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Abstract

We provide improved gap-dependent regret bounds for reinforcement learning in
finite episodic Markov decision processes. Compared to prior work, our bounds
depend on alternative definitions of gaps. These definitions are based on the insight
that, in order to achieve a favorable regret, an algorithm does not need to learn how
to behave optimally in states that are not reached by an optimal policy. We prove
tighter upper regret bounds for optimistic algorithms and accompany them with
new information-theoretic lower bounds for a large class of MDPs. Our results
show that optimistic algorithms can not achieve the information-theoretic lower
bounds even in deterministic MDPs unless there is a unique optimal policy.

1 Introduction

Reinforcement Learning (RL) is a general scenario where agents interact with the environment to
achieve some goal. The environment and an agent’s interactions are typically modeled as a Markov
decision process (MDP) [29], which can represent a rich variety of tasks. But, for which MDPs can
an agent or an RL algorithm succeed? This requires a theoretical analysis of the complexity of an
MDP. This paper studies this question in the tabular episodic setting, where an agent interacts with
the environment in episodes of fixed length H and where the size of the state and action space is
finite (S and A respectively).

While the performance of RL algorithms in tabular Markov decision processes has been the subject
of many studies in the past [e.g. 11, 22, 28, 7, 4, 20, 34, 6], the vast majority of existing analyses
focuses on worst-case problem-independent regret bounds, which only take into account the size of
the MDP, the horizon H and the number of episodes K.

Recently, however, some significant progress has been achieved towards deriving more optimistic
(problem-dependent) guarantees. This includes more refined regret bounds for the tabular episodic
setting that depend on structural properties of the specific MDP considered [30, 25, 21, 13, 17].
Motivated by instance-dependent analyses in multi-armed bandits [24], these analyses derive gap-
Hlog(K
gap(gs(-,a))
pairs (s, a) and where the gap notion is defined as the difference of the optimal value function V*
of the Bellman optimal policy 7* and the Q-function of 7* at a sub-optimal action: gap(s,a) =

dependent regret-bounds of the form O (Z(S‘a)e SxA ), where the sum is over state-actions
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Figure 1: Comparison of our contributions in MDPs with deterministic transitions. Bounds only
include the main terms and all sums over (s, a) are understood to only include terms where the
respective gap is nonzero. gap is our alternative return gap definition introduced later (Definition 3.1).

V*(s) — Q*(s, a). We will refer to this gap definition as value-function gap in the following. We note
that a similar notion of gap has been used in the infinite horizon setting to achieve instance-dependent
bounds [1, 31, 2, 12, 27], however, a strong assumption about irreducibility of the MDP is required.

While regret bounds based on these value function gaps generalize the bounds available in the multi-
armed bandit setting, we argue that they have a major limitation. The bound at each state-action pair
depends only on the gap at the pair and treats all state-action pairs equally, ignoring their topological
ordering in the MDP. This can have a major impact on the derived bound. In this paper, we address
this issue and formalize the following key observation about the difficulty of RL in an episodic MDP
through improved instance-dependent regret bounds:

Learning a policy with optimal return does not require an RL agent to distinguish between
actions with similar outcomes (small value-function gap) in states that can only be reached
by taking highly suboptimal actions (large value-function gap).

To illustrate this insight, consider autonomous driving, where each episode corresponds to driving
from a start to a destination. If the RL agent decides to run a red light on a crowded intersection, then
a car crash is inevitable. Even though the agent could slightly affect the severity of the car crash by
steering, this effect is small and, hence, a good RL agent does not need to learn how to best steer
after running a red light. Instead, it would only need a few samples to learn to obey the traffic light in
the first place as the action of disregarding a red light has a very large value-function gap.

To understand how this observation translates into regret bounds, consider the toy example in Figure 1.
This MDP has deterministic transitions and only terminal rewards with ¢ > € > 0. There are two
decision points, s; and s, with two actions each, and all other states have a single action. There are
three policies which govern the regret bounds: 7* (red path) which takes action a4 in state s1; 1
which takes action ay at s; and ag at so (blue path); and 75 which takes action ag at s; and ay4 at s
(green path). Since * follows the red path, it never reaches so and achieves optimal return c+ ¢, while
71 and 7o are both suboptimal with return € and O respectively. Existing value-function gaps evaluate
to gap(s1, az) = c and gap(sz2, as) = € which yields a regret bound of order H log(K)(1/c+ 1/¢).
The idea behind these bounds is to capture the necessary number of episodes to distinguish the value
of the optimal policy 7* from the value of any other sub-optimal policy on all states. However,
since 7* will never reach ss it is not necessary to distinguish it from any other policy at so. A good
algorithm only needs to determine that ay is sub-optimal in s;, which eliminates both 7 and 75
as optimal policies after only log(K)/c? episodes. This suggests a regret of order O(log(K)/c).
The bounds presented in this paper achieve this rate up to factors of H by replacing the gaps at
every state-action pair with the average of all gaps along certain paths containing the state action
pair. We call these averaged gaps return gaps. The return gap at (s,a) is denoted as gap(s, a).
Our new bounds replace gap(s2, as) = € by gap(s2, as) ~ 3 gap(s1,az) + 5 gap(sz, as) = Q(c).
Notice that € and c can be selected arbitrarily in this example. In particular, if we take ¢ = 0.5 and
e = 1/v/K our bounds remain logarithmic O (log(K)), while prior regret bounds scale as v/'K..

This work is motivated by the insight just discussed. First, we show that improved regret bounds
are indeed possible by proving a tighter regret bound for STRONGEULER, an existing algorithm



based on the optimism-in-the-face-of-uncertainty (OFU) principle [30]. Our regret bound is stated
in terms of our new return gaps that capture the problem difficulty more accurately and avoid
explicit dependencies on the smallest value function gap gap,,,;,. Our technique applies to optimistic
algorithms in general and as a by-product improves the dependency on episode length H of prior
results. Second, we investigate the difficulty of RL in episodic MDPs from an information-theoretic
perspective by deriving regret lower-bounds. We show that existing value-function gaps are indeed
sufficient to capture difficulty of problems but only when each state is visited by an optimal policy
with some probability. Finally, we prove a new lower bound when the transitions of the MDP are
deterministic that depends only on the difference in return of the optimal policy and suboptimal
policies, which is closely related to our notion of return gap.

2 Problem setting and notation

We consider reinforcement learning in episodic tabular MDPs with a fixed horizon. An MDP can
be described as a tuple (S, A, P, R, H), where S and A are state- and action-space of size S and A
respectively, P is the state transition distribution with P(-|s,a) € AS~! the next state probability
distribution, given that action a was taken in the current state s. R is the reward distribution defined
over § x Aandr(s,a) = E[R(s,a)] € [0, 1]. Episodes admit a fixed length or horizon H.

We consider layered MDPs: each state s € S belongs to a layer x(s) € [H] and the only non-zero
transitions are between states s, s’ in consecutive layers, with x(s") = k(s) + 1. This common
assumption [see e.g. 23] corresponds to MDPs with time-dependent transitions, as in [20, 7], but
allows us to omit an explicit time-index in value-functions and policies. For ease of presentation, we
assume there is a unique start state s; with (s1) = 1 but our results can be generalized to multiple
(possibly adversarial) start states. Similarly, for convenience, we assume that all states are reachable
by some policy with non-zero probability, but not necessarily all policies or the same policy.

We denote by K the number of episodes during which the MDP is visited. Before each episode k €
[K], the agent selects a deterministic policy 7;: S — A out of a set of all policies II and 7y, is then
executed for all [ time steps in episode k. For each policy 7, we denote by w” (s,a) = P(Sy(s) =
5, Aws) = a | Ap = m(Sp) Vh € [H]) and w™(s) = >, w™ (s, a) probability of reaching state-
action pair (s,a) and state s respectively when executing 7. For convenience, supp(m) = {s €
S: w™(s) > 0} is the set of states visited by 7 with non-zero probability. The Q- and value function
of a policy 7 are

H

Q" (s,a) = ]Eﬂl Z r(Sh, An)

h=k(s)

Sn(s) = 57An(s) = a] ) and VW(S) = Qﬂ-(S,Tr(S))
and the regret incurred by the agent is the sum of its regret over K episodes

K K
RK) =Y v = o™ =3 Vi(s1) = V™ (s1), (1)
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where v™ = V7 (s;) is the expected total sum of rewards or refurn of m and V* is the optimal value
function V*(s) = max e V™ (s). Finally, the set of optimal policies is denoted as IT* = {mw € IT :
V™ = V*}. Note that we only call a policy optimal if it satisfies the Bellman equation in every state,
as is common in literature, but there may be policies outside of II* that also achieve maximum return
because they only take suboptimal actions outside of their support. The variance of the () function
at a state-action pair (s, a) of the optimal policy is V*(s,a) = V[R(s,a)] + Vs op(|s,a) [V (5")],
where V[X] denotes the variance of the r.v. X. The maximum variance over all state-action pairs
is V* = max(, ) V*(s,a). Finally, our proofs will make use of the following clipping operator
clip[ald] = x(a > b)a that sets a to zero if it is smaller than b, where X is the indicator function.

3 Novel upper bounds for optimistic algorithms

In this section, we present tighter regret upper-bounds for optimistic algorithms through a novel
analysis technique. Our technique can be generally applied to model-based optimistic algorithms
such as STRONGEULER [30], UcBVI [3], ORLC [9] or EULER [34]. In the following, we will first



give a brief overview of this class of algorithms (see Appendix B for more details) and then state our
main results for the STRONGEULER algorithm [30]. We focus on this algorithm for concreteness and
ease of comparison.

Optimistic algorithms maintain estimators of the (J-functions at every state-action pair such that
there exists at least one policy 7 for which the estimator, ™, overestimates the ()-function of the
optimal policy, that is @™ (s, a) > Q*(s,a),V(s,a) € S x A. During episode k € [K], the optimistic
algorithm selects the policy 7, with highest optimistic value function V},. By definition, it holds
that V4 (s) > V*(s). The optimistic value and Q-functions are constructed through finite-sample
estimators of the true rewards (s, a) and the transition kernel P(-|s, a) plus bias terms, similar to
estimators for the UCB-I multi-armed bandit algorithm. Careful construction of these bias terms
is crucial for deriving min-max optimal regret bounds in S, A and H [4]. Bias terms which yield
the tightest known bounds come from concentration of martingales results such as Freedman’s
inequality [14] and empirical Bernstein’s inequality for martingales [26].

The STRONGEULER algorithm not only satisfies optimism, i.e., Vi, > V*, butalso a stronger version
called strong optimism. To define strong optimism we need the notion of surplus which roughly
measures the optimism at a fixed state-action pair. Formally the surplus at (s, ) during episode k is
defined as

Er(s,a) = Qi(s,a) —r(s,a) — (P(-|s,a), Vi) . 2)

We say that an algorithm is strongly optimistic if Ex(s,a) > 0,V(s,a) € S x A,k € [K]. Surpluses
are also central to our new regret bounds and we will carefully discuss their use in Appendix F.

As hinted to in the introduction, the way prior regret bounds treat value-function gaps independently
at each state-action pair can lead to excessively loose guarantees. Bounds that use value-function
gaps [30, 25, 21] scale at least as

Z Hlog(K) . Z Hlog(K)7

o gap(s, a) 8aPumin

s,a: gap(s,a)> s,a: gap(s,a)=0

where state-action pairs with zero gap appear, with gap,;, = min, 4. gap(s,a)>0 gap(s, a), the
smallest positive gap. To illustrate where these bounds are loose, let us revisit the example in Figure 1.
Here, these bounds evaluate to £ l°§(K) + 8 lof(K) 4+ 58 lzg(K) , where the first two terms come from
state-action pairs with positive value-function gaps and the last term comes from all the state-action
pairs with zero gaps. There are several opportunities for improvement:

0.1 State-action pairs that can only be visited by taking optimal actions: We should not pay
the 1/ gap,,,;,, factor for such (s, a) as there are no other suboptimal policies 7 to distinguish
from 7* in such states.

0.2 State-action pairs that can only be visited by taking at least one suboptimal action:
We should not pay the 1/ gap(sa, a3) factor for state-action pair (s, a3) and the 1/ gap,,i,
factor for (s, a4) because no optimal policy visits so. Such state-action pairs should only
be accounted for with the price to learn that ay is not optimal in state s;. After all, learning
to distinguish between 7; and 75 is unnecessary for optimal return.

Both opportunities suggest that the price gap(ls a) of %% that each state-action pair (s, a) con-

tributes to the regret bound can be reduced by taking into account the regret incurred by the time
(s, a) is reached. Opportunity O.1 postulates that if no regret can be incurred up to (and including) the
time step (s, a) is reached, then this state-action pair should not appear in the regret bound. Similarly,
if this regret is necessarily large, then the agent can learn this with few observations and stop reaching
(s, a) earlier than gap(s, a) may suggest. Thus, as claimed in 0.2, the contribution of (s, a) to the
regret should be more limited in this case.

Since the total regret incurred during one episode by a policy 7 is simply the expected sum of
value-function gaps visited (Lemma F.1 in the appendix),
H

v'—v" =E, lz gap(Sh, An)

h=1

; 3)

we can measure the regret incurred up to reaching (S, A;) by the sum of value function gaps
22:1 gap(Sh, Ap) up to this point ¢. We are interested in the regret incurred up to visiting a certain



state-action pair (s, a) which 7 may visit only with some probability. We therefore need to take the
expectation of such gaps conditioned on the event that (s, a) is actually visited. We further condition
on the event that this regret is nonzero, which is exactly the case when the agent encounters a positive
value-function gap within the first (s) time steps. We arrive at

K(s)

ET{' Zgap(SmAh) Sn(s) = S7AI{(S) = avB S ’%(S> )
h=1

where B = min{h € [H + 1]: gap(Sh, Axn) > 0} is the first time a non-zero gap is visited. This
quantity measures the regret incurred up to visiting (s, a) through suboptimal actions. If this quantity
is large for all policies 7, then a learner will stop visiting this state-action pair after few observations
because it can rule out all actions that lead to (s, a) quickly. Conversely, if the event that we condition
on has zero probability under any policy, then (s, a) can only be reached through optimal action
choices (including a in s) and incurs no regret. This motivates our new definition of gaps that
combines value function gaps with the regret incurred up to visiting the state-action pair:

Definition 3.1 (Return gap). For any state-action pair (s,a) € S x A define B(s,a) = {B <
K(5),Sk(s) = 5, Ax(s) = a}, where B is the first time a non-zero gap is encountered. B(s, a) denotes
the event that state-action pair (s, a) is visited and that a suboptimal action was played at any time
up to visiting (s, a). We define the return gap as

K(s)
_ o ) 1
gap(s,a) = gap(s,a) V. min R, > gap(Sh, Ap) ’ B(s,a)
Py (B(s,a))>0 h=1

if there is a policy m € Il with P (B(s,a)) > 0 and gap(s, a) = 0 otherwise.

