
A Theory

A.1 Supporting results and proof of Theorem 1

Lemma 1. If Assumption 1 holds, � is injective.

Proof. We prove the contrapositive. So suppose � is not injective. Then there must exist x, y, with
x 6= y, such that �(x) = �(y), and hence for any a, f(x, a) = h�(x),�(a)i2 = h�(y),�(a)i2 =
f(y, a).

The inverse of � on M is denoted ��1. Let eHz,z0 2 Rd⇥d be the matrix with elements

eHij
z,z0 :=

@
2
f

@x(i)@y(i)

����
(z,z0)

.

Lemma 2. If Assumption 2 holds, then for any x, y 2 Z , there exists z on the line segment with
end-points x, y such that

k�(x)� �(y)k22 =

⌧
x� y,

Z 1

0

eHz,y+s(x�y)ds

�
(x� y)

�
,

where the integral is element-wise.

Proof. Fix any x, y in Z . Observe from (3) and the definition of � that for any x, y 2 Z ,

k�(x)� �(y)k22 = f(x, x) + f(y, y)� 2f(x, y).

Now define

g(u) := f(u, x)� f(u, y),

and so since f is symmetric,

g(x)� g(y) = k�(x)� �(y)k22.

By the mean value theorem, there exists z on the line segment with end-points x, y (i.e. z 2 eZ) such
that

g(x)� g(y) = hrg(z), x� yi
= hrxf(z, y)�rxf(z, x), x� yi

where rg is the gradient of u 7! g(u) (with x, y still considered fixed) and rxf(z, u) is the gradient
of x 7! f(x, u) evaluated at z (with u considered fixed). Now considering the vector-valued mapping
u 7! rxf(z, u) with z fixed, we have

rxf(z, x)�rxf(z, y) =

Z 1

0

eHz,y+s(x�y)ds

�
(x� y).

Combining the above equalities gives:

k�(x)� �(y)k22 = hrxf(z, y)�rxf(z, x), x� yi

=

⌧
x� y,

Z 1

0

eHz,y+s(x�y)ds

�
(x� y)

�
.

Lemma 3. For any matrix B 2 Rd⇥d and z 2 Rd , |hz,Bzi|1/2  kBk1/2F kzk, where k · kF is the
Frobenius norm.

Proof.

hz,Bzi = 1

2

⌦
z, (B+B

>)z
↵
 kzk2�max  kzk2 1

2
kB+B

>kF  kzk2kBkF,

where �max is the maximum eigenvalue of the symmetric matrix (B+B
>)/2. Replacing B by �B

and using kBkF = k �BkF yields the lower bound hz,Bzi � �kzk2kBkF.
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Lemma 4. If Assumption 2 holds, then for any ✏ > 0 there exists � > 0 such that for any x, y 2 Z
such that kx� yk  � and any ⇠, z, z0 on the line segment with endpoints x, y,

���
D
x� y, (H⇠ � eHz,z0)(x� y)

E���  ✏kx� yk2.

Proof. For each i, j, since (z, z0) 7! eHij
z,z0 is assumed continuous on eZ ⇥ eZ , and eZ is compact, by

the Heine-Cantor theorem (z, z0) 7! eHij
z,z0 is in fact uniformly continuous on eZ ⇥ eZ . Fix any ✏ > 0.

Using this uniform continuity, there exists � > 0 such that for any x, y 2 Z , if kx� yk  �, then for
any ⇠, z, z0 on the line-segment with end-points x, y,

max
i,j=1,...,d

��� eHi,j
⇠,⇠ � eHi,j

z,z0

���  ✏d
�1

,

and so in turn ��� eH⇠,⇠ � eHz,z0

���
F
 ✏,

where k·kF is the Frobenius norm. Observing that eH⇠,⇠ = Hz , the result then follows from Lemma
3.

Proposition 4. If Assumptions 1 and 2 hold, � and ��1 are each Lipschitz continuous with respect
to the norms k · k on Z and k · k2 on M.

