
A Supplementary Material

In this supplement, we present additional results and ablations of experiments referred to in the main
paper.

A.1 Assumption of Conditionally-Independent Classifiers

In the case of two given classifiers our assumption implies that ∀n, ∀(t, t′) : I(Ŷ tn; Ŷ t
′

n |Yn) = 0. To
quantify deviations of Assumption 1, one could therefore measure this conditional mutual information,
but note that this in itself is challenging on finite data and would again inherit model assumptions
through the choice of the estimator. Since pairwise independence does not imply mutual independence,
even having these quantities might not be sufficient for a long classifier sequence. An alternative
approach could thus be to measure the Maximum Mean Discrepancy (MMD) between the LHS and
RHS of Assumption 1, which can be viewed as a conditional version of the d-dimensional Hilbert
Schmidt Independence Criterion (dHSIC), see [30].

Importantly, all of the above approaches aim to quantify and subsequently incorporate correlations
between classifier predictions, and thus rely on having large amounts of labelled data to properly
estimate them which is almost never the case in practice. Since our goal was to devise an approach
that can be useful in practice, when the number of classes, observations, and models is typically very
large, we believe that the model choice behind Assumption 1 is reasonable; it enables both tractable
inference and parameter estimation.

A.2 Backward Compatibility Scores

For the reported BTC and BEC scores we follow the definition proposed in [43] with h1 and h2

being the predictors at time step 1 and time step 2. Translated to our setup, we associate h1 with
our estimated and stored prediction at time step 1 whereas h2 corresponds to the updated prediction
dataset at time step 2:

Backward Trust Compatibility (BTC) score. “The ratio of points in a held-out test set (e.g., Dtest)
that predicted correctly among all points h1 had already predicted correctly.” [43]

BTC =

∑|D|
i=1 1[h1(xi) = yi, h2(xi) = yi]∑|D|

i=1 1[h1(xi) = yi]
(4)

Backward Error Compatibility (BEC) score. “The proportion of points in a held-out test set that
h2 predicted incorrectly, out of which h1 also predicted incorrectly, thus capturing the probability
that a mistake made by h2 is not new.” [43]

BEC =

∑|D|
i=1 1[h1(xi) 6= yi, h2(xi) 6= yi]∑|D|

i=1 1[h2(xi) 6= yi]
(5)

A.3 Robustness to Random and Adversarial Model Sequences

As already eluded to in § 6.4, in our main experiments we have assumed that the models Ct are
improving over time. In general, this assumption may be justified by having observed superior
performance of a new model for the source domain on which they were trained, prior to deciding to
use it for re-evaluation on the target data set. However, such information may not always be available.

To check for robustness against violations of the assumption of improving classifiers, we also consider
scenarios where Ct arrive in a random or adversarial (i.e., strictly deteriorating) order with respect
to their accuracy. To avoid unrealistically large fluctuations in the accuracy of new classifiers, we
removed AlexNet and SqueezeNet as the most poorly performing models from the random model
sequence for this set of experiments. Results on ImageNet in the form of the temporal evolution of
accuracy improvement and accumulated negative flips across different strategies and budgets are
shown in Fig. 5.
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For the random ordering in Fig. 5 (a), we find that our methods—unlike, e.g., the replace strategy—
achieve strict increases in final accuracy while introducing much fewer negative flips, e.g., almost an
order of magnitude fewer for our CR strategies, compared to the Majority Vote baseline. Even in the
adversarial case in Fig. 5 (b), our methods improve accuracy during the initial steps and introduce
much fewer negative flips over the entire history. These findings suggest robustness of our approach
to situations where an ordering by performance of Ct may not be available.

(a) Random order (b) Adversarial order

Figure 5: Temporal evolution of accuracy improvement and accumulated negative flips on ImageNet
for two scenarios where the models Ct do not exhibit improving performance, but instead arrive in
(a) random or (b) adversarial order. As can be seen, our methods are robust in both these cases while
introducing much fewer negative flips than the non-probabilistic baselines.

A.4 Role of Confusion Matrix Estimates

For the results of our main experiments reported in § 6.2 and § 6.3, we estimated only the diagonal
elements of the confusion matrices and set the off-diagonal elements to a constant, c.f. § 3.1. To
investigate the role of the estimation procedure for the confusion matrices πt, we also report results for
the case where we estimate the full confusion matrix of each classifier (i.e., including the off-diagonal
elements). To avoid off-diagonal elements which are estimated to be zero due to the large number
of classes and the limited size of the validation set split, we use a Laplace-smoothed version of
the maximum likelihood estimate, i.e., we add a one to each count and normalise accordingly, as
suggested in § 4.

Results of this comparison between different confusion matrix estimators for ImageNet and ObjectNet
are shown in Fig. 6. (The corresponding results for CIFAR-10 are shown in Fig. 7 and are discussed
in more detail in A.5.) As is apparent from the comparison on ImageNet and ObjectNet in Fig. 6,
we indeed observe generally improved performance from estimating full confusion matrices, as
speculated in § 4.

In terms of final accuracy, we observe a different behaviour across different budgets. For large
budgets, estimating full confusion matrices leads to substantial accuracy gains on ImageNet and to
roughly equal or slightly improved accuracy on ObjectNet. For small budgets, on the other hand, we
find similar or smaller accuracy gains for full confusion matrix estimates; importantly, this effect is
most pronounced for the more conservative CR prediction-update strategies. In terms of negative
flips, we observe slight to major reductions across all budgets and strategies with full confusion
matrix estimates compared to only estimating the diagonals, i.e., the class-specific accuracies.

We believe that this behaviour is intuitive and can be explained as follows. Estimating the full
confusion matrices with smoothed counts generally yields smaller diagonal elements and larger
off-diagonal elements. This, in turn, means that our posterior beliefs (in particular, the ratio between
two consecutive MAP values) change less drastically after new re-evaluations, so that the more
conservative CR strategies update fewer labels and thus experience smaller and slower accuracy gains
when only few samples can be re-evaluated. At the same time, the resulting posterior estimates are
likely more accurate which is consistent with larger gains for large budgets and the reduced number
of negative flips. In summary, better confusion matrix estimates result in a further reduction in the
number of negative flips across the board. For small budgets and conservative prediction-update
strategies, however, this comes with a trade-off in overall accuracy gain.
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(a) ImageNet: Role of Confusion
Matrix

(b) ImageNet: Diagonal Confusion
Matrix

(c) ImageNet: Full Confusion Matrix

(d) ObjectNet: Role of Confusion
Matrix

(e) ObjectNet: Diagonal Confusion
Matrix

(f) ObjectNet: Full Confusion Matrix

Figure 6: Investigation into the role of different confusion matrix estimates on ImageNet (top) and
ObjectNet (bottom). Dashed lines in the scatter plots (a) and (d) represent results for when the full
confusion matrices (i.e., including the off-diagonals) are estimated from smoothed counts on a split of
the validation set, and solid lines represent results under the less accurate confusion matrix estimates
where only diagonal elements (i.e., the class-specific accuracies) are estimated, as in the experiments
of the main paper.

A.5 Experiments on CIFAR-10

CIFAR-10 is an image classification dataset comprising images of objects from 10 distinct classes
(airplanes, cars, birds, cats, deer, dogs, frogs, horses, ships, trucks). It contains a training set of
50,000 images and a test set of size 10,000. It is thus a rather simple classification dataset compared
to ImageNet and ObjectNet but has been a key driver for advancing ML models and computer vision
before the introduction of ImageNet. Using the CIFAR-10 test set as our target dataset, we can study
the Prediction Updates Problem in an i.i.d. setting with a small number of classes.

(a) Comparison of final perfor-
mance

(b) Diagonal confusion matrix estimate (c) Full confusion matrix estimate

Figure 7: Summary of prediction-updates on CIFAR-10. Similar to Fig. 6, dashed lines in (a) represent
results with full confusion matrices estimated from smoothed counts and solid lines represent using a
less accurate confusion matrix estimate where only diagonals are estimated from data. We observe
very similar behaviour to that described for ImageNet and ObjectNet in § 6.2 and § 6.3, respectively.
The most interesting difference compared to our experiments on ImageNet and ObjectNet, is that,
on CIFAR-10, our methods achieve substantially larger accuracy gains compared with the baselines,
even for small budgets.

Similar to our experiments on ImageNet and ObjectNet reported in § 6 where we used models
which had been pre-trained on ImageNet,6 for our experiments on CIFAR-10, we use models which
have instead been pre-trained on CIFAR-10, available from an open source github repository.7 This
repository contains pre-trained models for a subset of the same architectures listed in § 6.1, excluding

6ImageNet pretrained models: link
7CIFAR-10 pretrained models: link
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AlexNet, SqueezeNet, ResNet-101, ResNeXt; the released VGG pre-trained models represent variants
with batch normalization. We order these CIFAR-10 pre-trained models according to their validation
accuracies reported in the above repository. Compared to ImageNet and ObjectNet, pre-trained
models on CIFAR-10 exhibit a much higher level of accuracy (between 93% and 95%) with much
smaller differences between the best and worst model. As a consequence, our experiment on CIFAR-
10 emulates a scenario in which incoming new classifiers exhibit smaller performance gains. This
might reflect a practical prediction-updates setting with a higher frequency of incoming new models.

Figure 8: BTC and BEC evolution on CIFAR10 with utilizing
diagonal confusion matrix elements only.

The results of our experiments on
CIFAR-10 are summarised in Fig. 7. Our
method shows very similar trends w.r.t.
all update strategies and metrics as we
have worked out on ImageNet and Ob-
jectNet. Interestingly, there is one novel
characteristic when it comes to the ac-
curacy gains: due to the presumably
less steep increase in accuracy from one
model to its successor and fewer class
categories, we can form more accurate
posterior beliefs which results in accu-
racy gains for our CR 10 with smallest
budget that outperforms the backfilling
Replace (100) baseline. The overall ac-
curacy gain similarly remains competitive with all Majority Vote variants while exhibiting only a
fraction of the negative flips. Again, BTC and BEC strongly outperform all baselines along every
update step for all our methods as can be seen in Fig. 8

A.6 On Peaking Accuracies

In Fig. 2 (right, solid lines), we observed a peak in ∆Acc at 30% budget for all our strategies when
performing prediction-updates on ImageNet. This suggests that our update rules are no longer
beneficial on this dataset when re-evaluating more than the top 30% of samples with highest posterior
entropy. From our ablation experiments on different confusion matrix estimates shown in Fig. 6 (a),
we observe that this peaking phenomenon is much less pronounced and occurs only at larger budgets
of B ≥ 50% when estimating the full confusion matrix based on the half of the validation set on
which we do not evaluate. We therefore conjecture that this behaviour may be related to inaccurate
estimates of the posterior resulting from our approximation of the unknown confusion matrices (and
possibly the assumption of conditionally independent classifiers).

To further investigate this hypothesis, we performed an ablation where we use the full validation set
both to estimate the confusion matrix (with smoothing) and for evaluation—i.e., we do not use a
50-50 split of the validation set as in Fig. 6 and all experiment in the main paper—thus matching
almost exactly8 the confusion counts statistics of the evaluation set. As a result, we can expect our
estimates of the posterior distribution to be much more accurate in this case.

The results are shown in Fig. 9 in dashed lines, compared to the peaking behaviour from our default
method in solid lines for reference. Apart from substantial gains in overall accuracy, we find that the
peaking phenomenon disappears almost entirely,with only a very slight drop in accuracy remaining
between budgets of 50% and 100% for some strategies. This seems to confirm our hypothesis that the
main source of the peaking behaviour are approximation errors in our posterior estimates resulting
from inaccurate confusion matrices.

