2) = −
(
a(x2 − bx21 + cx1 − r)2 + s(1− t) cos(x1) + s

)
(16)

In that, the parameters a, b, c, r, s, t are sampled from uniform distributions, in particular,
a ∼ U(0.5, 1.5), b ∼ U(0.1, 0.15), c ∼ U(1, 2),

r ∼ U(5, 7), s ∼ U(8, 12), t ∼ U(0.03, 0.05) .
(17)

Camelback Sin-Noise The environment corresponds to a Camelback function [61]
g(x1, x2) = max

(
−(4− 2.1 · x21 + x41/3) ∗ x21 − x1x2 − (4 · x22 − 4) ∗ x22, − 2.5

)
. (18)

plus random sinusoid functions, defined over the 2-dimensional cube X = [−2, 2] × [−1, 2] as
domain. Specifically, the target function is defined as

f(x1, x2) = g(x1, x2) + a sin(ω1 ∗ (x1 − ρ1)) sin(ω2 ∗ (x2 − ρ2)) (19)
wherein the parameters are sampled independently as

a ∼ U(0.3, 0.5), ω1, ω2 ∼ U(0.5, 1.0), ρ1, ρ2 ∼ N (0, 0.32) . (20)

18



Random Hartmann6 The environment corresponds to a negated and randomized version
Hartmann-6D function [59] with the hyper-cube X = [0, 1]6 as domain. In particular, the target
function is defined as

f(x) =
1

3.322368

4∑
i=1

αi exp

− 6∑
j=1

Ai,j(xj − Pi,j)2
 ,where (21)

A =

10.00 3.00 17.00 3.50 1.70 8.00
0.05 10.00 17.00 0.10 8.00 14.00
3.00 3.50 1.70 10.00 17.00 8.00
17.00 8.00 0.05 10.00 0.10 14.00

 and (22)

P = 10−4

1312 1696 5569 124 8283 5886
2329 4135 8307 3736 1004 9991
2348 1451 3522 2883 3047 6650
4047 8828 8732 5743 1091 381

 . (23)

The parameters α1, ..., α4 are sampled independently from uniform distributions

α1 ∼ U(0.5, 1.5), α2 ∼ U(0.6, 1.4), α3 ∼ U(2.0, 3.0), α4 ∼ U(2.8, 3.6). (24)

B.1.2 Hyper-Parameter Tuning on OpenML Datasets

In our BO empirical benchmark studies, we consider use case of hyper-parameter tuning for machine
learning algorithm. In particular, we consider three machine learning algorithms for this purpose:

• Generalized linear models with elastic NET regularization (GLMNET) [62]
• Recursively partitioning trees (RPart) [63, 64]
• Gradient boosting (XGBoost) [65]

Following previous work [e.g. 50, 60], we replace the costly training and evaluation step by a cheap
table lookup based on a large number of hyper-parameter evaluations [66] on 38 classification datasets
from the OpenML platform [67]. The hyper-parameter evaluations are available under a Creative
Commons BY 4.0 license and can be downloaded here3. In effect, X is a finite set, corresponding
to 10000-30000 random evaluations hyper-parameter evaluations per dataset and machine learning
algorithm. Since the sampling is quite dense, for the purpose of empirically evaluating the meta-
learned models towards BO, this finite domain can be treated like a continuous domain. All datasets
correspond to binary classification. The target function we aim to optimize is the area under the ROC
curve (AUROC) on a test split of the respective dataset.

We randomly split the available tasks (i.e. train/test evaluations on a specific dataset) into a set of
meta-train and meta-test tasks. In the following, we list the corresponding OpenML dataset identifiers:

• meta-train tasks: 3, 1036, 1038, 1043, 1046, 151, 1176, 1049, 1050, 31, 1570, 37, 4134,
1063, 1067, 44, 1068, 50, 1461, 1462

• meta-test tasks: 335, 1489, 1486, 1494, 1504, 1120, 1510, 1479, 1480, 333, 1485, 1487, 334

Since some of machine learning algorithm’s hyper-parameters were sampled by [66] in log-space,
we transform the respective hyper-parameters accordingly and also adjust them to standard normal
values ranges such that we can expect a reasonably good performance of a Vanilla GP with SE kernel.
The hyper-parameters and transformations are listed in Table 2.