The additional 1/H factor in the second term is a required normalization suggesting that it is the
average gap rather than their sum that matters. We emphasize that Definition 3.1 is independent of
the choice of RL algorithm and in particular does not depend on the algorithm being optimistic. Thus,
we expect our main ideas and techniques to be useful beyond the analysis of optimistic algorithms.
Equipped with this definition, we are ready to state our main upper bound which pertains to the
STRONGEULER algorithm proposed by Simchowitz and Jamieson [30].

Theorem 3.2 (Main Result (Informal)). The regret R(K ) of STRONGEULER is bounded with high
probability for all number of episodes K as

R(K) S Z Vi(s,a) log K.
(s,a)eESx.A: gap(s, a)
gap(s,a)>0

In the above, we have restricted the bound to only those terms that have inverse polynomial depen-
dence on the gaps.

Comparison with existing gap-dependent bounds. We now compare our bound to the existing
gap-dependent bound for STRONGEULER by Simchowitz and Jamieson [30, Corollary B.1]

ay* HYV*
REK) S Y, Mlog}(—i— ¥ v log K. @
(s,a)eSXA: gap(s7a) (s,a)ESXA: £3Pmin
gap(s,a)>0 gap(s,a)=0

We here focus only on terms that admit a dependency on K and an inverse-polynomial dependency
on gaps as all other terms are comparable. Most notable is the absence of the second term of (4) in
our bound in Theorem 3.2. Thus, while state-action pairs with gap(s,a) = 0 do not contribute to our
regret bound, they appear with a 1/ gap, ;, factor in existing bounds. Therefore, our bound addresses
0.1 because it does not pay for state-action pairs that can only be visited through optimal actions.
Further, state-action pairs that do contribute to our bound satisfy =—1— < —1 < A and
gap(s,a) = gap(s,a) ' gapmin
thus never contribute more than in the existing bound in (4). Therefore, our regret bound is never
worse. In fact, it is significantly tighter when there are states that are only reachable by taking severely
suboptimal actions, i.e., when the average value-function gaps are much larger than gap(s,a) or




gap,,i,- By our definition of return gaps, we only pay the inverse of these larger gaps instead of
gap,,i,. Thus, our bound also addresses O.2 and achieves the desired log(K')/c regret bound in the
motivating example of Figure 1 as opposed to the log(K)/e bound of prior work.

One of the limitations of optimistic algorithms is their $/gap,,;, dependence even when there is only
one state with a gap of gap,,;,, [30]. We note that even though our bound in Theorem 3.2 improves
on prior work, our result does not aim to address this limitation. Very recent concurrent work [32]
proposed an action-elimination based algorithm that avoids the $/gap,,;. issue of optimistic algorithm
but their regret bounds still suffer the issues illustrated in Figure 1 (e.g. 0.2). We therefore view our
contributions as complementary. In fact, we believe our analysis techniques can be applied to their
algorithm as well and result similar improvements as for the example in Figure 1.

Regret bound when transitions are deterministic. We now interpret Definition 3.1 for MDPs
with deterministic transitions and derive an alternative form of our bound in this case. Let II; , be
the set of all policies that visit (s, a) and have taken a suboptimal action up to that visit, that is,

I, = {7T €1l : sf ) = s,a5,) = a, 3 h < K(s), gap(sy, ap,) > O}.

where (sT,a7,s3,...,sT,a];) are the state-action pairs visited (deterministically) by 7. Further,
let v5 , = maxzem, , v" be the best return of such policies. Definition 3.1 now evaluates to

gap(s,a) = gap(s,a) V 4 (v* — v} ,) and the bound in Theorem 3.2 can be written as

Hlog(K
RE) S Y, # : )
v¥ —w
s,a: Il o #D 5,0
We show in Appendix F.7, that it is possible to further improve this bound when the optimal policy is
unique by only summing over state-action pairs which are not visited by the optimal policy.

3.1 Regret analysis with improved clipping: from minimum gap to average gap

In this section, we present the main technical innovations of our tighter regret analysis. Our framework
applies to optimistic algorithms that maintain a )-function estimate, Q (s, a), which overestimates
the optimal Q-function Q* (s, a) with high probability in all states s, actions a and episodes k. We
first give an overview of gap-dependent analyses and then describe our approach.

Overview of gap-dependent analyses. A central quantity in regret analyses of optimistic
algorithms are the surpluses Ej(s,a), defined in (2), which, roughly speaking, quantify the
local amount of optimism. Worst-case regret analyses bound the regret in episode k as
Z(S’a) csxA Wr, (8,a)Ex(s,a), the expected surpluses under the optimistic policy 7 executed
in that episode. Instead, gap-dependent analyses rely on a tighter version and bound the instantaneous
regret by the clipped surpluses [e.g. Proposition 3.1 30]

8aPmin

1
V*(s1) = V™ (s1) < QeZw”’“ (s,a)clip [Ek(s,a) i gap(s,a) V Vi (6)

s,a

Sharper clipping with general thresholds. Our main technical contribution for achieving a regret
bound in terms of return gaps gap(s, a) is the following improved surplus clipping bound:

Proposition 3.3 (Improved surplus clipping bound). Let the surpluses E(s, a) be generated by an
optimistic algorithm. Then the instantaneous regret of T is bounded as follows:

V*(s1) = V™ (s1) < 42 w™ (s, a) clip [Ek(s, a)

1
Fen(s.0) Vaa(s.a)|

where €,: S X A — ]Ra' is any clipping threshold function that satisfies
H

> er(Sn, An)

h=B

"
> gap(Sh, An)

h=1
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Compared to previous surplus clipping bounds in (6), there are several notable differences. First,
instead of gap,,,;,, /2H, we can now pair gap(s, a) with more general clipping thresholds € (s, a), as
long as their expected sum over time steps after the first non-zero gap was encountered is at most
half the expected sum of gaps. We will provide some intuition for this condition below. Note that
ex(s,a) = BPmin satisfies the condition because the LHS is bounded between &2minP, (B < H)

and gap,;, Pr, (B < H), and there must be at least one positive gap in the sum Zthl gap(Sh, Ap)
on the RHS in event { B < H}. Thus our bound recovers existing results. In addition, the first term
in our clipping thresholds is I gap(s, a) instead of -+ gap(s, a). Simchowitz and Jamieson [30] are
able to remove this spurious H factor only if the problem instance happens to be a bandit instance and
the algorithm satisfies a condition called strong optimism where surpluses have to be non-negative.
Our analysis does not require such conditions and therefore generalizes these existing results.”

Choice of clipping thresholds for return gaps. The condition in Proposition 3.3 suggests that one
can set e (Sy, Ap,) to be proportional to the average expected gap under policy 7y :

1 H
ex(s,a) = ﬁ]Em“ lz gap(Sh, Ap) ‘ B(s,a)] . (7
h=1

if Py, (B(s,a)) > 0and €(s,a) = oo otherwise. Lemma F.5 in Appendix F shows that this choice
indeed satisfies the condition in Proposition 3.3. If we now take the minimum over all policies for 7,
then we can proceed with the standard analysis and derive our main result in Theorem 3.2. However,
by avoiding the minimum over policies, we can derive a stronger policy-dependent regret bound
which we discuss in the appendix.

4 Instance-dependent lower bounds

We here shed light on what properties on an episodic MDP determine the statistical difficulty
of RL by deriving information-theoretic lower bounds on the asymptotic expected regret of any
(good) algorithm. To that end, we first derive a general result that expresses a lower bound as the
optimal value of a certain optimization problem and then derive closed-form lower-bounds from this
optimization problem that depend on certain notions of gaps for two special cases of episodic MDPs.

Specifically, in those special cases, we assume that the rewards follow a Gaussian distribution with
variance 1/2. We further assume that the optimal value function is bounded in the same range as
individual rewards, e.g. as 0 < V*(s) < 1 for all s € S. This assumption is common in the literature
[e.g. 23, 19, 8] and can be considered harder than a normalization of V*(s) € [0, H] [18].

4.1 General instance-dependent lower bound as an optimization problem

The idea behind deriving instance-dependent lower bounds for the stochastic MAB problem [24, 5, 15]
and infinite horizon MDPs [16, 27] are based on first assuming that the algorithm studied is uniformly
good, that is, on any instance of the problem and for any o > 0, the algorithm incurs regret at most
o(T%), and then argue that, to achieve that guarantee, the algorithm must select a certain policy or
action at least some number of times as it would otherwise not be able to distinguish the current MDP
from another MDP that requires a different optimal strategy.

Since comparison between different MDPs is central to lower-bound constructions, it is convenient
to make the problem-instance explicit in the notation. To that end, let © be the problem class of
possible MDPs and we use subscripts 6 and \ for value functions, return, MDP parameters etc., to
denote specific problem instances 8, A € O of those quantities. Further, for a policy 7 and MDP
6, P denotes the law of one episode, i.e., the distribution of (S1, A1, R1, S2, A2, Ra, ..., SHt1).
To state the general regret lower-bound we need to introduce the set of confusing MDPs. This set
consists of all MDPs ) in which there is at least one optimal policy 7 such that = ¢ 117, i.e., 7 is not
optimal for the original MDP and no policy in II} has been changed.

Definition 4.1. For any problem instance 6 € © we define the set of confusing MDPs A(0) as
AB) :={N e ©: I\ # @ and KL(Py,P}) =0 Vr € II;}.

2Our layered state space assumption changes H factors in lower-order terms of our final regret compared to
Simchowitz and Jamieson [30]. However, Proposition 3.3 directly applies to their setting with no penalty in H.




We are now ready to state our general regret lower-bound for episodic MDPs:

Theorem 4.2 (General instance-dependent lower bound for episodic MDPs). Let 1) be a uniformly
good RL algorithm for ©, that is, for all problem instances 6 € © and exponents o« > 0, the regret of
1 is bounded as E[Rq(K)] < o(K®), and assume that vy, < H. Then, for any 0 € ©, the regret of
1 satisfies

. E[R (K]
—_— >
minf = ek =90

where C(0) is the optimal value of the following optimization problem

minimi Z b —f
n(w)zoze n(m) (vg —vg)
well

5. t. > n(mKL(P;,PY) =1 forall A€ A9).
mell

(®)

The optimization problem in Theorem 4.2 can be interpreted as follows. The variables 7(7) are the
(expected) number of times the algorithm chooses to play policy m which makes the objective the
total expected regret incurred by the algorithm. The constraints encode that any uniformly good
algorithm needs to be able to distinguish the true instance 6 from all confusing instances A € A(6),
because otherwise it would incur linear regret. To do so, a uniformly good algorithm needs to play
policies 7 that induce different behavior in A and 6 which is precisely captured by the constraints

2ren (MK LG, PY) = 1.

Although Theorem 4.2 has the flavor of results in the bandit and RL literature, there are a few notable
differences. Compared to lower-bounds in the infinite-horizon MDP setting [16, 31, 27], we for
example do not assume that the Markov chain induced by an optimal policy 7* is irreducible. That
irreducibility plays a key role in converting the semi-infinite linear program (8), which typically has
uncountably many constraints, into a linear program with only O(S A) constraints. While for infinite
horizon MDPs, irreducibility is somewhat necessary to facilitate exploration, this is not the case
for the finite horizon setting and in general we cannot obtain a convenient reduction of the set of
constraints A(6) (see also Appendix E.2).

4.2 Gap-dependent lower bound when optimal policies visit all states

To derive closed-form gap-dependent bounds from the general optimization problem (8), we need
to identify a finite subset of confusing MDPs A(6) that each require the RL agent to play a distinct
set of policies that do not help to distinguish the other confusing MDPs. To do so, we restrict our
attention to the special case of MDPs where every state is visited with non-zero probability by some
optimal policy, similar to the irreducibility assumptions in the infinite-horizon setting [31, 27]. In this
case, it is sufficient to raise the expected immediate reward of a suboptimal (s, a) by gapy(s, a) in
order to create a confusing MDP, as shown in Lemma 4.3:

Lemma 4.3. Let O be the set of all episodic MDPs with Gaussian immediate rewards and optimal
value function uniformly bounded by 1 and let 0 € © be an MDP in this class. Then for any
suboptimal state-action pair (s, a) with gapg(s,a) > 0 such that s is visited by some optimal policy
with non-zero probability, there exists a confusing MDP \ € A(0) with

e )\ and 0 only differ in the immediate reward at (s, a)
o KL(P5,PT) < gapy(s,a)? forall w € IL

By relaxing the problem in (8) to only consider constraints from the confusing MDPs in Lemma 4.3
with K L(PF, PT) < gapy(s,a)?, for every (s, a), we can derive the following closed-form bound:

Theorem 4.4 (Gap-dependent lower bound when optimal policies visit all states). Let © be the set of
all episodic MDPs with Gaussian immediate rewards and optimal value function uniformly bounded
by 1. Let 0 € © be an instance where every state is visited by some optimal policy with non-zero
probability. Then any uniformly good algorithm on © has expected regret on 0 that satisfies

E K 1
oo 08 s,a: gapg(s,a)>0 88Po (S’ CL)



Theorem 4.4 can be viewed as a generalization of Proposition 2.2 in Simchowitz and Jamieson [30],
which gives a lower bound of order ) _ . gapy (5,a)>0 ﬁ for a certain set of MDPs.? While

our lower bound is a factor of H worse, it is significantly more general and holds in any MDP where
optimal policies visit all states and with appropriate normalization of the value function. Theorem 4.4
indicates that value-function gaps characterize the instance-optimal regret when optimal policies
cover the entire state space.

4.3 Gap-dependent lower bound for deterministic-transition MDPs

We expect that optimal policies do not visit all states in most MDPs of practical interest (e.g. because
certain parts of the state space can only be reached by making an egregious error). We therefore
now consider the general case where | _ e supp(m) € S but restrict our attention to MDPs with

deterministic transitions where we are able to give an intuitive closed-form lower bound. Note that
deterministic transitions imply V7, s,a : w™(s,a) € {0,1}. Here, a confusing MDP can be created
by simply raising the reward of any (s, a) by

vg —  max  vg, )
m: wf(s,a)>0

the regret of the best policy that visits (s, a), as long as it is positive and (s, a) is not visited by
any optimal policy. (9) is positive when no optimal policy visits (s, a) in which case suboptimal

actions have to be taken to reach (s, a) and gapy(s,a) > 0. Let w(, ) be any maximizer in (9),

which has to act optimally after visiting (s, a). From the regret decomposition in (3) and the fact
that 7(,  visits (s,a) with probability 1, it follows that v; — v;r(s‘“) > gapy(s,a). We further

have vy — U;T % < Hgapy(s,a). Equipped with the subset of confusing MDPs \ that each raise

T(s,a)

the reward of a single (s,a) as 7\(s,a) = r¢(s,a) + vy — vy, we can derive the following
gap-dependent lower bound:

Theorem 4.5. Let O be the set of all episodic MDPs with Gaussian immediate rewards and optimal
value function uniformly bounded by 1. Let 0 € © be an instance with deterministic transitions. Then
any uniformly good algorithm on © has expected regret on 0 that satisfies

lim inf w > Z ; > Z !