A.7 Role of the Selection Strategy

We also conduct an ablation study on the role of the selection strategy for samples to be re-evaluated
as was being mentioned in § 6.4. In particular we conduct a comparison between our posterior entropy
selection and the random selection (without replacement) baseline for all our methods across a range
of budgets—see Fig. 10 for these ablation results on all three datasets CIFAR-10, ImageNet and

8up to the one count smoothing effect.
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Figure 9: Further investigation into the peaking phenomenon observed for prediction-updates on
ImageNet in Fig. 2 (right). Solid lines are as in Fig. 2 (right), i.e., using a 50:50 split of the validation
set, using one half to estimate the diagonal elements of the confusion matrices and the other half
as our target evaluation set; dashed lines show the results of our ablation experiment where we use
the full validation set to both estimate the exact statistics of the confusion matrix and to evaluate
the different methods. Since the evaluation set for the latter is twice as large, we scaled the reported
negative flips by 0.5 for ease of comparison.

ObjectNet. Along all datasets, we find that random selection leads to substantially smaller accuracy
gains, but also results in fewer negative flips. We can explain these fewer negative flips by the fact
that our random selection more often chooses “easy” samples for re-evaluation. Under a random
selection criteria, there is no preference in re-evaluating more “controversial” samples w.r.t previous
predictions. This effect becomes particularly pronounced for small budgets. Our finding suggests
that the selection strategy is indeed a relevant component, with room for improvement as discussed
in § 4. This is also highlighting the potential control capability of this component regarding our three
desiderata.

A.8 Evolution of the Stored Label Distribution

For additional insights which samples are getting selected for re-evaluation by our entropy selection
criterion, we also show some characteristic count distribution of correctly and incorrectly stored
predictions along various update steps. See Fig. 11 for this distribution after every second update step
on ImageNet using the MB strategy with a compute budget of B = 10 (%).

A.9 Reducing re-evaluations matters at scale

To see that the re-evaluations of an example image using deep neural network based models clearly
dominate computational cost as compared to our method backbone that involved computing the
approximate posterior, label entropy and update strategy details, we measure the time for the plain
model estimation vs the time for posterior update on the same Intel Xeon (Cascade Lake) CPU for
the sake of comparison. We summarize our measurement in Tab. 2 for all used ImageNet models,
showing the multiples in compute time required by the model inference (per image on average)
compared to the timing per image of our fully unoptimized method implementation, i.e. the posterior
update backbone. For very large data sets and with new models generally increasing in size, reducing
the inference budget B is of crucial importance, emphasizing the relevance of desideratum 3.

A.10 Result Tables of Main Experiments

For sake of completeness and reproducibility, we also provide a complete quantitative account of all
the main experiments and ablations on all three datasets discussed throughout this paper in Tab. 3
and Tab. 4.

A.11 On Utilizing Uncalibrated Soft Labels

Finally, we tested our method on incroporating the uncalibrated soft labels provided as output in the
pre-trained ImageNet models by repeating the ImageNet and ObjectNet experiment (in combination
with full confusion matrix estimation). As already discussed in § 4, deep neural networks are
known to have unreliable uncertainty estimates [14, 25, 26, 47] and we therefore do not expect these

18



Figure 10: Ablation results for comparing random (dashed lines in scatter plots) and entropy-ranked
(solid lines in scatter plots) selection strategies on CIFAR-10 (left column), ImageNet (middle
column) and ObjectNet (right column). Different rows of the bar plots correspond to, from top to
bottom, B =10, 15, 20, 30, 50%. Note that at 100% budgets, the two selection strategies are identical
as all samples are re-evaluated at each step. We find that random selection leads to substantially
smaller accuracy gains, but also fewer negative flips. This is intuitive as random selection more often
chooses “easy” samples for re-evaluation. The effect is particularly pronounced for small budgets.

Table 2: Time measurements of a single forward pass versus the mean average time to compute the
posterior update (0.406 milliseconds) on the same computational ressources for comparability. For
reference we extrapolated how long it would take to infer the predictions from 1B images.

Model model re-evaluation [milliseconds] ratio inference vs posterior update inference for 1B images [days]

alexnet 29,6 73 343
squeezenet 32,6 80 378
vgg11 125,5 309 1452
googlenet 65,6 162 759
resnet18 31,5 78 364
vgg13 164,1 404 1899
vgg16 191,3 471 2215
mobilenet 23,1 57 267
vgg19 223,0 550 2582
resnet34 50,8 125 587
densenet121 74,4 183 862
densenet169 93,5 230 1082
resent50 70,6 174 818
resnet101 114,0 281 1319
inceptionv3 115,8 285 1340
resnet152 158,2 390 1831
resnext101 32x8d 206,6 509 2391
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(a) After t=0 Updates (b) After t=2 Updates (c) After t=4 Updates

(d) After t=6 Updates (e) After t=8 Updates (f) After t=10 Updates

(g) After t=12 Updates (h) After t=14 Updates (i) After t=16 Updates

Figure 11: Count distribution evolution of correctly and incorrectly stored predictions on ImageNet
using the MB update strategy under a budget of B = 10. Samples with currently stored predictions
being false are depicted with blue, and correctly stored predictions with orange. We observe that
under this MB strategy, samples with highest entropy tend to store false predictions, thus benefitting
from re-evaluation particularly.

results to be representative of what our method could achieve if it has access to truly calibrated
soft labels. We now utilize the full output softmax vector psl = Ct(xn) and refine our likelihood
estimate in eq. (2) by multiplying the confusion matrix coefficients with the soft label vector,
i.e. πt(ŷtn, k) →

∑
i p
sl
i π

t(i, k). We show the temporal evolution compared to the hard-label
implementation using only diagonal confusion matrix estimates in Fig. 12 and a full account over the
final performance metrics and all selection strategies and budgets in Tab. 5 and Tab. 6. Overall the
results are slightly less conclusive and less consistent, most likely due to the known uncalibrated soft
labels, emphasizing the strength of our method when only having deterministic labels. Specifically,
on CIFAR-10, there are additional accuracy gains but often we accumulate more negative flips and
BTC, BEC are typically slightly worse. On ImageNet, accuracy gains are sometimes worse without
finding a clear pattern when this is the case, but negative flips are sometimes significantly lower. BTC,
BEC seem to be better on the majority of update strategies and labels. On ObjectNet, we likewise
find no clear patter in the accuracy gains. However, accumulated negative flips are generally much
lower and both, BTC and BEC, even higher (very close to 1.0) but we want to emphasize that they
were already very high for the ObjectNet experiments from the main paper.
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Table 3: Full results of all experiments on ImageNet (left) and ObjectNet (right) under the standard
setting of an improving sequence of models and estimating confusion matrices on a separate
split of the data (i.e., not on the target data set) as explained in § 6.1. The first number in each
cell refers to estimating only the diagonal elements (i.e., the class-specific accuracies) of confusion
matrices, and the second number (in brackets) refers to estimating the full confusion matrices
with smoothing. The character E in front of a budget indicates that selection for re-evaluation is
based on our posterior label entropy criterion (e.g., E30 refers to selecting the top 30% samples
with highest entropy), and the character R indicates selecting a randomly sampled subset without
replacement. Note that entropy-based selection requires a posterior and is thus not applicable for the
baselines Replace and Majority Vote.

Strategy Budget % Acc (%) ∆Acc (%) Σ NF NFR (%) PF / NF Avg. BTC Avg. BEC

100:Oracle 91.2 (91.2) 34.7 (34.7) 0 (0) 0.0 (0.0) NaN (NaN) 100.0 (100.0) 100.0 (100.0)
R100:Replace 79.2 (79.2) 22.7 (22.7) 24214 (24214) 6.05 (6.05) 1.2 (1.2) 91.37 (91.37) 77.71 (77.71)
R100:Majority Vote 78.9 (78.9) 22.3 (22.3) 7352 (7352) 1.84 (1.84) 1.8 (1.8) 97.18 (97.18) 93.95 (93.95)
E100:MB 77.1 (78.7) 20.5 (22.2) 4378 (4373) 1.09 (1.09) 2.2 (2.3) 98.32 (98.32) 96.45 (96.4)
E100:MBME 77.3 (78.5) 20.7 (22.0) 3057 (3910) 0.76 (0.98) 2.7 (2.4) 98.78 (98.48) 97.69 (96.88)
E100:CR 2 77.1 (78.5) 20.6 (22.0) 3368 (2342) 0.84 (0.59) 2.5 (3.3) 98.72 (99.12) 97.19 (98.0)
E100:CR 5 77.1 (78.4) 20.5 (21.8) 2520 (1300) 0.63 (0.33) 3.0 (5.2) 99.06 (99.52) 97.82 (98.86)
E100:CR 10 77.0 (78.2) 20.5 (21.7) 2112 (1023) 0.53 (0.26) 3.4 (6.3) 99.22 (99.62) 98.15 (99.11)

R50:Replace 78.4 (78.4) 21.8 (21.8) 11478.8 (11478.8) 2.87 (2.87) 1.5 (1.5) 95.82 (95.82) 89.88 (89.88)
R50:Majority Vote 78.1 (78.1) 21.6 (21.6) 5048.2 (5048.2) 1.26 (1.26) 2.1 (2.1) 98.07 (98.07) 95.92 (95.92)
R50:MB 76.9 (77.7) 20.4 (21.1) 3022.8 (3052.8) 0.76 (0.76) 2.7 (2.7) 98.83 (98.82) 97.62 (97.57)
R50:MBME 76.5 (77.5) 20.0 (20.9) 2325.4 (2917.6) 0.58 (0.73) 3.1 (2.8) 99.08 (98.87) 98.27 (97.72)
R50:CR 2 76.8 (77.4) 20.3 (20.8) 2233.6 (1572.8) 0.56 (0.39) 3.3 (4.3) 99.14 (99.4) 98.22 (98.74)
R50:CR 5 76.6 (77.0) 20.1 (20.4) 1603.8 (840.6) 0.4 (0.21) 4.1 (7.1) 99.39 (99.68) 98.69 (99.32)
R50:CR 10 76.7 (76.7) 20.1 (20.2) 1314.6 (659.2) 0.33 (0.16) 4.8 (8.6) 99.51 (99.75) 98.92 (99.46)
E50:Replace 78.9 (79.6) 22.4 (23.1) 15732 (15503) 3.93 (3.88) 1.4 (1.4) 94.41 (94.53) 85.37 (85.23)
E50:Majority Vote 78.7 (79.1) 22.2 (22.6) 6318 (6420) 1.58 (1.6) 1.9 (1.9) 97.6 (97.58) 94.74 (94.55)
E50:MB 77.8 (79.0) 21.3 (22.4) 3969 (3941) 0.99 (0.99) 2.3 (2.4) 98.48 (98.5) 96.78 (96.71)
E50:MBME 77.6 (78.7) 21.1 (22.2) 2904 (3636) 0.73 (0.91) 2.8 (2.5) 98.85 (98.6) 97.79 (97.05)
E50:CR 2 77.8 (78.8) 21.2 (22.2) 3014 (2128) 0.75 (0.53) 2.8 (3.6) 98.86 (99.21) 97.5 (98.17)
E50:CR 5 77.7 (78.6) 21.2 (22.0) 2214 (1168) 0.55 (0.29) 3.4 (5.7) 99.18 (99.57) 98.09 (98.96)
E50:CR 10 77.7 (78.3) 21.1 (21.8) 1832 (913) 0.46 (0.23) 3.9 (7.0) 99.33 (99.67) 98.4 (99.19)