Proof. As a preliminary note that for any z 2 Z , Hz is symmetric and positive-definite under
Assumption 2, and let �min

z ,�
max
z be the minimum and maximum eigenvalues of the matrix Hz . Since

�
max
z = kHzksp, the spectral norm of Hz , and the reverse triangle inequality for this norm states

|kHzksp �kHz0ksp|  kHz �Hz0ksp, the continuity in z of the elements of Hz under Assumption 2
implies continuity of z 7! �

max
z . Similar consideration of �min

z = kH�1
z k�1

sp together with

kH�1
z �H

�1
z0 ksp  kH�1

z Hz0 � IkspkH�1
z0 ksp  kH�1

z kspkHz0 �HzkspkH�1
z0 ksp

shows that z 7! �
min
z is continuous. Due to the compactness of Z , we therefore find that �+ :=

supz2Z �
max
z < 1, and �� := infz2Z �

min
z > 0.

Our next objective in the proof of the proposition is to establish the Lipschitz continuity of �. As a
first step towards this, note that it follows from the identity

k�(x)� �(y)k22 = f(x, x) + f(y, y)� 2f(x, y),

that the continuity of (x, y) 7! f(x, y) implies continuity in `2 of x 7! �(x). Now fix any ✏1 > 0 and
consider any x, y 2 Z . By combining Lemmas 2 and 4 there exists �1 > 0 such that if kx� yk  �1,
there exists z on the line segment with end-points x, y such that:

k�(x)� �(y)k22 =

⌧
x� y,

Z 1

0

eHz,y+s(x�y)dt

�
(x� y)

�

= hx� y,Hz(x� y)i+
Z 1

0

D
x� y,

h
eHz,y+s(x�y) �Hz

i
(x� y)

E
ds (13)

 (�+ + ✏1)kx� yk2. (14)

On the other hand if kx� yk > �1,

k�(x)� �(y)k2
kx� yk  c1�

�1
1 , (15)

where c1 := supx,y2Z k�(x)� �(y)k2 is finite since Z is compact and � has already been proved to
be continuous in `2. Combining (14) and (15) we obtain

k�(x)� �(y)k2 
h
c1�

�1
1 _ (�+ + ✏1)

1/2
i
kx� yk, 8x, y 2 Z.

It remains to prove Lipschitz continuity of ��1. Fix ✏2 2 (0,��). Since Z is compact and � is
continuous, ��1 is continuous on M [54, Prop. 13.26], and then also uniformly continuous by
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the Heine-Cantor Theorem since M is compact. Putting this uniform continuity of ��1 together
with Lemmas 2 and 4, via the identity (13), there exists �2 > 0 such that for any a, b 2 M, if
ka� bk2  �2 then

ka� bk22 � (�� � ✏2)k��1(a)� �
�1(b)k2.

On the other hand, if ka� bk2 > �2,
k��1(a)� �

�1(b)k
ka� bk2

 c2�
�1
2 ,

where c2 := supx,y2Z kx� yk is finite since Z is compact. Therefore

k��1(a)� �
�1(b)k 

h
c2�

�1
2 _ (�� � ✏2)

�1/2
i
ka� bk2, 8a, b 2 M.

Lemma 5. If Assumptions 1 and 2 hold, then for any a, b 2 M and a path � in M with end-points
a, b such that `(�) < 1, the mapping ⌘ : [0, 1] ! Z defined by ⌘t := �

�1(�t) is a path in Z with
end-points ��1(a),��1(b), and l(⌘) < 1.

Proof. By Proposition 4, ��1 is continuous, which combined with the continuity of t 7! �t im-
plies continuity of t 7! �

�1(�t), so ⌘ is indeed a path in Z , and the end points of ⌘ are clearly
�
�1(a),��1(b). Proposition 4 establishes that moreover ��1 is Lipschitz continuous, and then

l(�) < 1 implies l(⌘) < 1 due to the definition of path-length.