K—oo logK H? -gapy(s,a)’

— >
5,:a€Z0: gape(:0)>0 H - (V5 =05 ")  sae2,: gapy(s,0)>0
where Z5 = {(s,a) € S x A: Vr* € T}, w] (s,a) = 0} is the set of state-action pairs that no
optimal policy in 6 visits.

We now compare the above lower bound to the upper bound guaranteed by STRONGEULER in (5).
The comparison is only with respect to number of episodes and gaps*

Z M < Eg[R(K)] < Z M

H2gapy(s,a) ~ o By (s, a)’

s,a€Zg: gapg(s,a)>0 s,a: gapg(s,a)>

The difference between the two bounds, besides the extra H?2 factor, is the fact that (s, a) pairs that
are visited by any optimal policy (s, a # Zg) do not appear in the lower-bound while the upper-bound
pays for such pairs if they can also be visited after playing a suboptimal action. This could result in
cases where the number of terms in the lower bound is O(1) but the number of terms in the upper
bound is (S A) leading to a large discrepancy. In Theorem E.11 in the appendix we show that there
exists an MDP instance on which it is information-theoretically possible to achieve O(log(K)/€)
regret, however, any optimistic algorithm with confidence parameter § will incur expected regret of at
least 2(S'log(1/0)/¢). Theorem E.11 has two implications for optimistic algorithms in MDPs with
deterministic transitions. Specifically, optimistic algorithms

e cannot be asymptotically optimal if confidence parameter ¢ is tuned to the time horizon K;
e cannot have an anytime bound that matches the information-theoretic lower bound.

3We translated their results to our setting where V* < 1 which reduces the bound by a factor of H.
*We carry out the comparison in expectation, since our lower bounds do not apply with high probability.



5 Conclusion

In this work, we prove that optimistic algorithms such as STRONGEULER, can suffer substantially
less regret compared to what prior work had shown. We do this by introducing a new notion of gap,
while greatly simplifying and generalizing existing analysis techniques. We further investigated the
information-theoretic limits of learning episodic layered MDPs. We provide two new closed-form
lower bounds in the special case where the MDP has either deterministic transitions or the optimal
policy is supported on all states. These lower bounds suggest that our notion of gap better captures
the difficulty of an episodic MDP for RL.
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A Related work

We now discuss related work carefully. Instance dependent regret lower bounds for the MAB were
first introduced in Lai and Robbins [24]. Later Graves and Lai [16] extend such instance dependent
lower bounds to the setting of controlled Markov chains, while assuming infinite horizon and certain
properties of the stationary distribution of each policy. Building on their work, more recently Combes
et al. [5] establish instance dependent lower bounds for the Structured Stochastic Bandit problem.
Very recently, in the stochastic MAB, Garivier et al. [15] generalize and simplify the techniques of Lai
and Robbins [24] to completely characterize the behavior of uniformly good algorithms. The work of
Ok et al. [27] builds on these ideas to provide an instance dependent lower bound for infinite horizon
MDPs, again under assumptions of how the stationary distributions of each policy will behave and
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irreducibility of the Markov chain. The idea behind deriving the above bounds is to use the uniform
goodness of the studied algorithm to argue that the algorithm must select a certain policy or action at
least a fixed number of times. This number is governed by a change of environment under which
said policy/action is now the best overall. The reasoning now is that unless the algorithm is able to
distinguish between these two environments it will have to incur linear regret asymptotically. Since
the algorithm is uniformly good this can not happen.

For infinite horizon MDPs with additional assumptions the works of Auer and Ortner [1], Tewari
and Bartlett [31], Auer et al. [2], Filippi et al. [12], Ok et al. [27] establish logarithmic in horizon
regret bounds of the form O(D?S? Alog(T)/§), where § is a gap-like quantity and D is a diameter
measure. We now discuss the works of [31, 27], which should give more intuition about how the
infinite horizon setting differs from our setting. Both works consider the non-episodic problem
and therefore make some assumptions about the MDP M. The main assumption, which allows
for computationally tractable algorithms is that of irreducibility. Formally both works require that
under any policy the induced Markov chain is irreducible. Intuitively, the notion of irreducibility
allows for coming up with exploration strategies, which are close to min-max optimal and are easy
to compute. In [27] this is done by considering the same semi-infinite LP 8 as in our work. Unlike
our work, however, assuming that the Markov chain induced by the optimal policy 7* is irreducible
allows for a nice characterization of the set A(#) of "confusing" environments. In particular the
authors manage to show that at every state s it is enough to consider the change of environment which
makes the reward of any action a : (s,a) ¢ 7* equal to the reward of @’ : (s,a’) € w*. Because of
the irreducability assumption we know that the support of P(:|s, a) is the same as the support of
P(-|s,a’) and this implies that the above change of environment makes the policy 7 which plays
(s, a) and then coincides with 7* optimal. Some more work shows that considering only such changes
of environment is sufficient for an equivalent formulation to the LP8. Since this is an LP with at most
S X A constraints it is solvable in polynomial time and hence a version of the algorithm in [5] results
in asymptotic min-max rates for the problem. The exploration in [31] is also based on a similar LP,
however, slightly more sophisticated.

Very recently there has been a renewed interest in proposing instance dependent regret bounds for
finite horizon tabular MDPs [30, 25, 21]. The works of [30, 25] are based on the OFU principle
and the proposed regret bounds scale as O(3_ , ¢« H l0g(T")/ gap(s, a) + SH log(T")/ gapmin).
disregarding variance terms and terms depending only poli-logarithmically on the gaps. The setting
in [25] also considers adversarial corruptions to the MDP, unknown to the algorithm, and their
bound scales with the amount of corruption. Jin and Luo [21] derive similar upper bounds, how-
ever, the authors assume a known transition kernel and take the approach of modelling the problem
as an instance of Online Linear Optimization, through using occupancy measures [35]. For the
problem of ()-learning, Yang et al. [33], Du et al. [10], also propose algorithms with regret scaling
as O(SAHS log(T)/ gap,,;,)- All of these bounds scale at least as Q(SH log(T)/ gap,,;, ). Sim-
chowitz and Jamieson [30] show an MDP instance on which no optimistic algorithm can hope to do
better.

B Model-based optimistic algorithms for tabular RL

This section is a general discussion of optimistic algorithms for the tabular setting. Our regret upper
bounds can be extended to other model based optimistic algorithms or in general any optimistic
algorithm for which we can show a meaningful bound on the surpluses in terms of the number of
times a state-action pair has been visited throughout the K episodes.

Pseudo-code for a generic algorithm can be found in Algorithm 1. The algorithm begins by initializing
an empirical transition kernel P € [0, 1]5*4%5, empirical reward kernel # € [0,1]5%4, and bonuses
b € [0,1]%%A. If we let ny (s, a) be the number of times we have observed state-action pair (s, a) up
to episode k and ny(s’, s, a) the number of times we have observed state s after visiting (s, a) then
one standard way to define the empirical kernels at episode k are as follows:

k ng(s’,s,a) .
1 . ne(85.0) e (s 0) >0

S Ry(s,a),  P(s)s,a) =4 MO if ng(s,a) (10)
5,0) =

7(s,a) =

ng( 0 otherwise

where R, (s, a) is a sample from (s, a) at episode j if (s, a) was visited and 0 otherwise. At every
episode the generic algorithm constructs an policy 7, using the empirical model together with bonus
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Algorithm 1 Generic Model-Based Optimistic Algorithm for Tabular RL

Require: Number of episodes K, horizon H, number of states .S, number of actions A, probability
of failure §.
Ensure: A sequence of policies (74 )% | with low regret.

1: Initialize empirical transition kernel P € [0, 1]3%A%5
bonuses b € [0, 1]5*4.
: for k € [K] do
h=H, Qk(5H+17CLH+1) = O,V(S,Q) €S x A
while ~ > 0 do .
Qr(s,a) =7(s,a) + (P(-|s,a), Vi) + b(s,a).
7 (s) := argmax, Qk(s, a).
h—=1
Play my, collect observations from transition kernel P and reward kernel » and update P,# b.

, empirical reward kernel # € [0, 1]%%4,

A A i

terms b(s, a),V(s,a) € S x A. Bonuses are constructed by using concentration of measure results
relating 7(s, a) to r(s,a) and P(-|s,a) to P(-|s,a). These bonuses usually scale inversely with
the empirical visitations ng(s,a),V(s,a) € S x A, as O(1/+/ny(s,a)). Further, depending on
the type of concentration of measure result, the bonuses could either have a direct dependence on
K, H,S, A,é (following from Azuma-Hoeffding style concentration bounds) or replace H with
the empirical estimator (following Freedman style concentration bounds). The bonus terms ensure
that optimism is satisfied for 7y, that is Qr(s,a) > Q™ (s,a) for all (s,a) € S x A and all
episodes k € [K] with probability at least 1 — §. Algorithms such as UCBVI [4], EULER [34] and
STRONGEULER [30] are all versions of Algorithm 1 with different instantiations of the bonus terms.

The greedy choice of 7, together with optimism also ensures that Vi (s) > V*(s). This has been
key in prior work as it is what allows to bound the instantaneous regret by the sum of surpluses and
ultimately relate the regret upper bound back to the bonus terms and the number of visits of each
state-action pair respectively. Our regret upper bounds are also based on this decomposition and
as such are not really tied to the STRONGEULER algorithm but would work with any model-based
optimistic algorithm for the tabular setting. The main novelty in this work is a way to control the
surpluses by clipping them to a gap-like quantity which better captures the sub-optimality of 7y
compared to 7*. We remark that our analysis can be extended to any algorithm which follows
Algorithm 1 so as long as we can control the bonus terms sufficiently well.

C Experimental results

In this section we present experiments based on the following deterministic LP which can be found
in Figure 2. In short the MDP has only deterministic transitions and 3 layers. The starting state is

Figure 2: Deterministic MDP used in experiments
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denoted by s¢ and the j-th state at layer ¢ by s; ;. There are n + 1 possible actions at sg, two possible
actions at s1 j,Vj € [n + 1], and a single possible action at s ;,Vj € [4]. The only non-negative
rewards are at state-action pairs in the final layer. The unique optimal policy reaches state s ;
and has return equal to 0.5. We distinguish between two types of sub-optimal policies given by 71
which visists s1 1 and all other sub-optimal policies which visit sy ;,j > 2. The return of policy
71 determines the gap parameter in our experiments and the reward at state s, 4 determines the €
parameter.

We run two sets of experiments using the UCB VI algorithm [4]. The chose this algorithm over
Strong-EULER since UCB VT is slightly easier to implement and their differences are orthogonal
to the issues studied here. The rewards in both experiments are Bernoulli with the respective mean
provided below the state in Figure 2. In the first set of experiments we let the gap parameter to

be equal to 0.5 and in the second set of experiments we let the gap parameter to be 4/ % We let

4€pow

€= , Where ¢,,,, takes integer values between 0 and |0.5 * log, (K') |. We have two settings
for n (respectively S) which are n = 1 and n = 250. In all experiments we have set K = 500000
and the topology of the MDP implies I = 3. Each experiment is repeated 5 times and we report the

average regret of the algorithm, together with standard deviation of the regret. We note that in the

first set of experiments we should observe regret which is close to @(%‘i(ﬂ), this is because with

our parameter choices the return gap is gap/2 for all settings of €. In the second set of experiments
we should observe regret which is close to ©(v SAK) as the min-max regret bounds dominate.

4000 Return gap bound
= Min-max regret bound N
00 R(K}.epsilon_pow:0 1

(
3000 R(K) epsilon_pow:1
R(K),epsilon_pow:2
R(K).epsilon_pow:3

2500 10°

Regrat

o 2000
< ) Return gap bound
it 10 -

1500 p —— Min-max regret bound
1000 R{K),epsilon_pow:0
10t R{K),epsilon_pow:1
500 R(K),epsilon_pow:2
o R{K),epsilon_pow:3

o 100000 200000 300000 400000 500000 o 100000 200000 300000 400000 500000
K K
(@n=1 (b) n = 250

Figure 3: Large gap experiments

The first set of experiments can be found in Figure 3. We plot S?A + SA%?(T) in purple and

S2A + v/SAK in brown for reference. We include the additive term of S?A as this is what the
theoretical regret bounds suggest. We see that for n = 1 our experiments almost perfectly match
theory, including the observations made regarding Opportunity O.1 and Opportunity O.2. In particular
there is no obvious dependence on 1/ gap,;, = 1/e, especially when ¢ = O(1/+v/K), which in the
plot is reflected by €0, = 0. In the case for n = 250 the algorithm performs better than what our
theory suggests. We expect that our bounds do not accurately capture the dependence on S and A,
at least for deterministic transition MDPs. The second set of experiments can be found in Figure 4.
Similar observations hold as in the large gap experiment.

D Additional Notation

We use the shorthand (s,a) € 7 to indicate that 7 admits a non-zero probability of visiting the
state-action pair (s, a) and abusively use 7 as the set of such state-action pairs, when convenient.

E Proofs and extended discussion for regret lower-bounds
Let Ny (k) be the random variable denoting the number of times policy 7 has been chosen by the

strategy 1. Let Ny (5.q) (k) be the number of times the state-action pair has been visited up to time &
by the strategy .
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Figure 4: Small gap experiments

E.1 Lower bound as an optimization problem
We begin by formulating an LP characterizing the minimum regret incurred by any uniformly good
algorithm .

Theorem E.1. Let v be a uniformly good RL algorithm for ©, that is, for all problem instances
0 € O and exponents o > 0, the regret of ¢ is bounded as E[Rg(K)] < o(K®*). Then, for any
0 € O, the regret of 1 satisfies

where C(0) is the optimal value of the following optimization problem

minimize ) (v —v)
) 20 7reZHW( ) (vg o)

s. t. > n(m)KLPF,P}) =1 forall A€ A®),
well

Y

where A'(0) = {\ € ©: I NI} = @, KL(IP’g;,IP:g) = 0} are all environments that share no
optimal policy with 6 and do not change the rewards or transition kernel on 7*.