R30:Replace 77.4 (77.4) 20.8 (20.8) 6546.4 (6546.4) 1.64 (1.64) 1.8 (1.8) 97.56 (97.56) 94.53 (94.53)
R30:Majority Vote 77.1 (77.1) 20.5 (20.5) 3616.4 (3616.4) 0.9 (0.9) 2.4 (2.4) 98.6 (98.6) 97.18 (97.18)
R30:MB 75.9 (76.3) 19.4 (19.7) 2186.2 (2200.4) 0.55 (0.55) 3.2 (3.2) 99.14 (99.14) 98.35 (98.34)
R30:MBME 75.3 (76.2) 18.7 (19.6) 1859.6 (2183.8) 0.46 (0.55) 3.5 (3.2) 99.26 (99.14) 98.65 (98.36)
R30:CR 2 75.5 (75.5) 19.0 (18.9) 1607.0 (1092.4) 0.4 (0.27) 4.0 (5.3) 99.37 (99.57) 98.8 (99.19)
R30:CR 5 75.1 (74.7) 18.5 (18.2) 1087.2 (564.8) 0.27 (0.14) 5.3 (9.1) 99.58 (99.78) 99.17 (99.57)
R30:CR 10 74.9 (74.2) 18.4 (17.7) 875.4 (434.2) 0.22 (0.11) 6.2 (11.2) 99.66 (99.83) 99.33 (99.68)
E30:Replace 78.5 (79.3) 22.0 (22.8) 9708 (8900) 2.43 (2.23) 1.6 (1.6) 96.53 (96.82) 91.01 (91.69)
E30:Majority Vote 78.5 (79.2) 22.0 (22.6) 5232 (4989) 1.31 (1.25) 2.1 (2.1) 98.03 (98.12) 95.63 (95.79)
E30:MB 78.1 (78.9) 21.6 (22.4) 3375 (3180) 0.84 (0.8) 2.6 (2.8) 98.71 (98.79) 97.25 (97.37)
E30:MBME 77.8 (78.8) 21.2 (22.2) 2577 (3071) 0.64 (0.77) 3.1 (2.8) 98.98 (98.83) 98.04 (97.49)
E30:CR 2 78.0 (78.7) 21.5 (22.1) 2578 (1664) 0.64 (0.42) 3.1 (4.3) 99.02 (99.37) 97.86 (98.58)
E30:CR 5 78.0 (78.3) 21.5 (21.8) 1831 (890) 0.46 (0.22) 3.9 (7.1) 99.32 (99.67) 98.43 (99.21)
E30:CR 10 77.9 (78.1) 21.4 (21.6) 1517 (707) 0.38 (0.18) 4.5 (8.6) 99.44 (99.74) 98.67 (99.37)

R20:Replace 75.7 (75.7) 19.1 (19.1) 4171.0 (4171.0) 1.04 (1.04) 2.1 (2.1) 98.41 (98.41) 96.71 (96.71)
R20:Majority Vote 75.4 (75.4) 18.9 (18.9) 2690.2 (2690.2) 0.67 (0.67) 2.8 (2.8) 98.95 (98.95) 97.99 (97.99)
R20:MB 74.0 (74.2) 17.5 (17.6) 1662.8 (1655.4) 0.42 (0.41) 3.6 (3.7) 99.34 (99.34) 98.81 (98.81)
R20:MBME 73.5 (74.1) 16.9 (17.6) 1480.6 (1654.0) 0.37 (0.41) 3.9 (3.7) 99.4 (99.34) 98.97 (98.82)
R20:CR 2 73.2 (72.5) 16.7 (15.9) 1205.6 (786.2) 0.3 (0.2) 4.5 (6.1) 99.52 (99.68) 99.15 (99.45)
R20:CR 5 72.3 (71.3) 15.8 (14.7) 768.0 (388.8) 0.19 (0.1) 6.1 (10.5) 99.69 (99.84) 99.46 (99.73)
R20:CR 10 71.9 (70.5) 15.4 (14.0) 603.8 (280.2) 0.15 (0.07) 7.4 (13.5) 99.76 (99.89) 99.57 (99.81)
E20:Replace 78.5 (79.0) 22.0 (22.5) 6191 (5430) 1.55 (1.36) 1.9 (2.0) 97.74 (98.02) 94.47 (95.16)
E20:Majority Vote 78.3 (78.7) 21.8 (22.1) 4295 (3788) 1.07 (0.95) 2.3 (2.5) 98.37 (98.56) 96.46 (96.89)
E20:MB 77.9 (78.1) 21.3 (21.6) 2700 (2371) 0.68 (0.59) 3.0 (3.3) 98.96 (99.09) 97.86 (98.11)
E20:MBME 77.6 (78.1) 21.1 (21.6) 2183 (2371) 0.55 (0.59) 3.4 (3.3) 99.13 (99.09) 98.39 (98.11)
E20:CR 2 77.8 (77.8) 21.3 (21.3) 1999 (1197) 0.5 (0.3) 3.7 (5.4) 99.23 (99.54) 98.41 (99.04)
E20:CR 5 77.7 (77.4) 21.2 (20.8) 1383 (599) 0.35 (0.15) 4.8 (9.7) 99.47 (99.77) 98.87 (99.49)
E20:CR 10 77.7 (76.7) 21.2 (20.2) 1101 (461) 0.28 (0.12) 5.8 (11.9) 99.58 (99.83) 99.08 (99.62)

R10:Replace 71.3 (71.3) 14.7 (14.7) 1958.4 (1958.4) 0.49 (0.49) 2.9 (2.9) 99.22 (99.22) 98.63 (98.63)
R10:Majority Vote 71.2 (71.2) 14.7 (14.7) 1481.4 (1481.4) 0.37 (0.37) 3.5 (3.5) 99.4 (99.4) 98.98 (98.98)
R10:MB 69.0 (69.0) 12.5 (12.4) 991.4 (963.6) 0.25 (0.24) 4.1 (4.2) 99.59 (99.6) 99.35 (99.36)
R10:MBME 68.9 (69.0) 12.4 (12.4) 944.8 (976.8) 0.24 (0.24) 4.3 (4.2) 99.61 (99.6) 99.38 (99.35)
R10:CR 2 67.9 (66.0) 11.4 (9.5) 703.6 (432.2) 0.18 (0.11) 5.0 (6.5) 99.71 (99.82) 99.54 (99.73)
R10:CR 5 66.2 (64.2) 9.6 (7.6) 393.4 (147.0) 0.1 (0.04) 7.1 (14.0) 99.84 (99.94) 99.75 (99.91)
R10:CR 10 65.3 (63.5) 8.8 (7.0) 282.6 (104.8) 0.07 (0.03) 8.7 (17.6) 99.88 (99.96) 99.82 (99.93)
E10:Replace 76.1 (77.3) 19.5 (20.8) 2468 (2320) 0.62 (0.58) 3.0 (3.2) 99.04 (99.11) 98.12 (98.12)
E10:Majority Vote 75.9 (77.0) 19.3 (20.5) 2417 (2235) 0.6 (0.56) 3.0 (3.3) 99.06 (99.14) 98.18 (98.22)
E10:MB 75.3 (76.4) 18.8 (19.9) 1557 (1394) 0.39 (0.35) 4.0 (4.6) 99.38 (99.44) 98.89 (98.98)
E10:MBME 75.2 (76.4) 18.7 (19.9) 1533 (1394) 0.38 (0.35) 4.0 (4.6) 99.38 (99.44) 98.92 (98.98)
E10:CR 2 75.3 (76.1) 18.7 (19.5) 1118 (618) 0.28 (0.15) 5.2 (8.9) 99.55 (99.75) 99.22 (99.56)
E10:CR 5 75.2 (75.2) 18.6 (18.6) 700 (246) 0.18 (0.06) 7.7 (19.9) 99.72 (99.9) 99.51 (99.81)
E10:CR 10 75.2 (73.3) 18.6 (16.8) 515 (170) 0.13 (0.04) 10.1 (25.7) 99.79 (99.93) 99.64 (99.87)

Strategy (Budget %) Acc (%) ∆Acc (%) Σ NF NFR (%) PF / NF Avg. BTC Avg. BEC

100:Oracle 50.5 (50.5) 42.6 (42.6) 0 (0) 0.0 (0.0) NaN (NaN) 100.0 (100.0) 99.99 (99.99)
R100:Replace 31.9 (31.9) 24.0 (24.0) 16669 (16669) 5.62 (5.62) 1.3 (1.3) 72.65 (72.65) 92.61 (92.61)
R100:Majority Vote 29.6 (29.6) 21.6 (21.6) 4690 (4690) 1.58 (1.58) 1.9 (1.9) 89.99 (89.99) 98.02 (98.02)
E100:MB 29.1 (29.1) 21.2 (21.1) 2477 (2675) 0.83 (0.9) 2.6 (2.5) 94.46 (94.04) 98.96 (98.88)
E100:MBME 28.6 (28.7) 20.6 (20.7) 1599 (2267) 0.54 (0.76) 3.4 (2.7) 95.86 (94.63) 99.34 (99.06)
E100:CR 2 29.0 (28.8) 21.0 (20.9) 1876 (1611) 0.63 (0.54) 3.1 (3.4) 95.92 (96.54) 99.21 (99.32)
E100:CR 5 28.8 (28.5) 20.8 (20.6) 1372 (853) 0.46 (0.29) 3.8 (5.5) 97.18 (98.28) 99.41 (99.63)
E100:CR 10 28.7 (28.2) 20.8 (20.3) 1084 (660) 0.37 (0.22) 4.6 (6.7) 97.82 (98.68) 99.54 (99.72)

R50:Replace 30.7 (30.7) 22.7 (22.7) 7583.8 (7583.8) 2.56 (2.56) 1.6 (1.6) 86.63 (86.63) 96.69 (96.69)
R50:Majority Vote 28.6 (28.6) 20.7 (20.7) 3281.6 (3281.6) 1.11 (1.11) 2.2 (2.2) 93.01 (93.01) 98.62 (98.62)
R50:MB 27.8 (27.7) 19.9 (19.8) 1676.6 (1780.4) 0.56 (0.6) 3.2 (3.1) 96.13 (95.9) 99.3 (99.26)
R50:MBME 26.9 (27.4) 18.9 (19.4) 1280.4 (1682.0) 0.43 (0.57) 3.7 (3.1) 96.77 (96.04) 99.48 (99.31)
R50:CR 2 27.5 (27.3) 19.6 (19.4) 1165.4 (923.0) 0.39 (0.31) 4.1 (4.9) 97.3 (97.86) 99.52 (99.62)
R50:CR 5 27.2 (26.6) 19.2 (18.7) 780.2 (469.6) 0.26 (0.16) 5.6 (8.4) 98.26 (98.98) 99.67 (99.8)
R50:CR 10 27.0 (26.2) 19.1 (18.3) 599.8 (353.2) 0.2 (0.12) 6.9 (10.6) 98.7 (99.22) 99.75 (99.85)
E50:Replace 31.0 (31.3) 23.1 (23.4) 7882 (7730) 2.66 (2.6) 1.5 (1.6) 86.26 (86.78) 96.53 (96.59)
E50:Majority Vote 29.5 (29.6) 21.5 (21.7) 3895 (3759) 1.31 (1.27) 2.0 (2.1) 91.73 (92.2) 98.36 (98.41)
E50:MB 28.9 (29.1) 20.9 (21.2) 2079 (2081) 0.7 (0.7) 2.9 (2.9) 95.23 (95.34) 99.13 (99.13)
E50:MBME 28.2 (28.6) 20.3 (20.7) 1452 (1944) 0.49 (0.66) 3.6 (3.0) 96.18 (95.52) 99.41 (99.19)
E50:CR 2 28.7 (28.7) 20.8 (20.8) 1506 (1136) 0.51 (0.38) 3.6 (4.4) 96.64 (97.54) 99.37 (99.52)
E50:CR 5 28.5 (28.4) 20.6 (20.4) 1049 (569) 0.35 (0.19) 4.6 (7.7) 97.83 (98.88) 99.55 (99.75)
E50:CR 10 28.4 (28.1) 20.5 (20.2) 828 (430) 0.28 (0.14) 5.6 (9.7) 98.35 (99.16) 99.64 (99.81)