Lemma 6. For any a � 0 and b such that |b|  a,

|a|1/2 � |b|1/2  (a+ b)1/2  |a|1/2 + |b|1/2.

Proof. First prove the lower bound. For any a, b as in the statement, let c = a � |b|, so that
c � 0, and set x = |b|1/2 and y = c

1/2. Since x, y � 0, application of the Euclidean triangle
inequality in R2 to the pair of vectors [x 0]>, [0 y]> gives the fact: (x2 + y

2)1/2  x + y, hence
a
1/2 = (|b|+ c)1/2  |b|1/2 + c

1/2 = |b|1/2 + (a� |b|)1/2, or equivalently:

(a� |b|)1/2 � a
1/2 � |b|1/2. (16)

By the reverse triangle inequality and the assumptions on a and b,

(a+ b)1/2 = |a+ b|1/2 � (a� |b|)1/2. (17)
Combining (16) and (17) completes the proof of the lower bound in the statement.

For the upper-bound in the statement, let c = a
1/2 and d = |b|1/2. Then

a+ b  c
2 + d

2 = (c+ d)2 � 2cd  (c+ d)2,

which implies
(a+ b)1/2  a

1/2 + |b|1/2

as required.

Proof of Theorem 1. By Lemma 1, � is injective; by Proposition 4, � and its inverse on M, namely
�
�1, are Lipschitz; and by Lemma 5, for � and ⌘ as in the statement, ⌘ is a path as claimed with

l(⌘) < 1.

For the remainder of the proof, fix any ✏ > 0. By the definition of the path-length l(�), there exists a
partition eP✏ such that

l(�)� ✏/2  �(�, eP✏)  l(�). (18)

Let P = (t0, . . . , tn) be any partition, and fix any k such that 1  k  n. By Lemma 2 there exists z
on the line segment with end-points ⌘tk�1 , ⌘tk such that

k�tk � �tk�1k22 = k�(⌘tk)� �(⌘tk�1)k22

=

⌧
⌘tk � ⌘tk�1 ,

Z 1

0

eHz,⌘tk�1
+s(⌘tk

�⌘tk�1
)ds

�
(⌘tk � ⌘tk�1)

�
(19)

= ak + bk (20)
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where

ak :=
D
⌘tk � ⌘tk�1 ,H⌘tk�1

(⌘tk � ⌘tk�1)
E

bk :=

Z 1

0

D
⌘tk � ⌘tk�1 ,

h
eHz,⌘tk�1

+s(⌘tk
�⌘tk�1

) �H⌘tk�1

i
(⌘tk � ⌘tk�1)

E
ds.

Under Assumption 2, H⌘tk�1
is positive-definite, so ak � 0, and by (19), ak + bk � 0, so we must

have |bk|  ak. Lemma 6 then gives

a
1/2
k � |bk|1/2  (ak + bk)

1/2  a
1/2
k + |bk|1/2,

hence: ���k�tk � �tk�1k2 � a
1/2
k

���  |bk|1/2. (21)

By Lemma 4, there exists � > 0 such that

max
k=1,...,n

k⌘tk � ⌘tk�1k  � ) |bk|1/2  ✏

2

1

l(⌘)
k⌘tk � ⌘tk�1k, 81  k  n. (22)

Since ⌘ is a path, it is continuous on the compact set [0, 1], and then in fact uniformly continuous
by the Heine-Cantor Theorem. Hence there exists a suitably fine partition P✏,� ◆ eP✏ such that if
P = (t0, . . . , tn) ◆ P✏,� , maxk=1,...,n k⌘tk � ⌘tk�1k  � and in turn from (22),

nX

k=1

|bk|1/2  ✏

2

1

l(⌘)

nX

k=1

k⌘tk � ⌘tk�1k  ✏

2
, (23)

where the final inequality holds due to the definition of l(⌘) as the length of ⌘.