Proof. We can write the expected regret as E[Ry(K)] = > 11 Eo[Ny (K)](v5 — vF). We will
show that n(m) = Eg[Ny . (K)]/log K is feasible for the optimization problem in (8). This is
sufficient to prove the theorem. To do so we follow the techniques of [15]. With slight abuse of

notation, let ]P’g’“' be the law of all trajectories up to episode k, where I}, is the history up to and
including time k. Let Y}, be the random variable which is the value function of the policy, ¥ (I),
selected at episode k. We have

KL(IPékH 7 PikJrl) _ KL(IP;/kHJk ’ P§k+171k)

= KL(P),PY¥) +E

Py (Vi)
Epg’(’k) llog W ’ 5

Y (Vi) (12)

= KL(Py,Py¥) +E | Y x(¥(Ii) = m) K L(Pj, P})

mell

Iterating the argument we arrive at ) |, Eg[Ny ~(K)| K L(Pg,P}) = KL(]P’éK , }P’f\K) where Eg
denotes expectation in problem instance §. Next one shows that for any measurable Z € [0, 1], with
respect to the natural sigma-algebra induced by I, it holds that K L(Pg* , Pi<) > kl(Eg[Z], EA[Z])
where kl(p,q) = plogp/q+ (1 — p)log (1 — p)/(1 — q) denotes the KL-divergence between two
Bernoulli random variables p and ¢. This follows directly from Lemma 1 by Garivier et al. [15].
Finally we choose Z = Ny 111 (K)/K as the fraction of episodes where an optimal policy for A
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was played (here we use the short-hand notation Ny, 15 (K) =
kl-term we have
y (Ee [Ny 115 (K)] Ex[Ny 115 (K)]> - <1  Eg[Ny, 1 (K)]> log K

K ’ K = K K — Ex\[Ny.m; (K)]

Ny =(K)). Evaluating the

melly

— log 2.

Since 1 is a uniformly good algorithm it follows that for any o > 0, K' — Ex [Ny, 115 (K)] = o(K®).
By assuming that ITj N IT} = @, we get Eg[Ny 5 (K)] = o(K). This implies that for K sufficiently
large andall1 > o > 0
&l Eg[Ny, 5 (K)] Ex[Ny, 5 (K)]
K ’ K

) >logK —log K“ = (1 —a)log K D‘—H0>logK.
O

The set A’(6) is uncountably infinite for any reasonable © we consider. What is worse the constraints
of LP 8 will not form a closed set and thus the value of the optimization problem will actually be
obtained on the boundary of the constraints. To deal with this issue it is possible to show the following.

Theorem 4.2 (General instance-dependent lower bound for episodic MDPs). Let i) be a uniformly
good RL algorithm for ©, that is, for all problem instances 6 € © and exponents o > 0, the regret of
¥ is bounded as E[Rq(K)] < o(K®), and assume that v}, < H. Then, for any 0 € O, the regret of
1 satisfies

lim inf L[me (5]

>
K—oo logK - C(g)’

where C(0) is the optimal value of the following optimization problem

minimize ) (v — v}
o 7;177( ) (va 6)

(3)
5. t. > n(mKLP;,PY) =1 forall A€ A).

mell

Proof. For the rest of this proof we identify A’(f) = {\ € © : II; N 1T = §, KL(P}*,PT7) =
0,vm; € II;} as the set from Theorem E.l1 and A(9) = {\ € © : v} > v 7} ¢
II;, KL(P,°,P°) = 0}. From the proof of Theorem E.1 it is clear that we can rewrite A’(6)
as the union |J .y A (0), where A (0) = {\ € © : KL(P,®,P}?) = 0,0™x > vy, 7% = T} is
the set of all environments which make 7 the optimal policy. This implies that we can equivalently
write LP 8 as

minimize ) (v — vj
) 0 277( ) (v 9)
well

+. inf KL(PT.PT)>1  forall ' ¢ IL
s Aeﬂ«@%n(ﬁ) (P§,P5) > ™

13)

The above formulation now minimizes a linear function over a finite intersection of sets, however,
these sets are still slightly inconvenient to work with. We are now going to try to make these sets
more amenable to the proof techniques we would like to use for deriving specific lower bounds.
We begin by noting that A, (6) is bounded in the following sense. We identify each A with a

vector in [0,1]5°4 x [0,1]54 where the first S2A coordinates are transition probabilities and the
last S'A coordinates are the expected rewards. From now on we work with the natural topology on
[0, 1]52‘4 x [0,1]54, induced by the ¢; norm. Further, we claim that we can assume that K L (P, PT)
is a continuous function over A,/ (). The only points of discontinuity are at \ for which the support
of the transition kernel induced by A does not match the support of the transition kernel induced by 6.
At such points the K'L(Pj, P}) = oo. This implies that such A does not achieve the infimum in the
set of constraints so we can just restrict A,/ (6) to contain only A for which K L(Pj,P}) < co. With
this restriction in hand the KL-divergence is continuous in .
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Fix a 7’ and consider the set {7 : infxca 6y > ey 1(m) K L(PF,PY) > 1} corresponding to one
of the constraints in LP 13. Denote A, (0) = {\ € © : KL(P}*,P{?) = 0,07 > v}’ 7} ¢
IT;, 75 = 7'}, A (6) is closed as K L(Py°,IP}°) and v — v,° are both continuous in \. To
see the statement for v} *, notice that this is the maximum over the continuous functions v} over
7 € I Take any n € Ar/(0) and let {\;}32,,\; € Ar(0) be a sequence of environments such
that 3y n(m)KL(PG,PY) = 1+ 277, 1f there is no convergent subsequence of {);}52, in
A, (0) we claim it is because of the constraint v;r; > vgg. Take the limit A of any convergent
subsequence of {A;}52, in the closure of A/ (¢). Then by continuity of the divergence we have
0 = lim;_,o KL(P;’, P}’) = KL(P;°,P}’), thus it must be the case that v} < vj’. This
shows that A/ () is a subset of the closure of A, (6) which implies it is the closure of A (6), i.e.,
A (0) = A (6).

Next, take 7 € {n : minyex ,(9) Doren MM K L(PGF,PT) > 1} and let Ay, be the environ-
ment on which the minimum is achieved. Such A/, exists because we just showed that A (0)
is closed and bounded and hence compact and the sum consists of a finite number of continu-
ous functions. If A\r,, € Ar(0) then n € {n : infyer () Doren (M) KL(PG,PY) > 1}, If
Anty & A (0) then Ay, must be a limit point of A,/ (). By definition we can construct a
convergent sequence of {A;}72,,A; € Ax/(0) to Ay such that 3° .y n(m) KL(PG, PY ) = 1.
This implies }° cqn(m)KL(PG,PY ) > infiea, (o) 2oren n(m) K L(PF, PY). Using the conti-

nuity of the KL term and taking limits, the above implies that the minimum upper bounds the
infimum. Since we argued that Az (6) is bounded and ) .y n(m) K L(Pg, PY ) is also bounded

from below this implies A/ (6) contains the infimum infyen ,(6) > e 7(7) K L(PF,PT). This
implies infxen , 0) D per () K L(PG,PY) > minyeq |, g) 2 ren 7(m) K L(PF,PY) , and so the

infimum over A, () equals the minimum over A,(¢). Which finally implies that € {7 :
infaxea_, (9) 2onen () K L(PG,PY) > 1}. This shows that LP 13 is equivalent to

minimize ) (v —v)

inin > n() (5 )
well

s. t. min ) KL(P5,PT) > 1 forall ' €11,
/\6]\1/(9);{0( ) ( 0 ,\) =

or equivalently that we can consider the closure of A(f) in LP 8, A(f) = {\ € O: vj\ri > v;r; , &

I, KL(P,°,PY°) = 0} i.e. the set of environments which makes any 7 optimal without changing
the environment on state-action pairs in 7. O

E.2 Lower bounds for full support optimal policy

Lemma 4.3. Let O be the set of all episodic MDPs with Gaussian immediate rewards and optimal
value function uniformly bounded by 1 and let 0 € © be an MDP in this class. Then for any
suboptimal state-action pair (s, a) with gapy(s,a) > 0 such that s is visited by some optimal policy
with non-zero probability, there exists a confusing MDP \ € A(0) with

e ) and 6 only differ in the immediate reward at (s, a)
o KL(PF,PT) < gapy(s,a)? forall m € IL
Proof. Let X be the environment that is identical to 6 except for the immediate reward for state-action

pair for (s, a). Specifically, let Ry (s, a) so that ry(s,a) = rg(s,a)+ A with A = gapy(s, a) . Since
we assume that rewards are Gaussian, it follows that

KL(P§,P}) = wi(s,a)KL(Ry(s,a), Rx(s,a)) < KL(Ry(s,a), R\(s,a))
< gapy(s, a)®

for any policy m € II. We now show that the optimal value function (and thus return) of X is uniformly
upper-bounded by the optimal value function of 8. To that end, consider their difference in any state
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s', which we will upper-bound by their difference in s as

VX (s') = Vi (s) < x(s(s) > H(S DB (si(e) = slsw(ery = 5V (5) = Vi (s)]
<VX(s) = V' (s)-

Further, the difference in s is exactly
Vi(s) = Vg (s) =ra(s,a) + (Po([s, a), Vi) — Vi'(s)
=rg(s,a) + (Po(]s,a), V") + gapy(s,a) — Vi'(s) =

Hence, VY =V <1 and thus A € ©. We will now show that there is a policy that is optimal in A
but not in §. Let 7* € II3 be any optimal policy for # that has non-zero probability of visiting s and
consider the policy

a ifs=3s

o ={¢ 7

that matches 7* on all states except s. We will now show that 7 achieves the same return as 7* in A.
Consider their difference

# o ()

vf =X = wl(s, 7(s))[ra(s, @(s)) + (Pa(]s, 7(s)), ViT)]
—w (5,7 () [rals, 77 () + (Pa(ls, 7" (s)), ViT )]

(
@ w} (s, 7% (s))[ra(s, 7(5)) — ra(s, 7 () + (Pa-]s, 7(s)) — Pa(:]s, 7" (s)), Vi )]
(@) wi (5,7 (5))[A + ro(s,7(s)) — ro(s,7(5)) + (Po ("] 5, 7(5)) — Po(']s, 7" (s)), V5]

W g (s, 7 (5))[A — gapy (s, 7(s))]

where ( ) and (4¢) follow from the fact that 7 and 7* only differ on s and hence, their probability
at arriving at s and their value for any successor state of s is identical. Step (¢i¢) follows from
the fact that A and 6 only differ on (s, a) which is not visited by 7*. Finally, step (iv) applies the
definition of optimal value functions and value-function gaps. Since A = gapy(s, 7(s)), it follows
that v§ = v§ = v] = v;. As we have seen above, the optimal value function (and return) is
identical in # and A and, hence, 7 is optimal in .

Note that the we can apply the chain of equalities above in the same manner to v} — vg* if we
consider A = 0. This yields

*

vi —vf = —wf (s,7%(s)) gapy(s,a) <0

because wj (s,7*(s)) > 0 and gap,(s,a) < 0 by assumption. Hence 7 is not optimal in 6, which
completes the proof. O

Lemma E.2 (Optimization problem over S x A instead of II). Let optimal value C(0) of the
optimization problem (8) in Theorem 4.2 is lower-bound by the optimal value of the problem

minimize s,a)gapy(s,a
ninimiz ;n( ) gapy (s, a)

Zr](s,a)KL(Rg(s,a),RA(S,a)) (14)

s,a

+ Y n(s,a)KL(Py(-|s,a), Px(‘s,a)) =1 forall X € A(0)

s,a

Proof. First, we rewrite the objective of (8) as

Sonm)ws —v) 2 Y 0w S wis,a) gapg(s,a) = 3 (Z n(m)wj (s, a)) gapy (s, a)

mell mell s,a s,a mell
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where step (¢) applies Lemma F.1 proved in Appendix F. Here, wj (s, a) is the probability of reaching
s and taking a when playing policy 7 in MDP 6. Similarly, the LHS of the constraints of (8) can be
decomposed as

S n(m)KL(F}, B)

mell

=Y n(m) Y wi(s,a) (KL(Ro(s, a), Ra(s, a)) + KL(Py(-[s, a), Px(|s, a)))
mell S,a

= [Z n(m)wy (s,a)| (KL(Rg(s,a), Ra(s,a)) + KL(Ps(|s,a), Pa(‘]s, )

where the first equality follows from writing out the definition of the KL divergence. Let now n()
be a feasible solution to the original problem (8). Then the two equalities we just proved show that
n(s,a) = > cnn(m)wg (s, a) is a feasible solution for the problem in (14) with the same value.
Hence, since (14) is a minimization problem, its optimal value cannot be larger than C'(6), the optimal
value of (8).

Theorem 4.4 (Gap-dependent lower bound when optimal policies visit all states). Let © be the set of
all episodic MDPs with Gaussian immediate rewards and optimal value function uniformly bounded
by 1. Let § € © be an instance where every state is visited by some optimal policy with non-zero
probability. Then any uniformly good algorithm on © has expected regret on 0 that satisfies

. E[Ry(K)] 1
lim inf = A2 S
Koo log K 2 gapg (s, a)

Y

s,a: gapg(s,a)>0

Proof. Let A(6) be a set of all confusing MDPs from Lemma 4.3, that is, for every suboptimal (s, a),
A(0) contains exactly one confusing MDP that differs with 6 only in the immediate reward at (s, a).
Consider now the relaxation of Theorem 4.2 from Lemma E.2 and further relax it by reducing the set
of constraints induced by A(#) to only the set of constraints induced by A(6):
mirimize 2; n(s,a) gapy(s, a)
s.t. Zn(s,a)KL(Rg(s,a),RA(&a)) >1 forall A € A(6)

s,a

Since all confusing MDPs only differ in rewards, we dropped the KL-term for the transition probabil-
ities. We can simplify the constraints by noting that for each A, only one KL-term is non-zero and it
has value gap, (s, a)?. Hence, we can write the problem above equivalently as

minimize s, ) gapa(s, a
()20 ;n(’ ) gapy(s, a)

s.t. n(s,a) gapy(s,a)® > 1 forall (s,a) € S x Awith gapgy(s,a) >0
Rearranging the constraint as 7)(s, a) > 1/ gap, (s, a)?, we see that the value is lower-bounded by
1
D n(s,a)gapg(s,a) > > n(s,a)gape(s,a) > Y ———,
: , gapy (s, a)
s,a s,a: gapg(s,a)>0 s,a: gapy(s,a)>0

which completes the proof. O

We note that because the relaxation in Lemma E.2 essentially allows the algorithm to choose which
state-action pairs to play instead of just policies, the final lower bound in Theorem 4.4 may be loose,
especially in factors of H. However, it is unlikely that the gap,,;, term arising in the upper bound of
Simchowitz and Jamieson [30] can be recovered. We conjecture that such a term can be avoided by
algorithms, which do not construct optimistic estimators for the Q-function at each state-action pair
but rather just work with a class of policies and construct only optimistic estimators of the return.
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E.3 Lower bounds for deterministic MDPs
We will show that we can derive lower bounds in two cases:

1. We show that if the graph induced by the MDP is a tree, then we can formulate a finite LP
which has value at most a polynomial factor of H away from the value of LP 8.