R30:Replace 29.0 (29.0) 21.0 (21.0) 4070.6 (4070.6) 1.37 (1.37) 2.0 (2.0) 92.19 (92.19) 98.26 (98.26)
R30:Majority Vote 27.3 (27.3) 19.4 (19.4) 2346.6 (2346.6) 0.79 (0.79) 2.5 (2.5) 94.91 (94.91) 99.02 (99.02)
R30:MB 25.9 (25.9) 18.0 (17.9) 1185.8 (1218.6) 0.4 (0.41) 3.8 (3.7) 97.12 (97.01) 99.52 (99.5)
R30:MBME 25.1 (25.7) 17.2 (17.8) 1008.4 (1208.0) 0.34 (0.41) 4.2 (3.7) 97.41 (97.03) 99.59 (99.51)
R30:CR 2 25.4 (24.9) 17.5 (16.9) 782.2 (601.2) 0.26 (0.2) 5.2 (6.2) 98.05 (98.46) 99.68 (99.76)
R30:CR 5 24.6 (23.9) 16.6 (16.0) 476.2 (275.4) 0.16 (0.09) 7.5 (11.8) 98.8 (99.32) 99.81 (99.89)
R30:CR 10 24.4 (23.5) 16.4 (15.5) 331.6 (190.8) 0.11 (0.06) 10.2 (16.1) 99.17 (99.53) 99.86 (99.92)
E30:Replace 29.0 (29.7) 21.0 (21.7) 4316 (4093) 1.45 (1.38) 1.9 (2.0) 91.75 (92.39) 98.14 (98.23)
E30:Majority Vote 28.2 (28.6) 20.3 (20.6) 2970 (2703) 1.0 (0.91) 2.3 (2.4) 93.54 (94.23) 98.76 (98.87)
E30:MB 27.8 (27.6) 19.9 (19.7) 1565 (1402) 0.53 (0.47) 3.4 (3.6) 96.24 (96.66) 99.35 (99.42)
E30:MBME 26.9 (27.6) 18.9 (19.7) 1280 (1402) 0.43 (0.47) 3.7 (3.6) 96.64 (96.66) 99.48 (99.42)
E30:CR 2 27.7 (26.9) 19.7 (19.0) 1074 (675) 0.36 (0.23) 4.4 (6.2) 97.42 (98.32) 99.55 (99.72)
E30:CR 5 27.4 (26.0) 19.4 (18.1) 689 (312) 0.23 (0.11) 6.2 (11.8) 98.43 (99.31) 99.71 (99.87)
E30:CR 10 27.1 (25.4) 19.2 (17.5) 504 (214) 0.17 (0.07) 8.1 (16.2) 98.91 (99.53) 99.79 (99.91)

R20:Replace 27.0 (27.0) 19.1 (19.1) 2453.8 (2453.8) 0.83 (0.83) 2.4 (2.4) 94.82 (94.82) 98.97 (98.97)
R20:Majority Vote 25.8 (25.8) 17.8 (17.8) 1658.8 (1658.8) 0.56 (0.56) 3.0 (3.0) 96.17 (96.17) 99.32 (99.32)
R20:MB 23.8 (23.7) 15.8 (15.7) 887.2 (892.2) 0.3 (0.3) 4.3 (4.3) 97.74 (97.69) 99.64 (99.64)
R20:MBME 23.5 (23.9) 15.6 (15.9) 793.8 (866.2) 0.27 (0.29) 4.6 (4.4) 97.93 (97.77) 99.68 (99.65)
R20:CR 2 22.6 (21.8) 14.7 (13.8) 530.0 (392.2) 0.18 (0.13) 6.2 (7.6) 98.57 (98.89) 99.79 (99.84)
R20:CR 5 21.5 (20.4) 13.5 (12.5) 304.2 (171.2) 0.1 (0.06) 9.3 (14.5) 99.14 (99.52) 99.88 (99.93)
R20:CR 10 20.9 (19.9) 12.9 (11.9) 215.6 (121.4) 0.07 (0.04) 12.1 (19.2) 99.4 (99.65) 99.91 (99.95)
E20:Replace 26.9 (27.5) 19.0 (19.5) 2588 (2480) 0.87 (0.84) 2.4 (2.5) 94.54 (95.12) 98.91 (98.94)
E20:Majority Vote 26.2 (26.6) 18.3 (18.7) 2390 (2252) 0.81 (0.76) 2.4 (2.5) 94.8 (95.41) 99.0 (99.05)
E20:MB 26.0 (26.3) 18.1 (18.4) 1169 (1075) 0.39 (0.36) 3.9 (4.2) 97.01 (97.35) 99.53 (99.56)
E20:MBME 25.8 (26.3) 17.8 (18.4) 1131 (1075) 0.38 (0.36) 3.9 (4.2) 97.06 (97.35) 99.54 (99.56)
E20:CR 2 26.0 (26.2) 18.1 (18.2) 670 (490) 0.23 (0.17) 6.0 (7.9) 98.14 (98.71) 99.73 (99.8)
E20:CR 5 26.0 (25.6) 18.0 (17.7) 369 (193) 0.12 (0.07) 10.1 (18.0) 98.97 (99.55) 99.85 (99.92)
E20:CR 10 25.9 (24.9) 17.9 (16.9) 248 (134) 0.08 (0.05) 14.4 (24.4) 99.34 (99.69) 99.9 (99.94)

R10:Replace 22.1 (22.1) 14.2 (14.2) 996.6 (996.6) 0.34 (0.34) 3.6 (3.6) 97.49 (97.49) 99.6 (99.6)
R10:Majority Vote 21.6 (21.6) 13.6 (13.6) 808.8 (808.8) 0.27 (0.27) 4.1 (4.1) 97.86 (97.86) 99.68 (99.68)
R10:MB 19.5 (19.3) 11.6 (11.4) 450.2 (442.4) 0.15 (0.15) 5.8 (5.8) 98.7 (98.71) 99.82 (99.83)
R10:MBME 19.1 (19.1) 11.1 (11.2) 446.4 (449.0) 0.15 (0.15) 5.6 (5.6) 98.69 (98.69) 99.83 (99.82)
R10:CR 2 17.7 (16.1) 9.8 (8.1) 287.2 (196.6) 0.1 (0.07) 7.3 (8.7) 99.11 (99.34) 99.89 (99.92)
R10:CR 5 15.6 (14.1) 7.7 (6.2) 151.6 (74.6) 0.05 (0.03) 10.4 (16.4) 99.5 (99.75) 99.94 (99.97)
R10:CR 10 14.6 (13.5) 6.7 (5.5) 94.6 (46.0) 0.03 (0.02) 14.1 (23.4) 99.68 (99.84) 99.96 (99.98)
E10:Replace 23.7 (25.7) 15.7 (17.8) 996 (849) 0.34 (0.29) 3.9 (4.9) 97.5 (97.9) 99.6 (99.65)
E10:Majority Vote 23.7 (25.7) 15.7 (17.7) 996 (849) 0.34 (0.29) 3.9 (4.9) 97.5 (97.9) 99.6 (99.65)
E10:MB 22.7 (22.3) 14.8 (14.3) 696 (560) 0.23 (0.19) 4.9 (5.8) 98.08 (98.39) 99.72 (99.78)
E10:MBME 22.7 (22.3) 14.8 (14.3) 696 (560) 0.23 (0.19) 4.9 (5.8) 98.08 (98.39) 99.72 (99.78)
E10:CR 2 20.7 (17.8) 12.8 (9.9) 427 (213) 0.14 (0.07) 6.6 (9.6) 98.68 (99.21) 99.83 (99.92)
E10:CR 5 18.2 (15.7) 10.3 (7.7) 197 (49) 0.07 (0.02) 10.7 (30.3) 99.32 (99.82) 99.92 (99.98)
E10:CR 10 17.2 (14.9) 9.2 (7.0) 122 (24) 0.04 (0.01) 15.0 (54.9) 99.57 (99.91) 99.95 (99.99)
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Table 4: Full results of all experiments on CIFAR10 under the standard setting of an improving
sequence of models and estimating confusion matrices on a separate split of the data (i.e., not on
the target data set) as explained in § 6.1. The first number in each cell refers to estimating only the
diagonal elements (i.e., the class-specific accuracies) of confusion matrices, and the second number
(in brackets) refers to estimating the full confusion matrices with smoothing. The character E in
front of a budget indicates that selection for re-evaluation is based on our posterior label entropy
criterion (e.g., E30 refers to selecting the top 30% samples with highest entropy), and the character
R indicates selecting a randomly sampled subset without replacement. Note that entropy-based
selection requires a posterior and is thus not applicable for the baselines Replace and Majority Vote.

Strategy (Budget %) Acc (%) ∆Acc (%) Σ NF NFR (%) PF / NF Avg. BTC Avg. BEC

100:Oracle 99.3 (99.3) 6.1 (6.1) 0 (0) 0.0 (0.0) NaN (NaN) 100.0 (100.0) 100.0 (100.0)
R100:Replace 94.7 (94.7) 1.5 (1.5) 1418 (1418) 2.58 (2.58) 1.1 (1.1) 97.26 (97.26) 54.79 (54.79)
R100:Majority Vote 96.1 (96.1) 2.9 (2.9) 502 (502) 0.91 (0.91) 1.3 (1.3) 99.03 (99.03) 81.94 (81.94)
E100:MB 95.9 (95.9) 2.8 (2.8) 284 (340) 0.52 (0.62) 1.5 (1.4) 99.45 (99.34) 89.64 (87.71)
E100:MBME 96.1 (96.0) 2.9 (2.8) 119 (146) 0.22 (0.27) 2.2 (2.0) 99.77 (99.72) 95.28 (94.47)
E100:CR 2 96.0 (96.0) 2.8 (2.8) 219 (170) 0.4 (0.31) 1.6 (1.8) 99.58 (99.67) 91.69 (93.28)
E100:CR 5 95.9 (95.9) 2.8 (2.8) 132 (126) 0.24 (0.23) 2.1 (2.1) 99.75 (99.76) 94.65 (94.98)
E100:CR 10 96.0 (96.0) 2.9 (2.8) 112 (103) 0.2 (0.19) 2.3 (2.4) 99.79 (99.8) 95.49 (95.92)

R50:Replace 94.7 (94.7) 1.6 (1.6) 711.4 (711.4) 1.29 (1.29) 1.1 (1.1) 98.62 (98.62) 77.8 (77.8)
R50:Majority Vote 95.7 (95.7) 2.6 (2.6) 327.4 (327.4) 0.6 (0.6) 1.4 (1.4) 99.37 (99.37) 89.06 (89.06)
R50:MB 95.8 (95.8) 2.7 (2.6) 196.4 (227.8) 0.36 (0.41) 1.7 (1.6) 99.62 (99.56) 93.41 (92.47)
R50:MBME 95.7 (95.6) 2.5 (2.5) 69.8 (90.6) 0.13 (0.16) 2.8 (2.4) 99.87 (99.83) 97.58 (96.93)
R50:CR 2 95.8 (95.8) 2.6 (2.6) 133.8 (104.2) 0.24 (0.19) 2.0 (2.3) 99.74 (99.8) 95.32 (96.24)
R50:CR 5 95.7 (95.7) 2.5 (2.5) 73.2 (69.0) 0.13 (0.13) 2.7 (2.8) 99.86 (99.87) 97.4 (97.59)
R50:CR 10 95.7 (95.7) 2.6 (2.5) 61.0 (60.6) 0.11 (0.11) 3.1 (3.1) 99.88 (99.88) 97.83 (97.85)
E50:Replace 95.2 (95.2) 2.0 (2.0) 1019 (1012) 1.85 (1.84) 1.1 (1.1) 98.04 (98.05) 64.97 (64.69)
E50:Majority Vote 96.1 (96.0) 2.9 (2.9) 428 (419) 0.78 (0.76) 1.3 (1.3) 99.18 (99.19) 84.48 (84.84)
E50:MB 96.1 (96.0) 2.9 (2.8) 260 (289) 0.47 (0.53) 1.6 (1.5) 99.5 (99.44) 90.63 (89.8)
E50:MBME 96.1 (96.0) 3.0 (2.9) 105 (134) 0.19 (0.24) 2.4 (2.1) 99.8 (99.74) 96.04 (95.09)
E50:CR 2 96.0 (96.0) 2.8 (2.8) 206 (149) 0.37 (0.27) 1.7 (1.9) 99.6 (99.71) 92.4 (94.27)
E50:CR 5 96.0 (95.9) 2.9 (2.8) 123 (112) 0.22 (0.2) 2.2 (2.2) 99.76 (99.79) 95.18 (95.67)
E50:CR 10 96.1 (96.0) 3.0 (2.8) 99 (95) 0.18 (0.17) 2.5 (2.5) 99.81 (99.82) 96.21 (96.35)