Combining (21) and (23), if again P ◆ P✏,� ,
������(�,P)�

nX

k=1

a
1/2
k

����� =

�����

nX

k=1

k�tk � �tk�1k2 � a
1/2
k

�����


nX

k=1

|bk|1/2

 ✏

2
. (24)

Recalling from (18) the defining property of eP✏ and using P ◆ P✏,� ◆ eP✏, the triangle inequality for
the k · k2 norm gives

l(�)� ✏

2
 �(�, eP✏)  �(�,P)  l(�).

Combined with (24), we finally obtain that if P ◆ P✏,� ,

l(�)� ✏ 
nX

k=1

a
1/2
k  l(�) +

✏

2

and the proof of (4) is completed by taking P✏ as appears in the statement to be P✏,� .

The first equality in (5) can be proved by a standard argument - e.g., [47, p.137]. The second inequality
in (5) is proved by passing to the limit of the summation in (4) along any sequence of partitions
P(m) = (t(m)

0 , . . . , t
(m)
n(m)), m � 1, with P(m) ◆ P✏,� such that limm!1 maxk=1,...,n(m) |t

(m)
k �

t
(m)
k�1| = 0.

A.2 Deriving geodesic distances from (4) rather than from (5)

Recall from Section 3.3 that the general strategy to derive the geodesic distance associated with each
family of kernels (translation invariant, inner-product, additive) is:
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(i) identify a lower bound on l(�) which holds over all paths � in M which have generic end-points
a, b 2 M in common, then

(ii) show there exists a path whose length is equal to this lower bound.

In Section 3.3 this strategy was executed for each family of kernels starting from the expression for
l(�) given in (5). In the proofs of Lemmas 7-9 below we show how step (i) is performed if we start
not from (5) but rather from (4), the latter being more general because continuous differentiability of
the paths is relaxed to continuity. The key message of these three lemmas regarding step (i) is that we
obtain exactly the same lower bounds on l(�) as are derived from (5) in Section 3.3. The reader is
directed to Section 3.3 for the details of how Assumption 2 is verified for each family of kernels; to
avoid repetition we don’t re-state all those details here.
Lemma 7. Consider the family of translation invariant kernels described in Section 3.3 and let G be
as defined there. For any a, b 2 M and any path � 2 M with end-points a, b,

l(�) � kG>[��1(b)� �
�1(a)]k.

If we define ⌘̃ to be the path in Z given by
⌘̃t := �

�1(a) + t[��1(b)� �
�1(a)], t 2 [0, 1],

then �̃ defined by �̃t := �(⌘̃t) is a path in M with end-points a, b and l(�̃) = kG>[��1(b) �
�
�1(a)]k.

Proof. Applying Theorem 1, fix any ✏ > 0 and let P✏ be a partition such that for any partition
P = (t0, . . . , tn) satisfying P✏ ✓ P ,

�����l(�)�
nX

k=1

D
⌘tk � ⌘tk�1 ,H⌘tk�1

(⌘tk � ⌘tk�1)
E1/2

�����  ✏. (25)

Recalling from Section 3.3 that for this family of translation invariant kernels Hz = GG
> for all

z 2 Z , the triangle inequality for the k · k norm combined with (25) gives

l(�) � �✏+
nX

k=1

D
⌘tk � ⌘tk�1 ,H⌘tk�1

(⌘tk � ⌘tk�1)
E1/2

.

= �✏+
nX

k=1

kG>(⌘tk � ⌘tk�1)k

� �✏+

�����

nX

k=1

G
>(⌘tk � ⌘tk�1)

�����

= �✏+
��G>(⌘1 � ⌘0)

��

= �✏+
��G>[��1(b)� �

�1(a)]
�� .