2. We show that if we assume that the value function for any policy is at most 1 and the rewards
of each state-action pair are at most 1, then we can derive a closed form lower bound. This
lower bound is also at most a polynomial factor of H away from the solution to LP 8.

We begin by stating a helpful lemma, which upper and lower bounds the K L-divergence between
two environments on any policy 7. Since we consider Gaussian rewards with o = 1/4/2 it
holds that KL(Ry(s,a), Rx(s,a)) = (r¢(s,a) — rx(s,a))?. Further for any w and \ it holds
that KL(0(m), A7) = > 5.0y er KL(Ro(s,a), Rx(s,a)) = 3 (s gyen(To(s,a) — ra(s,a))?. We
can now show the following lower bound on K L(0(w), A(m)).

Lemma E.3. Fix  and suppose X is such that 7 = w. Then (v* —v™)? > KL(0(r), \(m)) >

(v*—v™)?

Proof. The second inequality follows from the fact that the optimization problem

minimize Z (ro(s,a) — TA(S,G))z

ONEA(0):n T =
(O):m3=m (s,a)em

s. t. Z ra(s,a) —ro(s,a) > v* =07,
(s,a)em
admits a solution at 0, A for which r)(s,a) — r9(s,a) = ”*I_{’“w
follows from considering the optimization problem

. ,
maximize ro(s.a) — ry(s.a
0 NEA(0):mt = (S%)Eﬂ( o(s,a) —ra(s,a))

s.t. Z ra(s,a) —ro(s,a) > v* — o7,
(s,a)em

,¥(s,a) € w. The first inequality

and the fact that it admits a solution at €, A for which there exists a single state-action pair (s,a) € 7
such that rg(s,a) — ra(s,a) = v* — v™ and for all other (s, a) it holds that 75 (s, a) = r¢(s,a). O

Using the above Lemma E.3 we now show that we can restrict our attention only to environments
A € A(#) which make one of 7{, ) optimal and derive an upper bound on C'(¢) which we will try to

match, up to factors of H, later. Define the set A(A) = {\ € A(f) : I(s,a) € S x A, 7} = Tis.a)}
and II* = {r € I, m # mg : 3(s,a) € S x A,m =m(, ,}. We have

Lemma E.4. Let C(0) be the value of the optimization problem

minimize Z n(m)(v* —v™)

n(m)>0 mclls
_ (15)
5.t > n(m)ELB(r), A(r)) > 1,YA € A(6).
mell*
Then Y, cqp- 7eie > C(6) = S

Proof. We begin by showing C(0) > % holds. Fix a w ¢ II* s.t. the solution of LP 8 implies

n(m) > 0. Let A € A(0) be a change of environment for which K L(6(), A(7)) > 0. We can now
shift all of the weight of () to (7} ) while still preserving the validity of the constraint. Further
doing so to all WZ‘M) for which 772‘5 a # () will not increase the objective by more than a factor of

Hasv*—0v™ > % Z(s a)en v — (), Thus, we have converted the solution to LP 8 to a feasible
solution to LP 15 which is only a factor of H larger.
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Next we show that 3 A > C9). Setn(r) = 0,Yr € II\ II* and set n(7) =

mwell* v*—o7
—A_ Wr € II*. If wis s.t. n(7) > 0 then for any A which makes 7 optimal it holds that

(v*—v7)2?
H (’U* _ v‘n';)Q H . .
1< (0% — v™3)2 T < = UW;)2KL(9(7T)\)7)\(71'>\))
— T](’/T;)KL(Q(W;), )\(ﬂ';)) < Z n(w/)KL(e(ﬂ/)’ )\(71'/))7
' ell

where the second inequality follows from Lemma E.3. Next, if 7 is s.t. (7) = 0 then for any A
which makes 7 optimal it holds that

Z 77(77,>KL(9(7T/)’ )‘(ﬂ-/)) > Z n(ﬂés,a))KL(0<Wz<s,a))7 A(WZs,a)))

' ell (s,a)ems
H
= Z T KL(Q(T(EFS a))v /\(ﬂ-z‘s a)))
(s,a)ems (U* -v (S’a))Q ' '
’ A
H * *
> ey O KLOw) Mat,w))
(s,a)ems
H
Z o =) > KL(Ry(s,a),Rx(s,a))
(s,a)ems
H * *
= 7(/0* — Uﬂ_;)2 KL(G(']T)\), )\(71—)\)) 2 1,
where the second inequality follows from the fact that v™ < v ¥(s,a) € . O

E.3.1 Lower bound for Markov decision processes with bounded value function

Lemma E.5. Let O be the set of all episodic MDPs with Gaussian immediate rewards and optimal
value function uniformly bounded by 1. Consider an MDP 6 € © with deterministic transitions.
Then, for any reachable state-action pair (s, a) that is not visited by any optimal policy, there exists a
confusing MDP )\ € A(0) with

o \and 0 only differ in the immediate reward at (s, a)
o KL(PF,PY) =wj(s,a)(vy — U;T<5’“>)2for all m € I where vg<s’“’ = MAaXr: = (s,a)>0 V-

Proof. Let (s,a) € S x A be any state-action pair that is not visited by any optimal policy. Then

v;r(s’") = MaXy,; = (s,a)>0 V§ < Up is strictly suboptimal in 6. Let 7 be any policy that visits (s, a)
and achieves the highest return vg(s'“) in € possible among such policies.

Define A to be the MDP that matches 6§ except in the immediate reward at (s, a), which we set as

Ri(s,a) = N(rg(s,a) + A, 1/2) with A = v} — v, ). That is, the expected reward of A in (s, a)
is raised by A. For any policy 7, it then holds

KL(PG,P}) = wg(s,a)KL(Ry(s,a), Rx(s,a))
vy = wg (s,a)A + vy
due to the deterministic transitions. Hence, while v5 = vy and all optimal policies of § are still
optimal in A\, now policy 7, which is not optimal in 6 is optimal in .

By the choice of Gaussian rewards with variance 1/2, we have K L(Ry(s, a), Rx(s,a)) = (v} —
vy )2 and thus K L(PF, PT) = w (s, a)(vj — vy )2 forall 7 € IL.

It only remains to show that A € ©, i.e., that all immediate rewards and optimal value function is
bounded by 1. For rewards, we have

ra(s.0) = ro(s,a) + A = ro(s,a) + 0§ — vy = v — (v —ry(s,0)) < v < 1

>0
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for (s,a) and for all other (s',a’), ra(s’,a’) = r¢(s’,a’) < 1. Finally, the value function at any
reachable state is bounded by the optimal return v} = v; < 1 and for any unreachable state, the
optimal value function of X is identical to the optimal value function of 6. Hence, A € O. O

Theorem 4.5. Let O be the set of all episodic MDPs with Gaussian immediate rewards and optimal
value function uniformly bounded by 1. Let 0 € © be an instance with deterministic transitions. Then
any uniformly good algorithm on © has expected regret on 0 that satisfies

lim inf w > Z ; > Z !

K—oo logK H2'ga7p6(83a)7

— >
s,a€Zg: gapy(s,a)>0 H- (U; - 'Ug( ' )) s,a€Zy: gapy(s,a)>0
where Zg = {(s,a) € S x A: ¥r* € ITj w} (s,a) = 0} is the set of state-action pairs that no
optimal policy in 0 visits.

Proof. The proof works by first relaxing the general LP 8 and then considering its dual. We now
define the set A(#) which consists of all changes of environment which make ﬂ'z‘ a) optimal by only

changing the distribution of the reward at (s, a) by making it v — U;T“‘“) larger. Formally, the set is
defined as

AB) = {Noay: X € A(B), KL(Ry(s,a), Ra(s,a)) = (v} —v"C)?,
KL(Ry(s',a"),Rx(s",a")) = 0, KL(Py(s',a"), P\(s',a")) = 0,V(s',a’) # (s,a)}.

This set is guaranteed to be non-empty (for any reasonable MDP) by Lemma E.5. The relaxed LP is
now give by

minimize Z n(m)(vy —v})

n(m)>0
well ) (16)
s. t. Z n(m)KL(P;,P5) >1  forall A € A(6).
well
The dual of the above LP is given by
mamze 2 uO)
A€A(0) (17)
s.t. > w(NKLPG,PY) <vp—vj  forallw € IL
AEA(D)

By weak duality, the value of any feasible solution to (17) produces a lower bound on C'(f) in
Theorem 4.2. Let

X ={(s,a) € S x A: wj (s,a) = 0 for all 7 € IIj and wy (s,a) > 0 for some = € II\ II5}

be the set of state-action pairs that are reachable in 6 but no optimal policy visits. Then consider a
dual solution g that puts 0 on all confusing MDPs except on the |X'| many MDPs from Lemma E.5.
Since each such confusing MDP is associated with an (s,a) € X, we can rewrite 1 as a mapping
from & to R sending (s,a) — A(s,q). Specifically, we set

1 T -1
p(s,a) = i (v;‘ - ve(s'“)) for all (s,a) € X.
To show that this p is feasible, consider the LHS of the constraints in (17)

s —1
S WKLERE) = Y o (v o) KL(EFP)

= H
AEA(0) (s,a)eX
_ i *x ”(*s,a) -1 T ® 77(*5,(1,) 2
= 77 \V6 ~ Yo wg (s, a)(vg — vy ")
(s,a)eXx
= Y ullsa)h -y
H ’ o
(s,a)eXx



where the first equality applies our definition of p and the second uses the expression for the KL-

divergence from Lemma E.5. By definition of v;r(s’“) , we have vg % > 7 for all policies 7 with
wg (s,a) > 0. Thus,

1 T * T(sa 1 T * I
Z 7 We (s,a)(vg — vy ™) < Z W (s,a)(vg — vg)
(s,a)ex (s,a)eX
<wg —uvg
where the second inequality holds because each policy visits at most [ states. Thus proves that p
defined above is indeed feasible. Hence, its objective value

S o= Y o (v

AEA(0) (s,a)eXx

is a lower-bound for C'(6) from Theorem 4.2 which finishes the proof. O

E.3.2 Tree-structured MDPs

Even though Lemma E.4 restricts the set of confusing environments from A(6) to A(#), this set could
still have exponential or even infinite cardinality. In this section we show that for a type of special
MDPs we can restrict ourselves to a finite subset of A(6) of size at most SA.

Arrange ﬂi*s a) (s,a) € § x A according to the value functions v (=) Under this arrangement let

T = T =,...,= Tm. Let mp = m3. We will now construct m environments Ay, ..., A, which
will constitute the finite subset. We begin by constructing A; as follows. Let B, be the set of all
(sh,apn) € m and (sp,ap) & mo. Arrange the elements in B; in inverse dependence on horizon
(8hy>@ny) = (Shy,@ny) = oo 2 (Shy, » Ay, )» Where Hy = [Bi|, so that hy > hy >, ..., hy,. Let
A1 be the environment which sets

Ry, (8hy,ap,) = min(1,v™ —¢™)
R>\1 (Sh2, ah2) = Inin(lv maX(R9(8h2 ’ ahz)’ Ry (ShQ ’ ah2) +0™ — ('UW1 - R9(5h1 y Ahy )) - 1)))

Ry, (8h,, an,) = min(1, max(Rg(sn,, an,), Ro(sn,, an,) +v™ — (0™ = > Rg(sn,,an,)) — 1))
=1

Clearly A; makes 7; optimal and also does not change the value of any state-action pair which
belongs to 7y so it agrees with 6 on 7. Further 7o, 73, . . ., 7, are still suboptimal policies under
A1. This follows from the fact that for any ¢ > 1, v™ > v™ and there exists (s,a) such that
(s,a) € m; but (s,a) € m so Ry, (s,a) = Ry(s,a). Further A\; only increases the rewards for
state-action pairs in 71 and hence ’U;T; > v;ri Notice that there exists an index H; at which
Ry, (Shﬁ'1 , ahﬁl) = 0™ — (v — Zf:ll Ry(sn,, ahg)) — ﬁl) > Rg(agl,SHl). For this index it
holds that for h < Hq, R)\l (Sh, ah) = 1and for h > H;, R)\l (Sh, ah) = Re(sh, ah).

Let

B; = {(570‘) € m: (Saa) ¢ U"TZ}

£<i

B;={(s,a) € m : (s,a) € Um}.

£<i

We first define an environment ); on (s, a) € B; as follows. Ry, (s, a) = Ry, (s,a), where £ < i is
such that (s, a) € By. Let v; be the value function of 7; with respect to \;.

Lemma E.6. It holds that v’j\r < p™o,
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Proof. Let H; be the index for which it holds that for £ < Hj, (sp,,an,) € 7 <= (Sn,,an,) € B;.

Such a fIi exists as there is a unique sub-tree M;, of maximal depth, for which it holds that if
mi(N\M; # 0 <= m = m;. The root of this subtree is exactly at depth H — hj . Let 7; be

any policy such that 7; > ; and El(shg' , ahgv) € m;. By the maximality of M, such a 7; exists.
Because of the tree structure it holds that for any i’ > hg, if (swran) €My = (Sp,an) € T,

and hence \; = A;j up to depth h .. Since 7; and 7; match up to depth H — hz and 7; = m; it also
holds that

T T T T i
E RA].(shwahZ) > E Rg(she,ah[) > E Rg(shz,a,“Z E Ry she ah/Z
(<H; (<H; (<H; (<H;

Since m; is optimal under \; the claim holds. O

For all (sp,;,an;) € B; we now set

J

Ry, (8n;,an,;) = min(1, max(Ro(sn,, an, ), Ro(sn,,an;) +v™ — ZRL (Shysan,)) — 7)),
=1

(18)

and for all (s, ap) € B; we set Ry, (sh,an) = R;, (Sh,ap). From the definition of B; it follows
that \; agrees with all A; for j < i on state-action pairs in 7;. Finally we need to show that the
construction in Equation 18 yields an environment \; for which 7; is optimal.