B.2 Evaluation Methodology and Metrics

B.2.1 Supervised Learning: Regression

Methodology In the following, we describe our experimental methodology and provide details
on how the empirical results reported in Table 4 and Table 5 were generated. Overall, evaluating a

3https://doi.org/10.6084/m9.figshare.5882230.v2
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algorithm hyper-parameter type transformation

GLMNET alpha numeric -
lambda numeric t(x) = log2(x)/10

RPart cp numeric t(x) = 4x
maxdepth integer t(x) = x/10
minbucket integer t(x) = x/20
minsplit integer t(x) = x/20

XGBoost nrounds integer t(x) = (x− 2000)/1000
eta numeric t(x) = (log2(x) + 5)/2
lambda numeric t(x) = log2(x)/5
alpha numeric t(x) = log2(x)/5
subsample numeric t(x) = (x− 0.5)/2
booster {−1, 1} -1 for ’linear’ and 1 for ’tree’
max_depth integer -
min_child_weight numeric t(x) = (x− 50)/20
colsample_bytree numeric -
colsample_bylevel numeric -

Table 2: Hyper-parameters and corresponding parameter transformations for the three machine
learning algorithms considered for our hyper-parameter tuning benchmark

meta-learner consists of two phases, meta-training and meta-testing. In meta-training, we perform
meta=learning based on a set of datasets {D1, ...,Dn} corresponding to tasks sampled from the task
distribution T . In meta-learned model receives multiple of unseen test tasks consisting of each a train
set Dtrain and a test set Dtest that both correspond to the same function f ∼ T . The train set Dtrain
is used to perform inference / training with the model. Then the following evaluation metrics are
computed on Dtest.

Log-Likelihood Following [72], we report the average predictive log-likelihood of test points:

LL =
1

|Dtest|
∑

(x,y)∈Dtest

ln p̂(y|x,Dtrain) (25)

In that, p̂(·|x) denotes is the predictive distribution of the respective (meta-learned) model, trained on
Dtrain at meta-test time.

Calibration Error The concept of calibration applies to probabilistic predictors that, given a new
target input xj , produce a probability distribution p̂(yj |xj) over predicted target values yj [19, 20].

Corresponding to the predictive density, we denote a predictor’s cumulative density function (CDF)
as F̂ (yj |xj) =

∫ yj
−∞ p̂(y|xi)dy. For confidence levels 0 ≤ qh < ... < qH ≤ 1, we can compute the

corresponding empirical frequency

q̂h =
|{yj | F̂ (yj |xj) ≤ qh, j = 1, ...,m}|

m
, (26)

based on the test dataset Dtest = {(xi, yi)}mi=1 of m samples. If we have calibrated predictions we
would expect that q̂h → qh as m → ∞. Similar to [20], we can define the calibration error as a
function of residuals q̂h − qh, in particular,

calib-err =

√√√√ 1

H

H∑
h=1

(q̂h − qh)2 . (27)

Note that we while [20] reports the average of squared residuals |q̂h − qh|2, we report its square root
in order to preserve the units and keep the calibration error easier to interpret. In our experiments, we
compute (27) with M = 20 equally spaced confidence levels between 0 and 1.
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B.2.2 Offline Meta-Learning for BO

In this section, we describe the experimental methodology of the meta-learning for BO experiments
in Section 5.3.

Unlike previous work [e.g. 50, 60] which collects meta-training data by uniformly sampling data
from the domain, we collect meta-training data by running Vanilla GP-UCB on a the respective
meta-training tasks. This is a more realistic setup since in real-wold applications we most likely only
have access to non-i.i.d. data that originates from previous optimization attempts. The number of
tasks n and evaluations per task Ti are specified in Table 1. In case of the simulated experiments, the
tasks are sampled i.i.d. from the task distribution while in hyper-parameter optimization study they
corresponds to the meta-train tasks listed in Appendix B.1.2.

With the collected datasets, we perform meta-training and then employ the meta-learned model
towards BO with the UCB acquisition function

αt(x) = µ̂t−1(x) + 2σ̂t−1(x) (28)

on unseen meta-test tasks, i.e. new functions f ∼ T . In that, µ̂t−1(x) and σ̂t−1(x) denote the mean
and standard deviation of predictive distribution p̂(y|x, {(xt′ , yt′}t−1t′=1) of the meta-learned model,
given the previous BO evaluations {(xt′ , yt′}t−1t′=1 in this run as training data. To obtain statistically
robust results, we evaluate the BO performance on 10 test tasks and repeat the entire meta-training
and BO process for 25 model seeds.

To assess the BO performance, we report the simple regret

rf,t = f(x∗)−max
t′≤t

f(xt′) , (29)

wherein x∗ = arg maxx∈X f(x) is the global optimum of the target function, xt the point the BO
algorithm chooses to evaluate in iteration t. Moreover, we report the inference regret

r̂f,t = f(x∗)− f(x̂∗t ) , (30)

where x̂∗t = arg maxx∈X µ̂t−1(x) the predicted maximum at time t.