R30:Replace 94.6 (94.6) 1.4 (1.4) 439.6 (439.6) 0.8 (0.8) 1.2 (1.2) 99.15 (99.15) 86.74 (86.74)
R30:Majority Vote 95.3 (95.3) 2.2 (2.2) 238.4 (238.4) 0.43 (0.43) 1.5 (1.5) 99.54 (99.54) 92.54 (92.54)
R30:MB 95.2 (95.3) 2.1 (2.1) 146.2 (163.2) 0.27 (0.3) 1.7 (1.7) 99.72 (99.68) 95.46 (94.91)
R30:MBME 95.2 (95.2) 2.0 (2.1) 47.0 (64.2) 0.09 (0.12) 3.2 (2.6) 99.91 (99.88) 98.47 (97.92)
R30:CR 2 95.2 (95.2) 2.0 (2.0) 88.8 (64.6) 0.16 (0.12) 2.1 (2.6) 99.83 (99.88) 97.16 (97.92)
R30:CR 5 95.1 (95.0) 1.9 (1.9) 45.6 (47.0) 0.08 (0.09) 3.1 (3.0) 99.91 (99.91) 98.54 (98.49)
R30:CR 10 95.2 (95.1) 2.0 (2.0) 35.4 (35.4) 0.06 (0.06) 3.8 (3.8) 99.93 (99.93) 98.85 (98.85)
E30:Replace 95.6 (95.4) 2.5 (2.2) 688 (689) 1.25 (1.25) 1.2 (1.2) 98.68 (98.68) 75.18 (75.12)
E30:Majority Vote 95.9 (95.9) 2.8 (2.8) 380 (395) 0.69 (0.72) 1.4 (1.4) 99.27 (99.24) 86.44 (85.83)
E30:MB 96.0 (96.1) 2.8 (2.9) 253 (277) 0.46 (0.5) 1.6 (1.5) 99.51 (99.47) 91.14 (90.39)
E30:MBME 96.0 (96.2) 2.8 (3.0) 96 (123) 0.17 (0.22) 2.5 (2.2) 99.82 (99.76) 96.45 (95.68)
E30:CR 2 96.0 (96.2) 2.8 (3.0) 192 (147) 0.35 (0.27) 1.7 (2.0) 99.63 (99.72) 93.12 (94.5)
E30:CR 5 96.0 (96.2) 2.8 (3.0) 103 (98) 0.19 (0.18) 2.4 (2.6) 99.8 (99.81) 96.07 (96.36)
E30:CR 10 96.0 (96.2) 2.9 (3.0) 89 (86) 0.16 (0.16) 2.6 (2.7) 99.83 (99.83) 96.67 (96.85)

R20:Replace 94.5 (94.5) 1.3 (1.3) 274.6 (274.6) 0.5 (0.5) 1.2 (1.2) 99.47 (99.47) 91.94 (91.94)
R20:Majority Vote 94.9 (94.9) 1.7 (1.7) 195.2 (195.2) 0.35 (0.35) 1.4 (1.4) 99.62 (99.62) 94.06 (94.06)
R20:MB 94.7 (94.8) 1.6 (1.7) 107.0 (120.4) 0.19 (0.22) 1.7 (1.7) 99.79 (99.77) 96.86 (96.43)
R20:MBME 94.6 (94.6) 1.4 (1.4) 31.0 (45.4) 0.06 (0.08) 3.3 (2.6) 99.94 (99.91) 99.09 (98.67)
R20:CR 2 94.5 (94.5) 1.4 (1.4) 65.0 (48.6) 0.12 (0.09) 2.0 (2.4) 99.87 (99.91) 98.08 (98.55)
R20:CR 5 94.7 (94.7) 1.5 (1.5) 26.6 (27.4) 0.05 (0.05) 3.8 (3.7) 99.95 (99.95) 99.19 (99.16)
R20:CR 10 94.6 (94.6) 1.5 (1.4) 24.6 (24.4) 0.04 (0.04) 4.0 (3.9) 99.95 (99.95) 99.25 (99.26)
E20:Replace 95.8 (95.7) 2.6 (2.5) 462 (478) 0.84 (0.87) 1.3 (1.3) 99.11 (99.08) 83.35 (83.11)
E20:Majority Vote 95.9 (96.0) 2.8 (2.8) 336 (347) 0.61 (0.63) 1.4 (1.4) 99.35 (99.33) 88.2 (87.94)
E20:MB 96.0 (95.9) 2.9 (2.8) 217 (263) 0.39 (0.48) 1.7 (1.5) 99.58 (99.49) 92.45 (91.02)
E20:MBME 96.0 (96.0) 2.9 (2.8) 82 (115) 0.15 (0.21) 2.8 (2.2) 99.84 (99.78) 97.02 (96.04)
E20:CR 2 96.1 (95.9) 2.9 (2.8) 156 (130) 0.28 (0.24) 1.9 (2.1) 99.7 (99.75) 94.53 (95.27)
E20:CR 5 96.0 (95.9) 2.9 (2.8) 84 (90) 0.15 (0.16) 2.7 (2.5) 99.84 (99.83) 96.86 (96.71)
E20:CR 10 96.0 (95.9) 2.9 (2.8) 75 (80) 0.14 (0.15) 2.9 (2.7) 99.86 (99.85) 97.22 (97.11)

R10:Replace 94.1 (94.1) 0.9 (0.9) 129.2 (129.2) 0.23 (0.23) 1.3 (1.3) 99.75 (99.75) 96.31 (96.31)
R10:Majority Vote 94.3 (94.3) 1.1 (1.1) 109.4 (109.4) 0.2 (0.2) 1.5 (1.5) 99.79 (99.79) 96.86 (96.86)
R10:MB 94.0 (94.2) 0.9 (1.0) 64.0 (70.8) 0.12 (0.13) 1.7 (1.7) 99.88 (99.86) 98.23 (98.0)
R10:MBME 93.8 (93.8) 0.6 (0.6) 14.2 (21.4) 0.03 (0.04) 3.3 (2.4) 99.97 (99.96) 99.61 (99.41)
R10:CR 2 93.8 (93.8) 0.7 (0.7) 35.2 (23.8) 0.06 (0.04) 2.0 (2.4) 99.93 (99.95) 99.03 (99.34)
R10:CR 5 93.7 (93.7) 0.5 (0.6) 11.0 (11.0) 0.02 (0.02) 3.5 (3.6) 99.98 (99.98) 99.69 (99.69)
R10:CR 10 93.8 (93.8) 0.7 (0.7) 6.8 (7.0) 0.01 (0.01) 6.0 (5.9) 99.99 (99.99) 99.81 (99.8)
E10:Replace 95.3 (95.4) 2.1 (2.2) 206 (201) 0.37 (0.37) 1.5 (1.5) 99.6 (99.61) 93.45 (93.65)
E10:Majority Vote 95.4 (95.4) 2.2 (2.2) 200 (200) 0.36 (0.36) 1.6 (1.6) 99.61 (99.61) 93.67 (93.69)
E10:MB 95.3 (95.3) 2.1 (2.1) 140 (145) 0.25 (0.26) 1.8 (1.7) 99.73 (99.72) 95.59 (95.45)
E10:MBME 95.2 (95.2) 2.0 (2.0) 35 (66) 0.06 (0.12) 3.9 (2.5) 99.93 (99.87) 98.92 (98.02)
E10:CR 2 95.2 (95.2) 2.1 (2.1) 91 (59) 0.17 (0.11) 2.1 (2.7) 99.82 (99.89) 97.26 (98.11)
E10:CR 5 95.2 (95.2) 2.0 (2.0) 30 (38) 0.05 (0.07) 4.3 (3.7) 99.94 (99.93) 99.05 (98.79)
E10:CR 10 95.2 (95.2) 2.0 (2.0) 29 (36) 0.05 (0.07) 4.4 (3.8) 99.94 (99.93) 99.09 (98.86)
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Table 5: Full results of all experiments on CIFAR-10 (left) and ImageNet (right) under the standard
setting of an improving sequence of models and estimating confusion matrices on a separate
split of the data (i.e., not on the target data set) as explained in § 6.1. The first number in each
cell refers to estimating only the diagonal elements (i.e., the class-specific accuracies) of confusion
matrices, and the second number (in brackets) refers to estimating the full confusion matrices
with smoothing and incorporating soft labels. The character E in front of a budget indicates
that selection for re-evaluation is based on our posterior label entropy criterion (e.g., E30 refers
to selecting the top 30% samples with highest entropy), and the character R indicates selecting a
randomly sampled subset without replacement. Note that entropy-based selection requires a posterior
and is thus not applicable for the baselines Replace and Majority Vote.

Strategy Budget % Acc (%) ∆Acc (%) Σ NF NFR (%) PF / NF Avg. BTC Avg. BEC

100:Oracle 99.3 (99.3) 6.1 (6.1) 0 (0) 0.0 (0.0) NaN (NaN) 100.0 (100.0) 100.0 (100.0)
R100:Replace 94.7 (94.7) 1.5 (1.5) 1418 (1418) 2.58 (2.58) 1.1 (1.1) 97.26 (97.26) 54.79 (54.79)
R100:Majority Vote 96.1 (96.1) 2.9 (2.9) 502 (502) 0.91 (0.91) 1.3 (1.3) 99.03 (99.03) 81.94 (81.94)
E100:MB 95.9 (96.2) 2.8 (3.0) 284 (252) 0.52 (0.46) 1.5 (1.6) 99.45 (99.52) 89.64 (89.69)
E100:MBME 96.1 (96.1) 2.9 (3.0) 119 (173) 0.22 (0.31) 2.2 (1.9) 99.77 (99.67) 95.28 (92.98)
E100:CR 2 96.0 (96.1) 2.8 (3.0) 219 (170) 0.4 (0.31) 1.6 (1.9) 99.58 (99.68) 91.69 (92.98)
E100:CR 5 95.9 (96.2) 2.8 (3.0) 132 (103) 0.24 (0.19) 2.1 (2.5) 99.75 (99.8) 94.65 (95.68)
E100:CR 10 96.0 (96.2) 2.9 (3.0) 112 (73) 0.2 (0.13) 2.3 (3.1) 99.79 (99.86) 95.49 (96.99)