The proof of the lower bound in the statement is then complete since ✏ was arbitrary. To complete the
proof of the lemma, observe that from the definition of ⌘̃ in the statement,

nX

k=1

D
⌘̃tk � ⌘̃tk�1 ,H⌘̃tk�1

(⌘̃tk � ⌘̃tk�1)
E1/2

=
nX

k=1

k(tk � tk�1)G
>[��1(b)� �

�1(a)]k

= kG>[��1(b)� �
�1(a)]k

nX

k=1

(tk � tk�1)

= kG>[��1(b)� �
�1(a)]k,

and the proof of the lemma is then complete, because ✏ in (25) being arbitrary implies l(�̃) =
kG>[��1(b)� �

�1(a)]k.
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Lemma 8. Consider the family of inner-product kernels of the form f(x, y) = g(hx, yi) as described
in Section 3.3 where g

0(1) > 0 . For any a, b 2 M and any path � 2 M with end-points a, b,

l(�) � g
0(1)1/2 arccos

⌦
�
�1(a),��1(b)

↵
.

If ⌘̃ is a shortest circular arc in Z with end-points ��1(a),��1(b), then �̃ defined by �̃t := �(⌘̃t)
satisfies l(�̃) = g

0(1)1/2 arccos
⌦
�
�1(a),��1(b)

↵
.

Proof. As usual, let ⌘ be the path in Z defined by ⌘t := �
�1(�t). Then from the definition of

path-length and the triangle inequality for the k · k norm, for any � > 0, there exists a partition P?
�

such that for any P? = (t?0, . . . , t
?
n) satisfying P?

� ✓ P?,
nX

k=1

k⌘t?k � ⌘t?k�1
k � l(⌘)� �

g0(1)1/2
. (26)

Fix any ✏ > 0 and let P✏ be as in Theorem 1 and then take P = (t0, . . . , tn) to be defined by
P = P✏ [ P?

� , so by construction we have simultaneously P✏ ✓ P and P?
� ✓ P . Then from

Theorem 1, �����l(�)�
nX

k=1

D
⌘tk � ⌘tk�1 ,H⌘tk�1

(⌘tk � ⌘tk�1)
E1/2

�����  ✏. (27)

Combined with the fact that for this family of kernels Hz = g
0(1)I + g

00(1)zz> where g
0(1) > 0

and g
00(1) � 0, we obtain

l(�) � �✏+
nX

k=1

D
⌘tk � ⌘tk�1 ,H⌘tk�1

(⌘tk � ⌘tk�1)
E1/2

= �✏+
nX

k=1

�
g
0(1)k⌘tk � ⌘tk�1k2 + g

00(1)|h⌘tk � ⌘tk�1 , zi|2
�1/2

� �✏+ g
0(1)1/2

nX

k=1

k⌘tk � ⌘tk�1k

� �✏+ g
0(1)1/2l(⌘)� �,

where the penultimate inequality uses g00(1) � 0 and the final inequality holds by taking P? in (26)
to be P . Since ✏ and � were arbitrary, we have shown l(�) � g

0(1)1/2l(⌘). Recall that here ⌘ is a path
in Z = {kxk 2 Rd : kxk = 1} with end-points ��1(a),��1(b). Hence l(⌘) is lower-bounded by the
Euclidean geodesic distance in Z between ��1(a) and ��1(b), which is arccos

⌦
�
�1(a),��1(b)

↵

because Z is a radius-1 sphere centered at the origin.

With ⌘̃ and �̃ as defined in the statement, taking ⌘ in (27) to be ⌘̃, refining P and using h⌘̃t, ˙̃⌘ti = 0
(see discussion in Section 3.3) we find l(�̃) = g

0(1)1/2l(⌘̃), where by definition of ⌘̃, l(⌘̃) =
arccos

⌦
�
�1(a),��1(b)

↵
.

Lemma 9. Consider the family of additive kernels described in Section 3.3. For any a, b 2 M and
any path � 2 M with end-points a, b,

l(�) � k � ��1(b)�  � ��1(a)k.
If we define ⇣̃t :=  ���1(a)+ t[ ���1(b)� ���1(a)] and let �̃ be defined by �̃t := �� �1(⇣t),
then l(�̃) = k � ��1(b)�  � ��1(a)k.