B.2.3 Lifelong BO

Unlike in the offline meta-learning setting, in the lifelong BO experiment of Section 5.4, n = 10 BO
runs with Ti = 20 steps each are performed sequentially and meta-training happens online fashion
after every BO run. Since, initially, there is no meta-training data available, i.e.M0 = ∅, we use a
Vanilla GP as model in the first BO run. After each run, we add the collected function evaluations to
the meta-training data, i.e.,Mi+1 =Mt ∪ {Di,T }. For the following runs (i > 0), we first perform
meta-training withMi and then run BO with the UCB acquisition function and the meta-learned
model. In case of the simulated environments, the 10 tasks are sampled i.i.d from T , whereas in the
hyper-parameter tuning setting, we use randomly shuffled sequences of tasks from the meta-test tasks
listed in Appendix B.1.2. We repeat the whole lifelong BO process for 5 random task sequences and
and 5 model seeds each.

To assess the overall performance of the meta-learned to the end of lifelong BO, we compute the
cumulative inference regret

Ri,t =
∑
i′<i

Ti′∑
t′=0

r̂fi′ ,t′ +

t∑
t′=0

r̂fi,t′ , (31)

that is, is the sum of inference regrets of all the previous steps and runs. In addition, we report the
simple regret rfi,20 at the end of each BO run. While the former metric gives us a good picture of
the respective meta-learner throughout the course of the lifelong Bayesian Optimization, the latter
metric tells us what is the best point found per run and how this end-of-run solution develops as the
meta-learned collects more meta-training tasks.

B.3 Open Source Code, Experiment Data and Compute Resources

We provide source code which includes an implementation of F-PACOH, the baselines, the environ-
ments as well as the experiment scripts to reproduce the presented empirical results. The source code
is part of our code and data repository which can be accessed via:
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https://www.dropbox.com/sh/n2thesjq87sh66j/AACg-HKMl1NhQpaMOHvvUEOfa?dl=0

The repository also includes the meta-training data which has been collected with GP-UCB as well
as detailed recordings of our experiments that were the basis for the plots and tables presented in this
paper.

All experiments for this work, especially the hyper-parameter sweeps for F-PACOH and the baselines
were conduced on CPU-only machines on Oracle Cloud. Overall, we have used 192,428 OCPU
hours, an equivalent of 125 days on a 64-core machine.

B.4 Hyper-Parameter Selection for F-PACOH-MAP and the baselines

symbol sampling type value range / choices

learning rate α loguniform [0.0001, 0.005]
learning rate decay η loguniform [0.8, 1.0]
weight decay ω loguniform [0.00001, 0.1]
task batch size H choice {4, 10}
number of meta-training iterations - choice {2000, 4000, 8000}
hyper-prior lengthscale lP loguniform [0.1, 1.0]
hyper-prior factor κ loguniform [0.0001, 0.5]
kernel feature dimensionality d choice {2, 6}

Table 3: Hyper-parameter search ranges and uniform sampling types for F-PACOH-MAP

The choose the hyper-parameters of F-PACOH-MAP and the considered baselines we use random
search. The hyper-parameters are either sampled uniformly from a finite set of choices or sampled
log-uniformly over a range. The particular choice sets and ranges for F-PACOH-MAP are listed
in Table 3. We draw 128 random hyper-parameter samples, employ the respective method on a
specific environment and select the hyper-parameters corresponding to the best hyper-parameter
settings employed on three validation tasks that are distinct from the meta-test tasks. Specifically, for
the offline meta-learning experiment, we select the best hyper-parameters based on the last simple
regret rf,T and the average inference regret during that last 50 iterations 1

50

∑T
t=T−50 r̂f,T . In the

life-long BO setting, we use the average inference regret over the last 5 steps per run as well as the
last simple regret per run, averaged over all runs, as performance metrics. In particular, we rank the
128 hyper-parameter runs for each of the two metrics and choose the hyper-parameter setting with
the highest average ranking. We perform this random hyper-parameter search for all the baselines
and all the environments individually.

The resulting hyper-parameter configurations for all the methods and environments are reported
in our experiment repository and can be accessed / downloaded under the following link:
https://www.dropbox.com/sh/n2thesjq87sh66j/AACg-HKMl1NhQpaMOHvvUEOfa?dl=0

B.5 Further Experiment Results

B.5.1 Supervised Meta-Learning Experiments

Following the methodology described in Appendix B.2.1, we present a meta-learning benchmark
study that evaluates the F-PACOH method as well as multiple other baselines based on their supervised
learning predictions. Unlike the empirical studies in Section 5.3 and 5.4 which evaluate the BO
performance of the meta-learned, this study only considers regression. We use the task data which was
collected using GP-UCB as part of the experiment in Section 5.3 for meta-training and meta-testing.
See Table 1 for a summary of the number of tasks and data points per environment. In particular, we
use half of the n tasks for meta-training and the other half for meta-testing. For the meta-test tasks,
we use 50% of the points for inference and the other 50% for computing the test metrics.