R50:Replace 94.7 (94.7) 1.6 (1.6) 711.4 (711.4) 1.29 (1.29) 1.1 (1.1) 98.62 (98.62) 77.8 (77.8)
R50:Majority Vote 95.7 (95.7) 2.6 (2.6) 327.4 (327.4) 0.6 (0.6) 1.4 (1.4) 99.37 (99.37) 89.06 (89.06)
R50:MB 95.8 (96.0) 2.7 (2.8) 196.4 (155.0) 0.36 (0.28) 1.7 (1.9) 99.62 (99.7) 93.41 (94.27)
R50:MBME 95.7 (95.9) 2.5 (2.7) 69.8 (106.0) 0.13 (0.19) 2.8 (2.3) 99.87 (99.8) 97.58 (96.2)
R50:CR 2 95.8 (96.0) 2.6 (2.9) 133.8 (99.8) 0.24 (0.18) 2.0 (2.4) 99.74 (99.81) 95.32 (96.25)
R50:CR 5 95.7 (96.0) 2.5 (2.8) 73.2 (59.2) 0.13 (0.11) 2.7 (3.4) 99.86 (99.89) 97.4 (97.77)
R50:CR 10 95.7 (95.9) 2.6 (2.7) 61.0 (40.8) 0.11 (0.07) 3.1 (4.3) 99.88 (99.92) 97.83 (98.47)
E50:Replace 95.2 (95.2) 2.0 (2.0) 1019 (1012) 1.85 (1.84) 1.1 (1.1) 98.04 (98.05) 64.97 (64.69)
E50:Majority Vote 96.1 (96.0) 2.9 (2.9) 428 (419) 0.78 (0.76) 1.3 (1.3) 99.18 (99.19) 84.48 (84.84)
E50:MB 96.1 (96.2) 2.9 (3.0) 260 (257) 0.47 (0.47) 1.6 (1.6) 99.5 (99.51) 90.63 (89.36)
E50:MBME 96.1 (96.1) 3.0 (3.0) 105 (170) 0.19 (0.31) 2.4 (1.9) 99.8 (99.67) 96.04 (93.08)
E50:CR 2 96.0 (96.1) 2.8 (3.0) 206 (170) 0.37 (0.31) 1.7 (1.9) 99.6 (99.68) 92.4 (92.92)
E50:CR 5 96.0 (96.2) 2.9 (3.0) 123 (102) 0.22 (0.19) 2.2 (2.5) 99.76 (99.81) 95.18 (95.72)
E50:CR 10 96.1 (96.2) 3.0 (3.0) 99 (71) 0.18 (0.13) 2.5 (3.1) 99.81 (99.86) 96.21 (97.07)

R30:Replace 94.6 (94.6) 1.4 (1.4) 439.6 (439.6) 0.8 (0.8) 1.2 (1.2) 99.15 (99.15) 86.74 (86.74)
R30:Majority Vote 95.3 (95.3) 2.2 (2.2) 238.4 (238.4) 0.43 (0.43) 1.5 (1.5) 99.54 (99.54) 92.54 (92.54)
R30:MB 95.2 (95.6) 2.1 (2.4) 146.2 (117.6) 0.27 (0.21) 1.7 (2.0) 99.72 (99.77) 95.46 (95.92)
R30:MBME 95.2 (95.6) 2.0 (2.4) 47.0 (88.4) 0.09 (0.16) 3.2 (2.4) 99.91 (99.83) 98.47 (96.94)
R30:CR 2 95.2 (95.5) 2.0 (2.4) 88.8 (72.6) 0.16 (0.13) 2.1 (2.6) 99.83 (99.86) 97.16 (97.5)
R30:CR 5 95.1 (95.4) 1.9 (2.3) 45.6 (40.8) 0.08 (0.07) 3.1 (3.8) 99.91 (99.92) 98.54 (98.61)
R30:CR 10 95.2 (95.4) 2.0 (2.2) 35.4 (28.8) 0.06 (0.05) 3.8 (4.8) 99.93 (99.94) 98.85 (99.03)
E30:Replace 95.6 (95.4) 2.5 (2.2) 688 (689) 1.25 (1.25) 1.2 (1.2) 98.68 (98.68) 75.18 (75.12)
E30:Majority Vote 95.9 (95.9) 2.8 (2.8) 380 (395) 0.69 (0.72) 1.4 (1.4) 99.27 (99.24) 86.44 (85.83)
E30:MB 96.0 (96.3) 2.8 (3.1) 253 (230) 0.46 (0.42) 1.6 (1.7) 99.51 (99.56) 91.14 (90.39)
E30:MBME 96.0 (96.2) 2.8 (3.0) 96 (163) 0.17 (0.3) 2.5 (1.9) 99.82 (99.69) 96.45 (93.3)
E30:CR 2 96.0 (96.2) 2.8 (3.1) 192 (160) 0.35 (0.29) 1.7 (2.0) 99.63 (99.69) 93.12 (93.28)
E30:CR 5 96.0 (96.2) 2.8 (3.1) 103 (94) 0.19 (0.17) 2.4 (2.6) 99.8 (99.82) 96.07 (96.01)
E30:CR 10 96.0 (96.3) 2.9 (3.1) 89 (57) 0.16 (0.1) 2.6 (3.8) 99.83 (99.89) 96.67 (97.65)

R20:Replace 94.5 (94.5) 1.3 (1.3) 274.6 (274.6) 0.5 (0.5) 1.2 (1.2) 99.47 (99.47) 91.94 (91.94)
R20:Majority Vote 94.9 (94.9) 1.7 (1.7) 195.2 (195.2) 0.35 (0.35) 1.4 (1.4) 99.62 (99.62) 94.06 (94.06)
R20:MB 94.7 (95.3) 1.6 (2.2) 107.0 (83.2) 0.19 (0.15) 1.7 (2.3) 99.79 (99.84) 96.86 (97.29)
R20:MBME 94.6 (95.3) 1.4 (2.2) 31.0 (62.0) 0.06 (0.11) 3.3 (2.7) 99.94 (99.88) 99.09 (97.98)
R20:CR 2 94.5 (95.2) 1.4 (2.0) 65.0 (56.4) 0.12 (0.1) 2.0 (2.8) 99.87 (99.89) 98.08 (98.17)
R20:CR 5 94.7 (95.2) 1.5 (2.0) 26.6 (25.6) 0.05 (0.05) 3.8 (4.9) 99.95 (99.95) 99.19 (99.16)
R20:CR 10 94.6 (94.9) 1.5 (1.8) 24.6 (19.6) 0.04 (0.04) 4.0 (5.6) 99.95 (99.96) 99.25 (99.38)
E20:Replace 95.8 (95.7) 2.6 (2.5) 462 (478) 0.84 (0.87) 1.3 (1.3) 99.11 (99.08) 83.35 (83.11)
E20:Majority Vote 95.9 (96.0) 2.8 (2.8) 336 (347) 0.61 (0.63) 1.4 (1.4) 99.35 (99.33) 88.2 (87.94)
E20:MB 96.0 (96.0) 2.9 (2.8) 217 (207) 0.39 (0.38) 1.7 (1.7) 99.58 (99.6) 92.45 (91.74)
E20:MBME 96.0 (95.9) 2.9 (2.8) 82 (148) 0.15 (0.27) 2.8 (1.9) 99.84 (99.72) 97.02 (94.17)
E20:CR 2 96.1 (96.0) 2.9 (2.8) 156 (133) 0.28 (0.24) 1.9 (2.1) 99.7 (99.75) 94.53 (94.67)
E20:CR 5 96.0 (96.0) 2.9 (2.9) 84 (80) 0.15 (0.15) 2.7 (2.8) 99.84 (99.85) 96.86 (96.73)
E20:CR 10 96.0 (96.1) 2.9 (2.9) 75 (55) 0.14 (0.1) 2.9 (3.7) 99.86 (99.89) 97.22 (97.89)

R10:Replace 94.1 (94.1) 0.9 (0.9) 129.2 (129.2) 0.23 (0.23) 1.3 (1.3) 99.75 (99.75) 96.31 (96.31)
R10:Majority Vote 94.3 (94.3) 1.1 (1.1) 109.4 (109.4) 0.2 (0.2) 1.5 (1.5) 99.79 (99.79) 96.86 (96.86)
R10:MB 94.0 (94.7) 0.9 (1.6) 64.0 (51.0) 0.12 (0.09) 1.7 (2.5) 99.88 (99.9) 98.23 (98.49)
R10:MBME 93.8 (94.6) 0.6 (1.4) 14.2 (36.2) 0.03 (0.07) 3.3 (2.9) 99.97 (99.93) 99.61 (98.93)
R10:CR 2 93.8 (94.7) 0.7 (1.5) 35.2 (32.4) 0.06 (0.06) 2.0 (3.3) 99.93 (99.94) 99.03 (99.03)
R10:CR 5 93.7 (94.3) 0.5 (1.1) 11.0 (14.0) 0.02 (0.03) 3.5 (5.1) 99.98 (99.97) 99.69 (99.59)
R10:CR 10 93.8 (94.3) 0.7 (1.1) 6.8 (7.4) 0.01 (0.01) 6.0 (8.5) 99.99 (99.99) 99.81 (99.78)
E10:Replace 95.3 (95.4) 2.1 (2.2) 206 (201) 0.37 (0.37) 1.5 (1.5) 99.6 (99.61) 93.45 (93.65)
E10:Majority Vote 95.4 (95.4) 2.2 (2.2) 200 (200) 0.36 (0.36) 1.6 (1.6) 99.61 (99.61) 93.67 (93.69)
E10:MB 95.3 (95.7) 2.1 (2.5) 140 (120) 0.25 (0.22) 1.8 (2.0) 99.73 (99.77) 95.59 (95.48)
E10:MBME 95.2 (95.6) 2.0 (2.5) 35 (99) 0.06 (0.18) 3.9 (2.3) 99.93 (99.81) 98.92 (96.32)
E10:CR 2 95.2 (95.7) 2.1 (2.5) 91 (78) 0.17 (0.14) 2.1 (2.6) 99.82 (99.85) 97.26 (97.08)
E10:CR 5 95.2 (95.6) 2.0 (2.4) 30 (52) 0.05 (0.09) 4.3 (3.3) 99.94 (99.9) 99.05 (98.04)
E10:CR 10 95.2 (95.5) 2.0 (2.3) 29 (37) 0.05 (0.07) 4.4 (4.1) 99.94 (99.93) 99.09 (98.73)

Strategy (Budget %) Acc (%) ∆Acc (%) Σ NF NFR (%) PF / NF Avg. BTC Avg. BEC

100:Oracle 91.2 (91.2) 34.7 (34.7) 0 (0) 0.0 (0.0) NaN (NaN) 100.0 (100.0) 100.0 (100.0)
R100:Replace 79.2 (79.2) 22.7 (22.7) 24214 (24214) 6.05 (6.05) 1.2 (1.2) 91.37 (91.37) 77.71 (77.71)
R100:Majority Vote 78.9 (78.9) 22.3 (22.3) 7352 (7352) 1.84 (1.84) 1.8 (1.8) 97.18 (97.18) 93.95 (93.95)
E100:MB 77.1 (77.6) 20.5 (21.0) 4378 (3463) 1.09 (0.87) 2.2 (2.5) 98.32 (98.65) 96.45 (97.25)
E100:MBME 77.3 (77.4) 20.7 (20.8) 3057 (3207) 0.76 (0.8) 2.7 (2.6) 98.78 (98.74) 97.69 (97.51)
E100:CR 2 77.1 (77.3) 20.6 (20.8) 3368 (1648) 0.84 (0.41) 2.5 (4.2) 98.72 (99.36) 97.19 (98.7)
E100:CR 5 77.1 (77.0) 20.5 (20.5) 2520 (990) 0.63 (0.25) 3.0 (6.2) 99.06 (99.63) 97.82 (99.19)
E100:CR 10 77.0 (76.8) 20.5 (20.3) 2112 (788) 0.53 (0.2) 3.4 (7.4) 99.22 (99.71) 98.15 (99.34)