Lemma E.7. Under \; it holds that w; is optimal.

Proof. Let H; and 7; be as in the proof of Lemma E.6. We now show that > o< B (522 , aZi) <
> o<, Bri(shiapi). We only need to show that >, 5 Ry, (s, ap) > 0™ — vA'. From
Equation 18 we have Ry, (sp,,an,) = min(1l,v™ — 1175\7) If Ry, (shy,an,) = 0™ — vf* then
the claim is complete. Suppose R, (sn,,an,) = 1. This implies v™ —v{* > 1 — Rg(shl,ahl)
Next the construction adds the remaining gap of v™ — v”‘ + Ro(shy,an,) — 1 to Ro(Sh,, an,) and
clips Ry, (Sh,, an,) to 1 if necessary. Continuing in thlS way we see that if ever Ry, (sn,,an,;) =
Rolsny.an,) + 0™ — (0 = Y, By (snesan,)) — J then v — V7 < 3y g R, (55, a).
On the other hand if this never occurs, we must have Ry, (s;’,a;’) = 1 > Ry, (s,’, a,’) which
concludes the claim.

Let A() = {1, ..., A} be the set of the environments constructed above. We now show that the
value of the optimization problem is not too much smaller than the value of Problem 8.

Theorem E.8. The value C(6) of the LP
minimize Z n(m)(v* —v™)

n(m)>0 i
s.t > n(m)KLO(r), A(m)) > 1,¥A € A(0)

satisfies C(0) > C;Z) and C(0) > %'

Proof. The inequality C'(6) > %

problem is a relaxation to LP 15.

follows from Lemma E.4 and the fact that the above optimization

To show the first inequality we consider the following relaxed LP

minimize Z n(m)(v* —v™)

n(m)>0 e
s.t. > n(m)KL(O(x), A(w)) > 1,¥A € A(6).
well
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Figure 5: Issue with restricting LP to IT*

Any solution to the LP in the statement of the theorem is feasible for the above LP and thus the
value of the above LP is no larger. We now show that the value of the above LP is greater than or
equal to (2(,2). Fix A € A(f). We show that for any \' € A(6) such that 7§ = 7%, it holds that
KL(O(m),\(m)) < H*KL(0(r), N (r)),Vr € II. This would imply that if 7 is a solution to the
above LP, then H?7 is feasible for LP 8 and therefore C (0) > %.

Arrange m € T1 : KL(0(n), A(7)) > 0 according to K L(6(r), A()) so that

mi 2wy == KL(0(mi), M) = KL(0(m;), A(m;))-

Consider the optimization problem

.. KL . I
minimize (O(mi), N (7))

s. t. TN = T}.

If we let Ay/(sp, ap), (sn,an) € 75 denote the change of reward for (sy,, az,) under environment X',
then the above optimization problem can be equivalently written as

hg,
minimize Z Ay (sn, ah)2
N eA(B) pyt
H
5.t > rlsnsan) + A (snan) > v
h=1

It is easy to see that the solution to the above optimization problem is to set 7(sp,, an) +Ax (Sp, an) =
Lforall h € [hy +1, H] and spread the remaining mass of v* — H; — (v™> — Zf:il)Rg(Shz ,ap, ) as
uniformly as possible on Ay (sp,an), h € [1,h H] Notice that under this construction the solution
to the above optimization problem and A match for h € [h a +1LH ]. Since the remaining mass

hi. hg. .
is now the same it now holds that for any X', >, Ay (sp,an)? > 75— >, 24 Ax(sh,an)?. This
.

implies K L(0(m;), N (m;)) > I;g KL(0(m), A()) and the result follows as H; <HVic[H). O

E.3.3 Issue with deriving a general bound

We now try to give some intuition regarding why we could not derive a generic lower bound for
deterministic transition MDPs. We have already outlined our general approach of restricting the set
IT and A(0) to finite subsets of manageable size and then showing that the value of the LP on these
restricted sets is not much smaller than the value of the original LP. One natural restriction of II
is the set IT* from Theorem 4.5. Suppose we restrict ourselves to the same set and consider only
environments making policies in IT* optimal as the restriction for A(6). We now give an example of
an MDP for which such a restriction will lead to an (S A) multiplicative discrepancy between the
value of the original semi-infinite LP and the restricted LP. The MDP can be found in Figure 5. The
rewards for each action for a fixed state s are equal and are shown in the vertices corresponding to
the states. The number of states in the second and last layer of the MDP are equal to (SA — 3)/2.
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The optimal policy takes the red path and has value V™" = 3. The set IT* consists of all policies T
which visit one of the states in green. The policies 71 ;, in blue, visit the green state in the second layer
of the MDP and one of the states in the final layer, following the paths in blue. Similarly the policies
9,4, in orange, visit one of the state in the second layer and the green state in the last layer, following
the orange paths. The value function of 7; ; is V™ = 3 — 25 —ie, where 0 < i < (SA—4)/2. We
claim that playing each ; ; n(m; ;) = (S A) times is a feasible solution to the LP restricted to IT*.
Fix i, the A, , must put weight at least 1/S A on the green state in layer 2. Coupling with the fact
that for all ¢’ the rewards 71 ;» are also changed under this environment we know that the constraint
of the restricted LP with respect to A, , is lower bounded by Y, (1) /(SA)?. Since there are
Q(SA) policies {1 ; }, this implies that n(my ;) = Q(SA) is feasible. A similar argument holds
for any o ;. Thus the value of the restricted LP is at most O(SA), for any e < SA.

However, we claim that the value of the semi-infinite LP which actually characterizes the regret is
at least (52 A?). First, to see that the above assignment of 7 is not feasible for the semi-infinite
LP, consider any policy = ¢ II*, e.g. take the policy which visits the state in layer 2 with reward
1 —1/SA — ¢ and the state in layer 4 with reward 1 — 2/S A — e. Each of these states have been
visited O(S A) times and n(7) = 0 hence the constraint for the environment A, is upper bounded

by SA ((SLA + 6)2 + ((S% + 6)2)) ~ 1/SA. In general each of the states in black in the second

layer and the fourth layer have been visited 1/S A times less than what is necessary to distinguish
any w ¢ IT* as sub-optimal. If we define the i-th column of the MDP as the pair consisting of the
states with rewards 1 — 1/SA — ie and 1 — 2/S A — ie then to distinguish the policy visiting both of
these states as sub-optimal we need to visit at least one of these Q(S%A?) times. This implies we
need to visit each column of the MDP 2(S? A2) times and thus any strategy must incur regret at least
Q (X, S2A%4L) = Q(S?42), leading to the promised multiplicative gap of (SA) between the
values of the two LPs.

Why does such a gap arise and how can we hope to fix it this issue? Any feasible solution to the
LP restricted to IT* essentially needs to visit the states in green ©(S2A?) times. This is sufficient to
distinguish the green states as sub-optimal to visit and hence any strategy visiting these states would
be also deemed sub-optimal. This is achievable by playing each strategy in IT* in the order of ©(SA)
times as already discussed. Now, even though II* covers all other states, from our argument above
we see that we need to play each m € II* in the order of ©(S2A?) times to be able to determine all
sub-optimal states. To solve this issue, we either have to increase the size of IT* to include for example
all policies visiting each column of the MDP or at the very least include changes of environments
in the constraint set which make such policies optimal. This is clearly computationally feasible for
the MDP in Figure 5, however, it is not clear how to proceed for general MDPs, without having to
include exponentially many constraints. This begs the question about the computational hardness of
achieving both upper and lower regret bounds in a factor of o(SA) from what is optimal.

E.4 Lower bounds for optimistic algorithms in MDPs with deterministic transitions

In this section we prove a lower bound on the regret of optimistic algorithms, demonstrating that
optimistic algorithms can not hope to achieve the information-theoretic lower bounds even if the
MDPs have deterministic transitions. While the result might seem similar to the one proposed by
Simchowitz and Jamieson [30] (Theorem 2.3) we would like to emphasize that the construction of
Simchowitz and Jamieson [30] does not apply to MDPs with deterministic transitions, and that the
idea behind our construction is significantly different.

Consider the MDP in Figure 6. This MDP has 2n + 9 states and 4n + 8 actions. The rewards for
each action are either 1/12 or 1/12 + €/2 and can be found next to the transitions from the respective
states. We are going to label the states according to their layer and their position in the layer so that
the first state is s1,; the state which is to the left of sq ; in layer 2 is so ; and to the right 59 5. In
general the ¢-th state in layer h is denoted as sy, ;. The rewards in all states are deterministic, with a
single exception of a Bernoulli reward from state s4 1 to s5 2 with mean 1 /12. From the construction
it is clear that VV*(s1,1) = 1/2 4 €. Further there are two sets of optimal policies with the above
value function — the n optimal policies which visit state s o and the n optimal policies which visit
s5,1. Notice that the information-theoretic lower bound for this MDP is in O(log(K)/¢) as only
the transition from state s4 1 to S5 2 does not belong to an optimal policy. In particular, there is no
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Figure 6: Deterministic MDP instance for optimistic lower bound

dependence on n. Next we try to show that the class of optimistic algorithms will incur regret at least
Q(nlog(d—1)/e).

Class of algorithms. We adopt the class of algorithms from Section G.2 in [30] with an additional
assumption which we clarify momentarily. Recall that the class of algorithms assumes access to an
optimistic value function Vi (s) > V*(s) and optimistic Q-functions. In particular the algorithms
construct optimistic Q and value functions as

Vie(s) = max Qr(s,a)
Qr(s,a) = fr(s,a) + b (s, a) + pr(s, a)TVk + bi(s,a).

‘We assume that there exists a ¢ > 1 such that

c\/log(M(l Vng(s,a)))/é < B(sa) < c\/log(M(l Vng(s,a)))/é
5 < a) <

(1Vng(s,a)) (1Vng(s,a))

)

where M = 6(n) and by,(s,a) ~ v/Sfx(s,a)bi*(s,a), where f is a decreasing function in the
number of visits to (s, a) given by ny(s,a). For ng(s,a) = Q(nlog(n)), we assume by (s, a) <
b7 (s, a). One can verify that this is true for the the Q and value functions of StrongEuler.

Lower bound. Let e > 0 be sufficiently small to be specified later and let [V be such that

CQTLlog(MN/(n(S))J
16€2 '

N=|

Lemma E.9. There exists ng, €y such that for any pair of n > ng and € < ¢g and any k < N, with
probability at least 1 — 6, it holds that either ny,(s51) < N/4, or Qi(s4,1,1) < Qr(s4,1,2).
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Proof. Assume ny(ss 1) > N/4, then we have

6
1
Qk(84717 ].) = 1 + €+ ;bzw(si,l, 1) + bk(si,l)

48¢
Vo

where we assume e is sufficiently small such that by (s, a) < b} (s, a) for ng(s,a) > N/4.

< Lyt oy [1BMN/(49))

<
=4 N/4 =

L et
46

On the other hand, we have have with probability at least 1-0, that V& : 7 (s4,1,2) + bj* (54,1,2) >
1/12. Hence conditioned under that event, we have

6
M 1 W W
Qk(84’1, 2) = Z + bk (84,1, 2) + bk‘(84’1, 2) + je{g}.a.'.};+1 Z:S bk (Si,j7 1) + bk(si,j7 1)
1 log(MN/(nd)) _ 1
> — — 2 > — 4+ 4e.
1N T N T1tn
The proof is completed for ng = 482. O

We can show the same for the upper part of the MDP.

Lemma E.10. There exists ng, €y such that for any pair of n > ng and € < g and any k < N, with
probability at least 1 — 0, it holds that either ny(s1,2) < N/4, or Qr(s11,2) < Qx(s1,1,1).

Proof. First we split Qr (s1,1,2) into the observed sum of mean rewards and bonuses from s; 1
to s52 and the value Vj(s52). Then we upper bound Q(s1.1,1) by Vi(s52) and the maximum
observed sum of mean rewards and bonuses along the paths passing by s ; for j € [n]. Finally
analogous to the proof of Lemma E.9, it is straightforward show that the latter is always larger as
long as the visitation count for s5 5 exceeds IV, /4.

Theorem E.11. There exists an MDP instance with deterministic transitions on which any optimistic
algorithm with confidence parameter § will incur expected regret of at least Q(Slog(6~1)/€)) while
it is asymptotically possible to achieve Q(log(K)/e) regret.

Proof. Taking the MDP from Figure 6. Applying Lemma E.9 and E.10 shows that after NV episodes
with probability at least 1 — 24, the visitation count of s3 2 and s5 1 each do not exceed N/4. Hence
there are at least N/2 episodes in which neither of them is visited, which means an e-suboptimal
policy is taken. Hence the expected regret after N episodes is at least

(1-26)eN/2=Q (Sbg(‘s_l)) .

€
O
Theorem E.11 has two implications for optimistic algorithms in MDPs with deterministic transitions.

e It is impossible to be asymptotically optimal if the confidence parameter ¢ is tuned to the
time horizon K.

e It is impossible to have an anytime bound matching the information-theoretic lower bound.
F Proofs and extended discussion for regret upper-bounds

F.1 Further discussion on Opportunity O.2
The example in Figure 1 does not illustrate Q.2 to its fullest extent. We now expand this example and

elaborate why it is important to address Opportunity O.2. Our example can be found in Figure 7. The
MDP is an extension of the one presented in Figure 1 with the new addition of actions a5 and ag in
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€
V:C+€7’:C+§ r =€

Figure 7: Example for Opportunity 0.2

state s3 and the new state following action ag. Again there is only a single action available at all other
states than s1, s2, s3. The reward of the state following action ag is set as r = ¢ + ¢/2. This defines a
new sub-optimal policy 73 and the gap gap(ss, as) = 5. Information theoretically it is impossible to
distinguish 73 as sub-optimal in less than Q(log(/)/€?) rounds and so any uniformly good algorithm
would have to pay at least O(log(K)/¢) regret. However, what we observed previously still holds
true, i.e., we should not have to play more than log(K)/c? rounds to eliminate both 71 and 75 as
sub-optimal policies. Prior work now suffers Opportunity Q.2 as it would pay log(K) /e regret for all
zero gap state-action pairs belonging to either 71 or o, essentially evaluating to SAlog(K)/e. On
the other hand our bounds will only pay log(K')/e regret for zero gap state-action pairs belonging to
3.