Proof. The compactness of Z and the continuity of z 7! @
2
fi

@x(i)y(i)

����
1/2

(z,z)

for each i = 1, . . . , d

implies the uniform-continuity of the latter by the Heine-Cantor theorem. Hence for any �1 > 0,
there exists �2 > 0 such that for all i = 1, . . . , d and z

(i)
1 , z

(i)
2 2 Zi,

|z(i)1 � z
(i)
2 |  �2 ) ↵

1/2
i

�����
@
2
fi

@x(i)y(i)

����
1/2

(z(i)
1 ,z(i)

1 )

� @
2
fi

@x(i)y(i)

����
1/2

(z(i)
2 ,z(i)

2 )

����� 
�1

l(⌘)
. (28)

21



Fix any ✏ > 0 and let P✏ be as in Theorem 1. We now claim there exists a partition P = (t0, . . . , tn)
satisfying simultaneously P✏ ✓ P and

max
i=1,...,d

max
k=1,...,n

|⌘(i)tk � ⌘
(i)
tk�1

|  �2. (29)

To see that such a partition exists, note that with ⌘t := �
�1(�t), t 7! ⌘t is continuous on the compact

set [0, 1] hence uniformly continuous by the Heine-Cantor theorem. Thus for any s, t 2 [0, 1]
sufficiently close to each other, k⌘s � ⌘tk can be made less than or equal to �2, which implies
maxi=1,...,d |⌘(i)s � ⌘

(i)
t |  �2. Thus starting from P✏, if we subsequently add points to this partition

until maxk=1,...,n |tk�tk�1| is sufficiently small then we will arrive at a partition P with the required
properties, as claimed.

Now with this partition P in hand, fix any i = 1, . . . , d and k = 1, . . . , n. We then have

⇣
(i)
tk � ⇣

(i)
tk�1

=  i(⌘
(i)
tk )�  i(⌘

(i)
tk�1

) (30)

= ↵
1/2
i

Z ⌘(i)
tk

⌘(i)
tk�1

@
2
fi

@x(i)y(i)

����
1/2

(⇠,⇠)

d⇠

= ↵
1/2
i

Z ⌘(i)
tk

⌘(i)
tk�1

2

4 @
2
fi

@x(i)y(i)

����
1/2

(⇠,⇠)

� @
2
fi

@x(i)y(i)

����
1/2

(⌘(i)
tk�1

,⌘(i)
tk�1

)

3

5 d⇠

+ ↵
1/2
i

@
2
fi

@x(i)y(i)

����
1/2

(⌘(i)
tk�1

,⌘(i)
tk�1

)

(⌘(i)tk � ⌘
(i)
tk�1

)



2

4 �1

l(⌘)
+ ↵

1/2
i

@
2
fi

@x(i)y(i)

����
1/2

(⌘(i)
tk�1

,⌘(i)
tk�1

)

3

5 (⌘(i)tk � ⌘
(i)
tk�1

), (31)

where the upper bound is due to (28)-(29). Squaring both sides, summing over i and then applying
the triangle inequality gives

kH(1/2)
⌘tk�1

(⌘tk � ⌘tk�1)k � k⇣tk � ⇣tk�1k �
�1

l(⌘)
k⌘tk � ⌘tk�1k,

where H(1/2)
⌘tk�1

is the diagonal matrix with ith diagonal element equal to ↵1/2
i

@
2
fi

@x(i)y(i)

����
1/2

(⌘(i)
tk�1

,⌘(i)
tk�1

)

.

Summing over k = 1, . . . , n and using the definition of l(⌘) gives
nX

k=1

kH(1/2)
⌘tk�1

(⌘tk � ⌘tk�1)k � ��1 +
nX

k=1

k⇣tk � ⇣tk�1k.