R50:Replace 78.4 (78.4) 21.8 (21.8) 11478.8 (11463.8) 2.87 (2.87) 1.5 (1.5) 95.82 (95.83) 89.88 (89.89)
R50:Majority Vote 78.1 (78.1) 21.6 (21.6) 5048.2 (5048.8) 1.26 (1.26) 2.1 (2.1) 98.07 (98.07) 95.92 (95.92)
R50:MB 76.9 (76.9) 20.4 (20.4) 3022.8 (2509.8) 0.76 (0.63) 2.7 (3.0) 98.83 (99.02) 97.62 (98.05)
R50:MBME 76.5 (76.7) 20.0 (20.1) 2325.4 (2437.2) 0.58 (0.61) 3.1 (3.1) 99.08 (99.05) 98.27 (98.12)
R50:CR 2 76.8 (76.5) 20.3 (19.9) 2233.6 (1220.8) 0.56 (0.31) 3.3 (5.1) 99.14 (99.53) 98.22 (99.06)
R50:CR 5 76.6 (76.1) 20.1 (19.5) 1603.8 (700.4) 0.4 (0.18) 4.1 (8.0) 99.39 (99.73) 98.69 (99.44)
R50:CR 10 76.7 (75.8) 20.1 (19.2) 1314.6 (530.0) 0.33 (0.13) 4.8 (10.1) 99.51 (99.8) 98.92 (99.57)
E50:Replace 78.9 (79.8) 22.4 (23.2) 15732 (16138) 3.93 (4.03) 1.4 (1.4) 94.41 (94.3) 85.37 (84.73)
E50:Majority Vote 78.7 (79.2) 22.2 (22.6) 6318 (6282) 1.58 (1.57) 1.9 (1.9) 97.6 (97.64) 94.74 (94.67)
E50:MB 77.8 (77.9) 21.3 (21.4) 3969 (3212) 0.99 (0.8) 2.3 (2.7) 98.48 (98.77) 96.78 (97.4)
E50:MBME 77.6 (77.6) 21.1 (21.1) 2904 (2972) 0.73 (0.74) 2.8 (2.8) 98.85 (98.85) 97.79 (97.66)
E50:CR 2 77.8 (77.7) 21.2 (21.1) 3014 (1547) 0.75 (0.39) 2.8 (4.4) 98.86 (99.41) 97.5 (98.75)
E50:CR 5 77.7 (77.3) 21.2 (20.8) 2214 (900) 0.55 (0.22) 3.4 (6.8) 99.18 (99.67) 98.09 (99.24)
E50:CR 10 77.7 (77.1) 21.1 (20.6) 1832 (709) 0.46 (0.18) 3.9 (8.3) 99.33 (99.74) 98.4 (99.38)

R30:Replace 77.4 (77.3) 20.8 (20.8) 6546.4 (6537.8) 1.64 (1.63) 1.8 (1.8) 97.56 (97.56) 94.53 (94.55)
R30:Majority Vote 77.1 (77.1) 20.5 (20.5) 3616.4 (3613.6) 0.9 (0.9) 2.4 (2.4) 98.6 (98.6) 97.18 (97.18)
R30:MB 75.9 (75.9) 19.4 (19.4) 2186.2 (1860.6) 0.55 (0.47) 3.2 (3.6) 99.14 (99.27) 98.35 (98.6)
R30:MBME 75.3 (75.8) 18.7 (19.3) 1859.6 (1855.6) 0.46 (0.46) 3.5 (3.6) 99.26 (99.27) 98.65 (98.61)
R30:CR 2 75.5 (75.3) 19.0 (18.7) 1607.0 (918.2) 0.4 (0.23) 4.0 (6.1) 99.37 (99.64) 98.8 (99.31)
R30:CR 5 75.1 (74.5) 18.5 (17.9) 1087.2 (488.4) 0.27 (0.12) 5.3 (10.2) 99.58 (99.81) 99.17 (99.63)
R30:CR 10 74.9 (73.9) 18.4 (17.3) 875.4 (341.8) 0.22 (0.09) 6.2 (13.7) 99.66 (99.87) 99.33 (99.74)
E30:Replace 78.5 (79.1) 22.0 (22.6) 9708 (8764) 2.43 (2.19) 1.6 (1.6) 96.53 (96.87) 91.01 (91.87)
E30:Majority Vote 78.5 (78.9) 22.0 (22.3) 5232 (4469) 1.31 (1.12) 2.1 (2.2) 98.03 (98.32) 95.63 (96.24)
E30:MB 78.1 (78.1) 21.6 (21.5) 3375 (2450) 0.84 (0.61) 2.6 (3.2) 98.71 (99.06) 97.25 (98.02)
E30:MBME 77.8 (77.8) 21.2 (21.3) 2577 (2407) 0.64 (0.6) 3.1 (3.2) 98.98 (99.07) 98.04 (98.07)
E30:CR 2 78.0 (77.7) 21.5 (21.1) 2578 (1221) 0.64 (0.31) 3.1 (5.3) 99.02 (99.53) 97.86 (99.02)
E30:CR 5 78.0 (77.4) 21.5 (20.8) 1831 (670) 0.46 (0.17) 3.9 (8.8) 99.32 (99.75) 98.43 (99.43)
E30:CR 10 77.9 (77.1) 21.4 (20.6) 1517 (491) 0.38 (0.12) 4.5 (11.5) 99.44 (99.82) 98.67 (99.57)

R20:Replace 75.7 (75.7) 19.1 (19.1) 4171.0 (4183.8) 1.04 (1.05) 2.1 (2.1) 98.41 (98.41) 96.71 (96.7)
R20:Majority Vote 75.4 (75.4) 18.9 (18.8) 2690.2 (2696.6) 0.67 (0.67) 2.8 (2.7) 98.95 (98.94) 97.99 (97.98)
R20:MB 74.0 (74.6) 17.5 (18.0) 1662.8 (1421.2) 0.42 (0.36) 3.6 (4.2) 99.34 (99.44) 98.81 (98.97)
R20:MBME 73.5 (74.3) 16.9 (17.8) 1480.6 (1421.8) 0.37 (0.36) 3.9 (4.1) 99.4 (99.43) 98.97 (98.97)
R20:CR 2 73.2 (73.6) 16.7 (17.0) 1205.6 (718.2) 0.3 (0.18) 4.5 (6.9) 99.52 (99.71) 99.15 (99.48)
R20:CR 5 72.3 (72.2) 15.8 (15.7) 768.0 (344.0) 0.19 (0.09) 6.1 (12.4) 99.69 (99.86) 99.46 (99.75)
R20:CR 10 71.9 (71.0) 15.4 (14.4) 603.8 (218.4) 0.15 (0.05) 7.4 (17.5) 99.76 (99.91) 99.57 (99.84)
E20:Replace 78.5 (78.4) 22.0 (21.8) 6191 (5239) 1.55 (1.31) 1.9 (2.0) 97.74 (98.1) 94.47 (95.3)
E20:Majority Vote 78.3 (78.0) 21.8 (21.4) 4295 (3258) 1.07 (0.81) 2.3 (2.6) 98.37 (98.77) 96.46 (97.32)
E20:MB 77.9 (77.2) 21.3 (20.6) 2700 (1825) 0.68 (0.46) 3.0 (3.8) 98.96 (99.29) 97.86 (98.58)
E20:MBME 77.6 (77.2) 21.1 (20.6) 2183 (1825) 0.55 (0.46) 3.4 (3.8) 99.13 (99.29) 98.39 (98.58)
E20:CR 2 77.8 (76.6) 21.3 (20.1) 1999 (879) 0.5 (0.22) 3.7 (6.7) 99.23 (99.66) 98.41 (99.32)
E20:CR 5 77.7 (75.9) 21.2 (19.4) 1383 (448) 0.35 (0.11) 4.8 (11.8) 99.47 (99.83) 98.87 (99.63)
E20:CR 10 77.7 (75.1) 21.2 (18.6) 1101 (266) 0.28 (0.07) 5.8 (18.4) 99.58 (99.9) 99.08 (99.78)

R10:Replace 71.3 (71.3) 14.7 (14.8) 1958.4 (1952.6) 0.49 (0.49) 2.9 (2.9) 99.22 (99.22) 98.63 (98.63)
R10:Majority Vote 71.2 (71.2) 14.7 (14.6) 1481.4 (1489.6) 0.37 (0.37) 3.5 (3.5) 99.4 (99.4) 98.98 (98.98)
R10:MB 69.0 (70.0) 12.5 (13.4) 991.4 (865.4) 0.25 (0.22) 4.1 (4.9) 99.59 (99.65) 99.35 (99.42)
R10:MBME 68.9 (70.1) 12.4 (13.6) 944.8 (878.4) 0.24 (0.22) 4.3 (4.9) 99.61 (99.64) 99.38 (99.41)
R10:CR 2 67.9 (69.2) 11.4 (12.6) 703.6 (424.2) 0.18 (0.11) 5.0 (8.4) 99.71 (99.83) 99.54 (99.72)
R10:CR 5 66.2 (66.9) 9.6 (10.4) 393.4 (161.8) 0.1 (0.04) 7.1 (17.1) 99.84 (99.93) 99.75 (99.89)
R10:CR 10 65.3 (64.9) 8.8 (8.3) 282.6 (89.0) 0.07 (0.02) 8.7 (24.4) 99.88 (99.96) 99.82 (99.94)
E10:Replace 76.1 (77.0) 19.5 (20.4) 2468 (2216) 0.62 (0.55) 3.0 (3.3) 99.04 (99.17) 98.12 (98.18)
E10:Majority Vote 75.9 (76.1) 19.3 (19.5) 2417 (1954) 0.6 (0.49) 3.0 (3.5) 99.06 (99.25) 98.18 (98.45)
E10:MB 75.3 (75.2) 18.8 (18.7) 1557 (1118) 0.39 (0.28) 4.0 (5.2) 99.38 (99.56) 98.89 (99.18)
E10:MBME 75.2 (75.2) 18.7 (18.7) 1533 (1118) 0.38 (0.28) 4.0 (5.2) 99.38 (99.56) 98.92 (99.18)
E10:CR 2 75.3 (74.3) 18.7 (17.8) 1118 (503) 0.28 (0.13) 5.2 (9.8) 99.55 (99.8) 99.22 (99.63)
E10:CR 5 75.2 (72.7) 18.6 (16.2) 700 (165) 0.18 (0.04) 7.7 (25.5) 99.72 (99.93) 99.51 (99.88)
E10:CR 10 75.2 (70.7) 18.6 (14.2) 515 (71) 0.13 (0.02) 10.1 (50.8) 99.79 (99.97) 99.64 (99.95)
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Table 6: Full results of all experiments on ObjectNet under the standard setting of an improving
sequence of models and estimating confusion matrices on a separate split of the data (i.e., not on
the target data set) as explained in § 6.1. The first number in each cell refers to estimating only the
diagonal elements (i.e., the class-specific accuracies) of confusion matrices, and the second number
(in brackets) refers to estimating the full confusion matrices with smoothing and incorporating
soft labels. The character E in front of a budget indicates that selection for re-evaluation is based on
our posterior label entropy criterion (e.g., E30 refers to selecting the top 30% samples with highest
entropy), and the character R indicates selecting a randomly sampled subset without replacement.
Note that entropy-based selection requires a posterior and is thus not applicable for the baselines
Replace and Majority Vote.