F.2 Useful decomposition lemmas

We start by providing the following lemma that establishes that the instantaneous regret can be
decomposed into gaps defined w.r.t. any optimal (and not necessarily Bellman optimal) policy.
Lemma F.1 (General policy gap decomposition). Let gap”(s,a) = V7 (s) — Q7 (s,a) for any
optimal policy @ € I1*. Then the difference in values of & and any policy m € Il is

H
Vi(s) = V7™(s) =Ex | > 8ap" (Sh, An) | Sus) = 5 (19)
h=k(s)
and, further, the instantaneous regret of  is
vt — 0" = Z w™ (s,a) gap” (s, a). (20)

s,a

Proof. We start by establishing a recursive bound for the value difference of 7 and 7 for any s
V7(s) = V7(s) = V7(s) = Q7(s,m(s)) + Q" (s, 7(s)) = V" (s)
= gap” (s,7(s)) + Q7 (s, 7(s)) — Q" (s,7(s))
= gap” (s, 7(s)) + D Pa(s'|s, m(s))[V7(s') = V7(s')].

Unrolling this recursion for all layers gives

H

Vi(s) = V™(s) = E, Z gap”™ (Sy, Ap)
h=kr(s)

Sm(s) =S

To show the second identity, consider s = s; and note that v™ = V™ (s;) and v* = v* = V7 (s;)
because 7 is an optimal policy. O
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For the rest of the paper we are going to focus only on the Bellman optimal policy from each state and
hence only consider gap™ (s, a) = gap(s,a). All of our analysis will also go through for arbitrary
gap”™, 7t € IT*, however, this did not provide us with improved regret bounds.

We now show the following technical lemma which generalizes the decomposition of value function
differences and will be useful in the surplus clipping analysis.

Lemma F.2. Let U : S - R, A : S X A — R be functions satisfying ¥(s) = 0 for any s with
k(s) = H+ land w: S — A a deterministic policy. Further, assume that the following relation
holds

U(s) = Als,m(s)) + (P(s, 7(s)), ¥),

and let A be any event that is Hp-measurable where Hy, = o(S1, A1, R1,...,Sh) is the sigma-
field induced by the episode up to the state at time h. Then, for any h € [H] and h' € N with
h < h' < H + 1, it holds that

h'—1 H
ErX (A)W(Sn)] = En | X (A) [ D A A) + U(Snia) | | =Ex [x(A) D A(SH Ar)
t=h t=h
Proof. First apply the assumption of ¥ recursively to get
h'—1 i
U(s) =Ex Z A(St, Ap) + Y (Sh) | Skes) = s
t=r(s) ]
Plugging this identity into E[x (A) U(S}))] yields
h'—1
Er[x (A) U(S0))] = Ex | x (D Ex | D A(St, Ar) + U (Spr) | S
t=h
o B —1
= Er | X (A)Er | D A(S:, Ar) + U(Sk) | Ha
t=h
(i) B —1
= Eﬂ' Eﬂ' X(A) Z A(StaAt) + ‘I](Sh’) ‘ Hh
t=h
(i) h'—1
="E, X(A) Z A(Stht)+\I](Sh’)
t=h

where Hj, = o(S1, A1, R1, ..., Sy) is the sigma-field induced by the episode up to the state at time
h. Identity (¢) holds because of the Markov-property and (ii) holds because A is Hj,-measurable.
The final identity (#i¢) uses the tower-property of conditional expectations. O

F.3 General surplus clipping for optimistic algorithms

Clipped operators. One of the main arguments to derive instance dependent bounds is to write the
instantaneous regret in terms of the surpluses which are clipped to the minimum positive gap. We
now define the clipping threshold ¢;, : S x A — RS‘ and associated clipped surpluses

Ek(sv a) = Chp [Ek(sa a) | Gk(S, a)] =X (Ek(s7 (L) > Ek(S, a’)) Ek?(s> (L). (21)
Next, define the clipped Q- and value-function as
Qi(s,a) = Ey(s,a) +r(s,a) + (P(-|s,a), Vi,) and Vi(s) = Qr(s, mr(s)). (22)

The random variable which is the state visited by 7 at time h throughout episode & is denoted by S},
and Ay, is the action at time h.
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Events about encountered gaps Define the event £, = {gap(Sh, An) > 0} that at time h an

action with a positive gap played, the Py., = Z, 11 &y, that only actions with zero gap have been
played until / and the event A;, = &, N Py, that the first positive gap was encountered at time h.
Let Ap 11 = Pi1.g be the event that only zero gaps were encountered. Further, let

B =min{h € [H + 1]: gap(Sh, 4y) > 0}
be the first time a non-zero gap is encountered. Note that B is a stopping time w.r.t. the filtration
]:h = O‘(Sl,Ah e ,Sh,Ah).

The proof of Simchowitz and Jamieson [30] consists of two main steps. First show that for their
definition of clipped value functions one can bound Vi (s1) — V™ (s1) > 2(Vi(s1) — V™ (s1)).
Next, using optimism together with the fact that 7, has highest value function at episode k it follows
that Vi.(s1) — V™ (s1) > V*(s1) — V™ (s1). The second main step is to use a high-probability
bound on the clipped surpluses to relate them to the probability to visit the respective state-action
pair and the proof is finished via an integration lemma. We now show that the first step can be carried
out in greater generality by defining a less restrictive clipping operator. This operator is independent
of the details in the definition of gap at each state-action pair but rather only uses a certain property
which allows us to decompose the episodic regret as a sum over gaps. We will also further show
that one does not need to use an integration lemma for the second step but can rather reformulate the
regret bound as an optimization problem. This will allow us to clip surpluses at state-action pairs
with zero gaps beyond the gap,,;, rate.

Clipping with an arbitrary threshold. Recall the definition of the clipped surpluses and clipped
value function in Equation 21 and Equation 22. We begin by showing a general relation between the
clipped value function difference and the non-clipped surpluses for any clipping threshold ¢, : S — R.

This will help in establishing Vi (s1) — V7 (s1) > L (Vi(s1) = V™ (s1)).
Lemma F.3. Lete;, : S x A — RS’ be arbitrary. Then for any optimistic algorithm it holds that
H

Vi(s1) = V™ (51) = B, | > (8ap(Sh, An) — €x(Sn, An)) | - (23)
h=B

Proof. Weuse Wy, (s) = Vi (s)—V ™ (s) in the following and first show that W (s1) > E,, [Wx(S5)].
As a precursor, we prove
Er, X (Prn) Wi(Sh)] = Exy [X (An1) Wi (Snt1)] + Ery [X (Pring1) We(She1)] . 24)
To see this, plug the definitions into W}, (s) which gives Wi (s) = Vi(s) — V™ (s) = Ex(s, mi(s)) +
(P(-|s,mk(s)), W) and use this in the LHS of (24) as
Er, X (Pi:n) Wi(Sn)] = En, [X (P1:n) Ek(sh,Ah)] + Ex, [X (Pr:n) E[WE(Sh41) | Sl
————

>0

(;) Er,. [X (P1:n) Ex, (Wi (Sht1) | Hal]

By [y [X (Pi) We(Sne1) | Hal] = B, [x (Prn) Wi(Sha)]
where Hy, = 0(S1, A1, Ry, ..., Sh) is the sigma-field induced by the eplsode up to the state at time
h. Step () follows from clip[-|c] > 0 for any ¢ > 0 and the Markov property and (é¢) holds because
P1.n s Hp-measurable. We now rewrite the RHS by splitting the expectation based on whether event
En+1 occurred as

Er. X (Pr:n) Wi (Sht1)] = By [X (Pringr) Wi (Sht1)] + Eary, [ (Ant1) Wi (Shta)] -
We have now shown (24), which we will now use to lower-bound W, (s1) as

Wi(s1) = Ex, [x (1) Wi(S1)] + Exy [x (E7) W1(S1)]
=Er, [x (A1) W1(S1)] + Exp [x (P1:1) W1(51)]
H
> B, [X (A1) Wi(S1)] + Y By [x (An) Wi (Sh)]
h=2

H
Z]Ewk (An) Wi (Sh)] = Ex, [Wi(SB)].

h=1
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Applying Lemma E.2 with A = A, ¥ = W, and A = E, yields

X (Ap) Z Ey(Shr, Apr)

H

2D B

h=1 h=h

H H H H

Z X (An) D Er(Sws An) | = By [X(An) D x(Snr, An) |
—1 W=h h=1 -

where we applied the definition clipped surpluses which gives Ey (s, a) = clip[Ey (s, a) | ex(s,a)] >
Ex(s,a) — ex(s, a). It only remains to show that

H
En, lx (An) 3 Ei(Si, Ap)

h'=h

"
> Er, lX (An) D gap(Shr, Anr)

h'=h

To do so, we apply Lemma F.2 twice, first with A = Ap, ¥ =V, — V™ and A = E}, and then again
with A = A, ¥ = V* — V™ and A = gap which gives

H
X (An) D Er(Sw, An)

h'=h

=E,, [X (Ap) (Vie(Sp) — V7 (Sh))]

> By, [ (An) (V7 (Sh) = V™ (Sh))]

H
X (An) > gap(Sir, Anr)

h'=h

Thus, we have shown that

Vi(s1) = V™ (51) = Wi(s1)
H H H H

> ZE " lX (An) Z gap(Su, Anr) | — ZE X (An) Z x(Shr, Anr)
h=1 hi=h h=1 hi=h

I
M=

H
Er, lX (An) > (gap(Sh, Ap) — (S, Anr))

h'=h

>
Il
—

H
Z (2ap(Sh, An) — €x(Sh, An))

where the last equality uses the definition of B, the first time step at which a non-zero gap was
encountered.

Lemma F.4 (Optimism of clipped value function). Let the clipping thresholds €;,: S x A — Rf{
used in the definition of Vj, satisfy

Zgap (Sh, An)

h=1

"
Er, lz €x(Sh, An)

h=B

1
2

for some optimal policy . Then scaled optimism holds for the clipped value function, i.e.,

Vi(s1) = V™ (s1) > S(V*(s1) = V™ (s1)).

l\.’)M—l



Proof. The proof works by establishing the following chain of inequalities:

V*(s1) — V™ (s1) (a) 1 1 w1 u
! 5 ! = §Eﬂ'k Zgap(shaAh) = §E7Tk Z gap(shaAh))
h=1 h=B
(© 2 1
= E,, h_ZB (gap(smAh)) - anp(sthh))>

(d)
< En, lz gap(Sh, An)) — €x(Sh, Ar)))

(e) ..
S Vk(sl) — Vﬂk(sl).

Here, (a) uses Lemma F.1 and (b) uses the definition of B. Step (c) is just algebra and step (d) uses
the assumption on the threshold function. The last step (e) follows from Lemma F.3. O

Proposition 3.3 (Improved surplus clipping bound). Ler the surpluses Ey (s, a) be generated by an
optimistic algorithm. Then the instantaneous regret of 7. is bounded as follows:

V*(s1) = V™ (s1) < 4210”’“ (s,a)clip [Ek(s,a)

S,a

1
I gap(s,a) V ex(s, a)} )

where €;,: S X A — R is any clipping threshold functton that satisfies

Er. ZGk(SmAh)l < Em Zgap (Sh, An)

h=B h=1

Proof. Applying Lemma F.4 which ensures scaled optimism of the clipped value function gives

V*(s1) = V™ (s1) < 2(Vk(31) — V™ (s1)) = ZZw”’“ (s,a)Ek(s,a),

s,a

where the equality follows from the definition of V},(s1) and Lemma F.2. Subtracting L(V*(s1) —
V7™ (s1)) from both sides gives

%<V*<81) — V™ (s1)) < 2;10”’“(8,(1) (Ek<s,a> - gPEl))

because Lemma F.1 ensures that 2 (V*(s1) — V™ (s1)) = 1 > s.a W (s, a) gap(s, a). Reordering
terms yields

_ 4§w (chp {Ek(s a) ek(s,a)} _ gapffﬂ)

<4Zw s,a) clip {Ek(s a)

ex(s,a)V

)

where the final inequality follows from the general properties of the clipping operator, which satisfies

a—c<a fora>bVe
cliplalp) —c=q¢0—¢c<0 fora<b < clip[alb V ¢].
a—c<0 fora<c

F.4 Definition of valid clipping thresholds ¢,

Proposition 3.3 establishes a sufficient condition on the clipping thresholds ¢ that ensures that the
penalized surplus clipping bounds holds. We now discuss several choices for this threshold that
satisfy this condition.
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Minimum positive gap gap,,;,: We now make the quick observation that taking €, = % will
satisfy the condition of Proposition 3.3, because on the event B = Af;, ; there exists at least one

positive gap in the sum Zthl gap(Sh, Ap,), which, by definition, is at least gap,;,. This shows that
our results already can recover the bounds in prior work, with significantly less effort.

Average gaps: Instead of the minimum gap which was used in existing analyses, we now show that
we can also use the marginalized average gap which we will define now. Recall that B = min{h €
[H +1]: gap(Sh, Ap) > 0} is the first time a non-zero gap is encountered. Note that B is a stopping
time w.r.t. the filtration F}, = (51, A1, ..., Sk, Ap). Further let

8(57a) = {B < H(S)vsm(s) = SvAn(s) = a} (25)

be the event that (s, @) was visited after a non-zero gap in the episode. We now define this clipping
threshold

B, [EhH_lgap(Sh,Ah) ‘ B(s,a)] it P, (B(s,a)) >0

00 otherwise

ex(s,a) = (26)
As the following lemma shows, this is a valid choice which satisfies the condition of Proposition 3.3.