Table 4 reports the average test log-likelihood and Table 5 lists the corresponding calibration error.
Overall, we observe that, alongside ABLR, F-PACOH achieves the best test log-likelihood across
the environments. In terms of the calibrations of its uncertainty estimates, F-PACOH significantly
outperforms the other methods in the majority of the environments. This is consistent with our
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Rand. Branin Camelb. Sin-Noise Rand. Hartmann6 GLMNET RPart XGBoost

FPACOH-MAP −1.854± 0.015 −0.235± 0.044 1.448± 0.044 1.692± 0.041 1.596± 0.087 1.051± 0.079
PACOH-MAP −2.507± 0.267 −0.716± 0.029 1.337± 0.048 1.369± 0.025 −0.808± 0.217 0.916± 0.027
ABLR −3.684± 0.006 −0.738± 0.008 1.358± 0.059 1.233± 0.012 −0.471± 0.209 0.949± 0.061
NP −4.621± 0.232 −0.888± 0.031 1.288± 0.099 0.875± 0.523 −0.566± 0.496 0.421± 0.144
Learned GP −3.738± 0.003 0.395± 0.004 1.305± 0.001 1.412± 0.002 1.611± 0.002 1.587± 0.004
Vanilla GP −3.027± 0.000 0.170± 0.000 1.351± 0.041 0.831± 0.000 1.380± 0.000 0.872± 0.000

Table 4: Average test log-likelihood of various meta-learned models as well as a Vanilla GP on
meta-test tasks generated by uniform sampling from the meta-BO benchmark environments.

Rand. Branin Camelb. Sin-Noise Rand. Hartmann6 GLMNET RPart XGBoost

FPACOH-MAP 0.095± 0.006 0.046± 0.002 0.049± 0.003 0.124± 0.010 0.125± 0.006 0.077± 0.001
PACOH-MAP 0.105± 0.009 0.054± 0.005 0.085± 0.003 0.175± 0.004 0.151± 0.006 0.084± 0.003
ABLR 0.180± 0.004 0.049± 0.002 0.044± 0.005 0.220± 0.005 0.158± 0.010 0.097± 0.004
NP 0.146± 0.006 0.053± 0.010 0.063± 0.009 0.202± 0.009 0.176± 0.013 0.197± 0.038
Learned GP 0.112± 0.000 0.069± 0.001 0.062± 0.000 0.125± 0.000 0.137± 0.001 0.107± 0.001
Vanilla GP 0.123± 0.000 0.085± 0.000 0.089± 0.003 0.123± 0.000 0.150± 0.000 0.182± 0.000

Table 5: Calibration error of various meta-learned models as well as a Vanilla GP on meta-test tasks
generated by uniform sampling from the meta-BO benchmark environments.

experimental findings in Section 5.1 and the results of the BO benchmark studies where F-PACOH
performs significantly better than the baselines.

B.5.2 Offline Meta-Learning

In addition to the simple regret results (see Figure 3), we also provide plots of the inference regret in
Figure 5. Note that, since random search does not maintain a machine learning model of the target
function, the concept of inference regret does not apply to it. Thus it is not included here.

Overall, the inference regret results in Figure 5 show the same patterns as the simple regret results -
F-PACOH significantly outperforms the other methods across all the environments.
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Figure 5: Performance of BO with meta-learned models on simulated function environments (top)
and hyper-parameter tuning (bottom). Reported is the inference regret in log-scale, averaged over
seeds and function samples, alongside 95% confidence intervals. Consistent with the simple regret,
displayed Figure 3, FPACOH significantly outperforms the other methods across all environments.
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Figure 6: Lifelong BO performance on two simulated function environments and one hyper-parameter
tuning benchmark (RPart). The reported results are averages over seeds and random sequences of
tasks alongside 95% confidence intervals. While other meta-learners struggle to achieve positive
transfer, F-PACOH is able to significantly improve the BO perfomance as it gathers more experience.

B.5.3 Lifelong Bayesian Optimization

In addition to Figure 4 which displays the the results of our lifelong BO study for three environments,
we provide analogous plots for the remaining three environments GLMNET, XGBOOST and Random
Hartmann6 in Figure 6. Similar to the previous results, at any time throughout the course of the
lifelong BO episode performs among the best and, unlike other methods, keeps improving across the
later BO runs.
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