Strategy (Budget %) Acc (%) ∆Acc (%) Σ NF NFR (%) PF / NF Avg. BTC Avg. BEC

100:Oracle 50.5 (50.5) 42.6 (42.6) 0 (0) 0.0 (0.0) NaN (NaN) 100.0 (100.0) 99.99 (99.99)
R100:Replace 31.9 (31.9) 24.0 (24.0) 16669 (16669) 5.62 (5.62) 1.3 (1.3) 72.65 (72.65) 92.61 (92.61)
R100:Majority Vote 29.6 (29.6) 21.6 (21.6) 4690 (4690) 1.58 (1.58) 1.9 (1.9) 89.99 (89.99) 98.02 (98.02)
E100:MB 29.1 (29.6) 21.2 (21.7) 2477 (1984) 0.83 (0.67) 2.6 (3.0) 94.46 (95.55) 98.96 (99.16)
E100:MBME 28.6 (29.1) 20.6 (21.1) 1599 (1774) 0.54 (0.6) 3.4 (3.2) 95.86 (95.83) 99.34 (99.26)
E100:CR 2 29.0 (29.2) 21.0 (21.2) 1876 (931) 0.63 (0.31) 3.1 (5.2) 95.92 (97.9) 99.21 (99.61)
E100:CR 5 28.8 (28.7) 20.8 (20.7) 1372 (543) 0.46 (0.18) 3.8 (8.1) 97.18 (98.86) 99.41 (99.77)
E100:CR 10 28.7 (28.4) 20.8 (20.5) 1084 (422) 0.37 (0.14) 4.6 (10.0) 97.82 (99.16) 99.54 (99.82)

R50:Replace 30.7 (30.7) 22.7 (22.7) 7583.8 (7588.8) 2.56 (2.56) 1.6 (1.6) 86.63 (86.61) 96.69 (96.69)
R50:Majority Vote 28.6 (28.7) 20.7 (20.7) 3281.6 (3291.2) 1.11 (1.11) 2.2 (2.2) 93.01 (93.01) 98.62 (98.62)
R50:MB 27.8 (28.7) 19.9 (20.7) 1676.6 (1410.0) 0.56 (0.48) 3.2 (3.7) 96.13 (96.83) 99.3 (99.41)
R50:MBME 26.9 (28.3) 18.9 (20.3) 1280.4 (1360.8) 0.43 (0.46) 3.7 (3.8) 96.77 (96.89) 99.48 (99.43)
R50:CR 2 27.5 (28.1) 19.6 (20.2) 1165.4 (663.6) 0.39 (0.22) 4.1 (6.6) 97.3 (98.51) 99.52 (99.72)
R50:CR 5 27.2 (27.3) 19.2 (19.4) 780.2 (361.4) 0.26 (0.12) 5.6 (10.9) 98.26 (99.23) 99.67 (99.85)
R50:CR 10 27.0 (26.7) 19.1 (18.8) 599.8 (253.0) 0.2 (0.09) 6.9 (14.8) 98.7 (99.47) 99.75 (99.89)
E50:Replace 31.0 (31.4) 23.1 (23.4) 7882 (7329) 2.66 (2.47) 1.5 (1.6) 86.26 (87.93) 96.53 (96.75)
E50:Majority Vote 29.5 (29.4) 21.5 (21.5) 3895 (3397) 1.31 (1.14) 2.0 (2.2) 91.73 (93.32) 98.36 (98.55)
E50:MB 28.9 (30.0) 20.9 (22.1) 2079 (1610) 0.7 (0.54) 2.9 (3.5) 95.23 (96.66) 99.13 (99.31)
E50:MBME 28.2 (29.5) 20.3 (21.5) 1452 (1534) 0.49 (0.52) 3.6 (3.6) 96.18 (96.75) 99.41 (99.35)
E50:CR 2 28.7 (29.6) 20.8 (21.7) 1506 (763) 0.51 (0.26) 3.6 (6.3) 96.64 (98.41) 99.37 (99.67)
E50:CR 5 28.5 (29.0) 20.6 (21.1) 1049 (414) 0.35 (0.14) 4.6 (10.5) 97.83 (99.21) 99.55 (99.82)
E50:CR 10 28.4 (28.7) 20.5 (20.7) 828 (309) 0.28 (0.1) 5.6 (13.4) 98.35 (99.43) 99.64 (99.86)

R30:Replace 29.0 (29.0) 21.0 (21.1) 4070.6 (4074.0) 1.37 (1.37) 2.0 (2.0) 92.19 (92.21) 98.26 (98.26)
R30:Majority Vote 27.3 (27.3) 19.4 (19.4) 2346.6 (2348.8) 0.79 (0.79) 2.5 (2.5) 94.91 (94.88) 99.02 (99.02)
R30:MB 25.9 (27.3) 18.0 (19.4) 1185.8 (1024.8) 0.4 (0.35) 3.8 (4.5) 97.12 (97.58) 99.52 (99.58)
R30:MBME 25.1 (27.1) 17.2 (19.2) 1008.4 (988.6) 0.34 (0.33) 4.2 (4.6) 97.41 (97.67) 99.59 (99.59)
R30:CR 2 25.4 (26.5) 17.5 (18.5) 782.2 (482.8) 0.26 (0.16) 5.2 (8.1) 98.05 (98.87) 99.68 (99.8)
R30:CR 5 24.6 (25.2) 16.6 (17.2) 476.2 (236.2) 0.16 (0.08) 7.5 (14.6) 98.8 (99.45) 99.81 (99.9)
R30:CR 10 24.4 (24.5) 16.4 (16.5) 331.6 (154.2) 0.11 (0.05) 10.2 (20.9) 99.17 (99.65) 99.86 (99.93)
E30:Replace 29.0 (30.0) 21.0 (22.1) 4316 (3761) 1.45 (1.27) 1.9 (2.1) 91.75 (93.51) 98.14 (98.35)
E30:Majority Vote 28.2 (28.2) 20.3 (20.2) 2970 (2359) 1.0 (0.79) 2.3 (2.6) 93.54 (95.37) 98.76 (99.0)
E30:MB 27.8 (28.9) 19.9 (20.9) 1565 (1015) 0.53 (0.34) 3.4 (4.8) 96.24 (97.78) 99.35 (99.57)
E30:MBME 26.9 (28.9) 18.9 (20.9) 1280 (1015) 0.43 (0.34) 3.7 (4.8) 96.64 (97.78) 99.48 (99.57)
E30:CR 2 27.7 (28.1) 19.7 (20.1) 1074 (496) 0.36 (0.17) 4.4 (8.5) 97.42 (98.9) 99.55 (99.79)
E30:CR 5 27.4 (26.9) 19.4 (19.0) 689 (230) 0.23 (0.08) 6.2 (16.3) 98.43 (99.52) 99.71 (99.9)
E30:CR 10 27.1 (25.9) 19.2 (18.0) 504 (140) 0.17 (0.05) 8.1 (24.8) 98.91 (99.71) 99.79 (99.94)

R20:Replace 27.0 (27.1) 19.1 (19.1) 2453.8 (2436.4) 0.83 (0.82) 2.4 (2.5) 94.82 (94.84) 98.97 (98.98)
R20:Majority Vote 25.8 (25.8) 17.8 (17.9) 1658.8 (1663.4) 0.56 (0.56) 3.0 (3.0) 96.17 (96.16) 99.32 (99.32)
R20:MB 23.8 (25.3) 15.8 (17.3) 887.2 (744.0) 0.3 (0.25) 4.3 (5.3) 97.74 (98.15) 99.64 (99.7)
R20:MBME 23.5 (25.5) 15.6 (17.5) 793.8 (736.0) 0.27 (0.25) 4.6 (5.4) 97.93 (98.18) 99.68 (99.7)
R20:CR 2 22.6 (24.3) 14.7 (16.4) 530.0 (339.0) 0.18 (0.11) 6.2 (10.0) 98.57 (99.14) 99.79 (99.86)
R20:CR 5 21.5 (22.7) 13.5 (14.8) 304.2 (160.8) 0.1 (0.05) 9.3 (18.1) 99.14 (99.6) 99.88 (99.93)
R20:CR 10 20.9 (21.5) 12.9 (13.6) 215.6 (98.8) 0.07 (0.03) 12.1 (26.6) 99.4 (99.74) 99.91 (99.96)
E20:Replace 26.9 (29.3) 19.0 (21.3) 2588 (2149) 0.87 (0.72) 2.4 (2.8) 94.54 (96.08) 98.91 (99.07)
E20:Majority Vote 26.2 (27.5) 18.3 (19.6) 2390 (1742) 0.81 (0.59) 2.4 (3.1) 94.8 (96.61) 99.0 (99.26)
E20:MB 26.0 (27.7) 18.1 (19.7) 1169 (763) 0.39 (0.26) 3.9 (5.8) 97.01 (98.26) 99.53 (99.68)
E20:MBME 25.8 (27.7) 17.8 (19.7) 1131 (763) 0.38 (0.26) 3.9 (5.8) 97.06 (98.26) 99.54 (99.68)
E20:CR 2 26.0 (26.6) 18.1 (18.6) 670 (353) 0.23 (0.12) 6.0 (10.8) 98.14 (99.16) 99.73 (99.85)
E20:CR 5 26.0 (25.1) 18.0 (17.2) 369 (132) 0.12 (0.04) 10.1 (25.2) 98.97 (99.7) 99.85 (99.94)
E20:CR 10 25.9 (24.2) 17.9 (16.2) 248 (73) 0.08 (0.02) 14.4 (42.2) 99.34 (99.83) 99.9 (99.97)

R10:Replace 22.1 (22.1) 14.2 (14.2) 996.6 (997.2) 0.34 (0.34) 3.6 (3.6) 97.49 (97.5) 99.6 (99.6)
R10:Majority Vote 21.6 (21.5) 13.6 (13.5) 808.8 (820.4) 0.27 (0.28) 4.1 (4.1) 97.86 (97.83) 99.68 (99.67)
R10:MB 19.5 (21.0) 11.6 (13.1) 450.2 (371.2) 0.15 (0.13) 5.8 (7.6) 98.7 (98.95) 99.82 (99.85)
R10:MBME 19.1 (20.8) 11.1 (12.8) 446.4 (381.6) 0.15 (0.13) 5.6 (7.2) 98.69 (98.92) 99.83 (99.85)
R10:CR 2 17.7 (19.8) 9.8 (11.9) 287.2 (177.2) 0.1 (0.06) 7.3 (13.4) 99.11 (99.48) 99.89 (99.93)
R10:CR 5 15.6 (17.6) 7.7 (9.7) 151.6 (75.4) 0.05 (0.03) 10.4 (24.9) 99.5 (99.77) 99.94 (99.97)
R10:CR 10 14.6 (15.8) 6.7 (7.9) 94.6 (36.0) 0.03 (0.01) 14.1 (41.8) 99.68 (99.89) 99.96 (99.99)
E10:Replace 23.7 (25.8) 15.7 (17.9) 996 (683) 0.34 (0.23) 3.9 (5.9) 97.5 (98.46) 99.6 (99.72)
E10:Majority Vote 23.7 (25.4) 15.7 (17.5) 996 (663) 0.34 (0.22) 3.9 (5.9) 97.5 (98.48) 99.6 (99.72)
E10:MB 22.7 (24.4) 14.8 (16.5) 696 (364) 0.23 (0.12) 4.9 (9.4) 98.08 (99.03) 99.72 (99.85)
E10:MBME 22.7 (24.4) 14.8 (16.5) 696 (364) 0.23 (0.12) 4.9 (9.4) 98.08 (99.03) 99.72 (99.85)
E10:CR 2 20.7 (22.7) 12.8 (14.8) 427 (176) 0.14 (0.06) 6.6 (16.6) 98.68 (99.52) 99.83 (99.93)
E10:CR 5 18.2 (19.4) 10.3 (11.4) 197 (50) 0.07 (0.02) 10.7 (43.4) 99.32 (99.86) 99.92 (99.98)
E10:CR 10 17.2 (15.9) 9.2 (7.9) 122 (28) 0.04 (0.01) 15.0 (53.5) 99.57 (99.92) 99.95 (99.99)

24



(a) CIFAR-10

(b) ImageNet

(c) ObjectNet

Figure 12: Comparative temporal evolution plots for experiments incorporating uncalibrated softmax
labels. Solid lines represent using hard labels with only diagonal estimated for confusion matrix
and dashed lines reflect results using soft labels and estimating full confusion matrix with Laplace
smoothing.
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