Combined with the relationship (4) from Theorem 1 and yet another application of the triangle
inequality we thus find

l(�) � �✏� �1 +
nX

k=1

k⇣tk � ⇣tk�1k

� �✏� �1 + k⇣1 � ⇣0k
= �✏� �1 + k � ��1(b)�  � ��1(a)k.

The proof of the lower bound in the statement is complete since ✏ and �1 are arbitrary. In order
to complete the proof of the lemma, observe that (28) combined with the same decomposition in
(30)-(31) yields an accompanying lower bound on ⇣(i)tk � ⇣

(i)
tk�1

, from which it follows that
�����

nX

k=1

kH(1/2)
⌘tk�1

(⌘tk � ⌘tk�1)k �
nX

k=1

k⇣tk � ⇣tk�1k

�����  �1.

Substituting ⇣̃ as defined in the statement of the lemma in place of ⇣, and replacing ⌘ by ⌘̃ defined
by ⌘̃t :=  

�1(⇣̃t), then using the fact that �1 is arbitrary we find via (4) in Theorem 1 that l(�̃) =
k � ��1(b)�  � ��1(a)k.
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B Supplementary experiments

Codes for the experiments reported in the main part of the paper and those in this appendix are
available at https://github.com/anniegray52/graphs.

The R packages used in this paper are (with license details therein, see github repository for code):
data.table, RSpectra, igraph, plotly, Matrix, MASS, irlba, ggplot2, ggrepel, umap, Rtsne, lpSolve,
spatstat, ggsci, cccd, R.utils, tidyverse, gridExtra, rgl, plot3D. The Python modules used in this paper
are (with license details therein, see github repository for code): networkx, pandas, nodevectors,
random.

Data on the airports (e.g. their continent) was downloaded from https://ourairports.com/

data/.

B.1 Supplementary figures for simulated data example
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Figure 5: Latent position recovery in the sparse regime by spectral embedding followed by Isomap for
increasing n and increasing sparsity. To aid visualisation, all plots display a subset of 100 estimated
positions corresponding to true positions on a sub-grid which is common across n. Estimated
positions are coloured according to their true y-coordinate.

B.2 Supplementary figures and discussion for flight network example

A gap appears to form between North and South America which, as a first hypothesis, we put down
to the well-publicised suspension of all immigration into the US in April 2020. To measure this
gap we use the Earth Mover’s distance between the point clouds belonging to the two continents
(with thanks to Dr. Louis Gammelgaard Jensen for the code), using the approximate geodesic
distances of the ✏-neighbourhood graph (i.e., before dimension reduction). While this distance does
explode in April 2020, as shown in Figure 12 (Appendix), we found the proposed explanation to be
incomplete, because Australia and New Zealand imposed similar measures at the time, whereas the
distance between Oceania and the rest of the world, computed in the same way, does not explode.
Revisiting the facts [2], while the countries mentioned above closed their borders to nonresidents, the
continents of South America and Africa arguably imposed more severe measures, with large numbers
of countries fully suspending flights. This explanation seems more likely, as on re-inspection we find
a large jump in Earth mover’s distance, over April, between both of those continents and the rest of
the world, as shown in Figure 13.

B.3 Supplementary figures and discussion for temperature correlation example

Further to the discussion in Section 4, Figure 14 illustrates two important findings in the case p = 2
and d = 1, under the setup for this temperature correlation example described in section 4: firstly
that there is no clear relationship between longitude and position along the manifold, and secondly a
non-monotone relationship between longitude and estimated latent position. Both these observations
are in marked contrast with the results in Figure 4 for latitude.

We then consider the case p = 3 and d = 2. Figure 15 shows the spectral embedding. Again the
point-cloud is concentrated around a curved manifold. In Figure 16 we plot latitude and longitude
against each of the d = 2 coordinates of the estimated latent positions. As in the p = 2, d = 1 case,
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Figure 6: Latent position recovery in a sparse regime using different combinations of techniques with
n = 6400. The first row contains spectral embedding followed by different nonlinear dimension
reduction techniques and the second row contains node2vec, node2vec followed by Isomap, and we
have attempted recovery using graph distances [11]. To aid visualisation, all plots will display a
subset of 100 on a fixed sub-grid, coloured according to their true location.

we find a clear monotone relationship between latitude and the first component of estimated position
but no such relationship between longitude and the second component.
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a) Spectral embedding, followed by Isomap
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b) Recovery error in a dense regime

Figure 7: Latent position recovery in a dense regime. a) Recovery using different combinations of
technique with n = 6400. b) Average recovery error. The recovery error is an average over nodes
and over 100 simulations, with two standard errors shown as vertical bars. Computational issues
precluded showing node2vec for n = 6400. (SE = spectral embedding, GD = graph distance and n2v
= node2vec.)
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a) Spectral embedding, followed by UMAP
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b) Spectral embedding, followed by t−SNE
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c) node2vec (2 dimensions)
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d) node2vec (10 dimensions), followed by isomap
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Figure 8: Visualisation of the global flight network over January 2020 by alternative combinations of
techniques. The colours indicate continents (NA = North America, EU = Europe, AS = Asia, AF =
Africa, OC = Oceania) and a spread of cities with high-traffic airports are labelled (to reduce clutter,
only a selection of the cities in Figure 3 are shown).
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SE (20 dimensions), followed by Isomap (Jan 20)
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Figure 9: Visualisation of the global flight network. Spectral embedding into 20 dimensions followed
by Isomap. The colours indicate continents (NA = North America, EU = Europe, AS = Asia, AF =
Africa, OC = Oceania) and a spread of cities with high-traffic airports are labelled.
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Lisbon

Buenos Aires

NA
EU
AS
SA
AF
OC

Figure 10: Visualisation of the global flight network. Node2vec into 20 dimensions followed by
Isomap. The colours indicate continents (NA = North America, EU = Europe, AS = Asia, AF =
Africa, OC = Oceania) and a spread of cities with high-traffic airports are labelled.
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Figure 11: Visualisation of the global flight network over time: nonlinear dimension reduction of
each spectral embedding using Isomap. The colours indicate continents (NA = North America, EU =
Europe, AS = Asia, AF = Africa, OC = Oceania) and a spread of cities with high-traffic airports are
labelled. An important structural change is observed in April 2020.
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Figure 12: Earth mover’s distance between North and South America, as inferred from the approxi-
mate geodesic distances given by the ✏-neighbourhood graph. In each of 100 Monte Carlo iterations,
the Earth Mover’s distance is computed based on 100 points randomly selected from each continent.
We plot the average, with 2 standard errors in either direction indicated by the vertical bars.
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Figure 13: Earth mover’s distance from each continent to the rest of the world, as inferred from the
approximate geodesic distances given by the ✏-neighbourhood graph. In each of 100 Monte Carlo
iterations, the Earth mover’s distance is computed based on 100 points (airports) randomly selected
from the continent of interest, and 100 points (airports) from the rest of the world. We plot the
average, for each continent, with 2 standard errors in either direction indicated by the vertical bars.
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Figure 14: Temperature correlation example. Top: city locations. Bottom left: spectral embedding
with p = 2. Bottom right: true longitude (vertical axis) vs. estimated latent position (horizontal axis)
with d = 1. In all plots, points are coloured by longitudes of the corresponding cities.
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Figure 15: Temperature correlation example. Four views of the spectral embedding with p = 3. In all
plots, points are coloured by latitudes of the corresponding cities.

Figure 16: Temperature correlation example. Results for spectral embedding with p = 3 followed by
Isomap with d = 2. Left: latitude (vertical axis) vs. estimated latent coordinate Ẑ(1)

i (horizontal axis)
coloured by latitude. Right: longitude (vertical axis) vs. estimated latent coordinate Ẑ

(2)
i (horizontal

axis) coloured by longitude.
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