Lemma E.5. The expected sum of clipping thresholds in Equation (26) over all state-action pairs
encountered after a positive gap is at most half the expected total gaps per episode. That is,

H

Z €k (Sh, An)

h=B

1
Eﬂk S iEﬂ'k

H
> 8ap(Sn, An)
h=1

Proof. We rewrite the LHS of the inequality to show as E ., [Zthl X (B < h) €, (Sh, Ah)] and from

now on consider the random variable fr,(B, Sk, Ap) = x (B < h) €;(Sh, Ap) where f3,(b,s,a) =
X (b < h)ex(s,a) is a deterministic function®. We will show below that E, [fx(B, Sk, Ap)] <

ﬁEM [ZhH: 5 8ap(Sh, Ah)} . This is sufficient to prove the statement, because

H H
Eﬂ‘k Z 6k(Sthh) = Z]Eﬂ'k [fh(Bvsthh)}
h=B h=1
1 H H
< o7 2 B | D gan(Sw, Aw)
h=1 h'=B
1 dl 1 dl
- i]E‘n'k };Bgap(shaAh) == i]E‘n'k };gap(Sh,Ah)

To bound the expected value of f;,(B, Sk, Ar), we first write f;, for all triples b, s, a such that
Pr.(B=0b,A, =a,S, =s)>0as

H
i 1
fr(b,s,a) @ x (b < h) ﬁEm Z gap (S, Apr) ‘ B<h, S,=s4, = a]
h'=1
(i) 1 h
= X (b<h) 5 5En, > gap(Sw, Aw) | B<h, Sp=s,An=a
h'=B
1 H
+x (0 < h) 5B, > gap(Sh, An) |Sh =5, An = al ,
h'=h+1

where (i) expands the definition of e, and (i7) decomposes the sum inside the conditional expectation
and uses the Markov-property to simplify the conditioning for terms after h. Before taking the

31t may still depend on the current policy 7, which is determined by observations in episodes 1 to k — 1.
But, crucially, f;, does not depend on any realization in the k-th episode
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expectation of f;(B, Sy, Ap), we first rewrite the conditional expectation in the first term above,
which will be useful later.
h

Z gap(Sh’vAh’) ‘ B < hv Sh = SaAh = a]
h'=B

o Ere [Sh—p 80(Shr, Aw)x (An = a, S = ) x (B < b))
Pr, [B<h, Sp=s,4, =d]
i) Em | Shv_p 830(Sh A )x (A, = 0, Sy = s)]
P.. [B<h, S,=s,4,=d]
E.. [ZZ':B gap(Sp, Ap) | Sh =8, Ap = a}
P, [B<h | S,=s,A; =aq]

Here, step (i) uses the property of conditional expectations with respect to an event with nonzero
probability and (i¢) follows from the definition of B: When B > h, the sum of gaps until A is zero.
Consider now the expectation of f;, (B, S}, A)

Er, [fn(B, Sh, An)]

E,,

1 Eﬂk |:ZZ’_B gap(Sh/, Ah’) Sh7 Ah:|
=—F B < 2
o B (X(B =) Py (B<h | S Al @7)
1 H
+ 5 Em | X (B < h)En, [ > gap(Sw, Aw) |Sh, An (28)
h'=h+1

The term in (28) can be bounded using the tower-property of expectations as

H
1
S | X (B < h)Er, [ Z gap(Sns, An) |Sn, An
h'=h+1
1 - 1 =l
S E]Eﬂ-k Eﬂ-k Z gap(Sh/,Ah/) Sh,Ah = ﬁEﬂ-k Z ga‘p(sh’yAh/)
W —h+1 Lh/=h+1
For the term in (27), we also use the tower-property to rewrite it as
1 Er, {ZZ—B gap(Sp, Ap) Sh,Ah]
—E, B<h
o e NP =T Fro (B<h | Sn 4]
1 Eﬂ'k [ZZ/_B gap(ShHAh/) Sthh:|
= —Eq, |Ex, B<h S ,A
o e | Eme X ) P, [B<h | Sh,An] ‘ o £
1 - Er, [EZ«B gap(Sp, Ap) ShyAh:|
= —E, |E: B<h ,A
ar e |Bm X (B < )‘Sh h} P, [B<h | S Al
1 A
= ﬁ]Eﬂ'k} ]Eﬂ'k- Z gap(Sh/vAh’) ‘ Sh7Ah
L Lh'=B
1 T h
= ﬁ]Eﬂ—k h/ZB ga‘p(Shla Ah/)
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Summing both terms yields the required upper-bound ﬁEm ZhH: 5 8ap(Sh, Ar)| on the expecta-
tion ]Eﬂ-k [fh,(B,Sh,Ah)]. O

F.5 Policy-dependent regret bound for STRONGEULER
We now show how to derive a regret bound for STRONGEULER algorithm in Simchowitz and
Jamieson [30] that depends on the gaps of the played policies throughout the K episodes.

To build on parts of the analysis in Simchowitz and Jamieson [30], we first define some useful
notation analogous to Simchowitz and Jamieson [30] but adapted to our setting:

k
a) = Zw”’“(s a

= (SAH)?,
lﬂ(&a) VIR (7GH-FV«~P(uaﬂV (s")];
Vk(saa) YTk (Sva) ( )

We will use their following results:

Proposition F.6 (Proposition F.1, F.9 and B.4 in Simchowitz and Jamieson [30]). There is a good
event A" that holds with probability 1 — 6 /2. In this event, STRONGEULER is strongly optimistic
(as well as optimistic). Further, there is a universal constant ¢ > 1 so that forall k > 1, s € S,
a € A, the surpluses are bounded as

H
1
0< EEk(&a) < B}Cead(&a) + E Eﬂ' [ fut(ShaAh) | (Sn(s)vAn(s)) = (S7a>} ;
h=r(s)

where B'**d Bf are defined as

Bl (s, ) = H A wk@,a)log(Mnk(s,a)/é)

)

ng(s,a)

B(s,0) = H° A B ( \/Sbg(Mnk(s,a)/a) N 51og<Mnk<s,a>/6>>2

nk(‘s?a) nk(sva)

Lemma F.7 (Lemma B.3 in Simchowitz and Jamieson [30]). Letm > 2, a1,...,a,, > 0and e > 0.
Then clip [ ag|e] <2327 clip [ai|5% .

Equipped with these results and our improved surplus clipping proposition in Proposition F.6, we can
now derive the following bound on the regret of STRONGEULER

Lemma E.8. In event A", the regret of STRONGEULER is bounded for all k > 1 as

R(K) <8 Z Z w™ (s,a) clip {cB}fad (s,a)

8apy (s, @)
4

—|—1622w s,a) clip [ch“t( a)

k=1 s,a

8apy (s, @)
8S5A ’

with a universal constant ¢ > 1 and gép,(s,a) = w Voex(s, a).

Proof. We now use our improved surplus clipping result from Proposition 3.3 as a starting point to
bound the instantaneous regret of STRONGEULER in the kth episode as

VA(s1) = V(1) <43 w™ (s, 0) clip [Ek<s, a) |gipy (s, a) ] . (29)
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Next, we write the bound on the surpluses from Proposition F.6 as

Ek( ) < cBlead(S a)
+c Z X )) Pk [Sn(sl) = 3/714:1(5’) =a ‘ (SK(S)’ An(s)) (s, )] Bfut(

s’,a’!

and plugging it in (29) and applying Lemma F.7 gives

V*(s1) = V™ (s1 <82w (s,a)clip [cBle"‘d(s a)

s,a

gdpy (s, a)
4

+ 16210 s,a) clip {chut( a)

8apy, (s, @)
8SA

The statement to show follows now by summing over k € [K]. The form of the second term in the
previous display follows from the inequality

Zwﬂk (57 a)X (”(S/) > H(’S)) e [Sn(s’) = S/a An(s’) =d | (S&(s)a An(s)) = (Sv a)}

< Zw S a ]Pmk [Sn(s/) = S/, An(s’) =d | (Sn(s)7An(s)) = (Su a)} =w"™ (3/7 a/)‘

We note that if 7, = @ for any 7 € II* then V*(s1) — V™ (s1) = 0, and WLOG we can disregard
such terms in the total regret.

The next step is to relate 7ix (s, a) to ng(s, a) via the following lemma.

Lemma F.9 (Lemma B.7 in Simchowitz and Jamieson [30]). Define the event A%*™P

APHP = {V(S,a) €S X ANVE > 1(s,a): ng(s,a) > nk(i’a)} ,

where 7(s,a) = inf{k : (s, a) > Hgamp } and Hgamp = ¢ log(M /) for a universal constant ¢'.
Then event A5*™P holds with probability 1 — §/2.

Proof. This can be proved analogously to Lemma B.7 in Simchowitz and Jamieson [30] and Lemma 6
in Dann et al. [9] with the difference that in our case, there can only be at most one observation
of (s,a) per episode for each (s, a) due to our layered assumption. Thus, there is no need to sum
over observations accumulated for each h € [H] and our Hyump = O(log(H)) as opposed to
O(H log(H)).

Lemma F.10. Let f; ,: N — R be non-increasing with sup,, fs o(u) < f < ooforall s,a € Sx A
Then on event A%™P in Lemma F.9, we have

ZZU) s, a fsa nk(s CL)) < SAstmn1p+Z Z S a’)f‘i a(nk(S a)/4)

k=1 s,a s,a k=1(s,a)
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Proof.

ZZU} (s,a)fs.a(ni(s,a))

k=1 s,a
T(s,a)—1

_Z Z *(s,a) fs,a(ni(s,a)) +Z Z " (s,a) fs,a(nr(s,a))

s,a k=7(s,a)

T(s,a)—1

SZ ; w” Sa f+z Z Safsa(nk(s a)/4)

s,a k=7(s,a)

= an(sa) (s,a) f—i—z Z (s,a)fs.a(fin(s,a)/4)

s,a k=7(s,a)

< SAHgmpf + > Z (s,) fs,a(ik(s,a)/4).

s,a k=7(s,a)
O

Theorem F.11 (Regret Bound for STRONGEULER). With probability at least 1 — 6, the regret of
STRONGEULER is bounded for all number of episodes K € N as

R(K) < min {V*(S’ a)LOG(M/5,t, g8p,(s, a))

a tG[K(S,a)] gz\ipt(sﬂa’)

+ \/ K(s a) EOQ(M/(S K (s,a)s gapK( (Sva))}

MH }

MK MK
+ ZS’H?’ log min {log 5 ,log —
s,a gapmin(sa CL)

M
+ SAH?(S Vv H)log 5

Here, K ) is the last round during which a policy © was played such that w™(s,a) > 0,
gépt(& a’) = gap(s7 a‘) v Et(S, a’)’ gépmin(sa a’) = minkG[K]: gip; (s,a)>0 gépk(& (l)
is the smallest gap encountered for each (s,a), and LOG(M/d,t,gap,(s,a)) =
10g ( ) log (t A+ 16V (s,a) log(JVI/é))

23D, (5,0)?

Proof. We here consider the event A" N A%™P which has probability at least 1 — ¢ by Proposi-
tion F.6 and Lemma F.9. We now start with the regret bound in Lemma F.8 and bound the two terms
individually in the following:

Bounding the B'°*d term We have

ZZw s,a)clip {cBlead(s a)

gapy(s,a)
4

k=1 s,a
4 log(Mn 46 A
< SAHHgamerZ Z (s,a)clip \/ Vi(s, a) Zg((s Z)k(s,a)/ ) ‘ gapkis,a)]
s,a k=1(s,a) k\9,
K(s,a)

I
< SAHHBamp —i—Z Z (s,a)clip |2 0g (75, @))

s,a k=1(s,a)

V*(s,a) log - BAP (s, a)l ,

(s, a)

(30)
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where step (¢) applies Lemma F.10 and (i7) follows from the definition of V (s, @), the definition of
K (s,a) and

log (M"Zf;’“)> log (ﬁ) + log (7i(s, )

<log <i§) + 1) log(ix(s,a)) = log <]Z5 > log(ng(s,a)) <log(M/§)log(nk(s,a)).

We now apply our optimization lemma (Lemma F.16) with xj

= w™(s,a), vg
2¢/V*(s,a)log(M/6), and €, = %(Sa) to bound each (s,a)-term in (30) for any ¢ € [K]
as

1 1
4ﬁlog (t/\l-l— 2) —|—4Ut\/log (K/\1+ 2(K—t)>
€t €} €x

32¢2V* (s, a)log (%) log (t AL+ w>

gap,(s,a)?

ga‘pt (37 a)

+80\/(K — #)V*(s,a) log (]‘54) log (K A1 10V (50) log(M/é)).

gdpg (s, a)?
Let LOG(M/6,t,gap,(s,a)) = log (&) log (t N1+ W). We have
K

> w™(s,a)clip [2c\/v*<s,a) log(M/49) logé:b(k;z;)) gépim)}
k=7(s,a) 5
3262]/*(5 a)LOG(M/6,t, gip,(s,a)
oips(5,0) )+ 8¢\~ 0)LOGO]6, K. 5o (5. ).

Plugging this bound back in (30) gives

k=1 s,a

ZZw (s,a)clip [cBlead(s,a) ‘ gapz(s,a)}

M
< SAHlog —

: V*('S? a)‘cog(M/(;a t? gépt(sv a’)) Y
Ksa) —t)LOG(M/S, K, ,
.a te[%gl,a)] { gap, (s, a) + \/( (s.0) — )LOG(M/ gapK(M)(s a))

where < only ignores absolute constant factors.

Bounding the B™* term Consider the second term in Lemma F.8 and event .A°°"¢ N 4P Then
by Lemma F.10

ZZw (s,a)clip {chut(s a)

=1 s,a

gdpy (s, )
8SA

< SAH® Hynp + Y Z (5, a) fs.a(Ma(s, a))

s,a k=1(s,a)

where f 4 is

nk(s?a) ﬁk(sva)

foa(fn(s,a)) = clip | 2¢H® A 2cH? <\/510g(]_‘4”’f(57a)/5) i Slog(Mny(s, a)/<5)>2 ’
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We now apply Lemma C.1 by Simchowitz and Jamieson [30] which gives

ZZU; (s,a)clip [ Bit(s, q)

k=1 s,a

K (s,a)
< SAH Hoamy + 3 a1 +Z/ Foal

8SA

gapy (s, a)}

nk(s,a)

< SAH*c log(M/5) + Z / fo.a(w)du

The remaining integral term is bounded with Lemma B.9 (b) by Simchowitz and Jamieson [30] with
C'=5,C = H?and e = gip,;,(s,a) = MiNge(k , ,)]: gipy(s.a)>0 8Pk (8, @) as follows.

ZZw (s,a)clip {chut( a)

k=1 s,a

M M MK MK MH
< SAH*1log — SH3log — + SH?*1 in < 1 1
S og 5 +SZ;( og 5 + og 5 min < log 5 og sp (5,0)

8SA

gap (s, a)}

MH }

M MK MK
$s,a mn ’

O

Comparing with the bound in Simchowitz and Jamieson [30]. We now proceed to compare
our bound directly to the one stated in Corollary B.1 [30]. We will ignore the factors with only
poly-logarithmic dependence on gaps as they are are common between both bounds. We now recall
the regret bound presented in Corollary B.1, modulo said factors:

aHV*(s,a HV*
RK)<O| > ¥£OQ(M/5, K, gap(s,a)) + | Zopt| ——LOG(M /6, K, gap,uin) |
(e, 8ap(sa) 3P umin
s,a sub
where V* = max, 4) V(s, a), Zop is the set on which gap(s, 7*(s)) = 0, i.e., the set of state-action
pairs assigned to 7* according to the Bellman optimality condition, and Z;,;, is the complement of
Zopt- If we take t = K in Theorem F.11, we have the following upper bound:

R(K) < o< 5 V*(S’a)L’,OQ(M/dK,gap(&a))+HV*|30pt|£OQ(M/5,[anpmin))7

(et gap(s,a) ming s o €x(s, a)
bl su

where S, is the set of all states for s € S for which gap(s, 7*(s)) = 0 and there exists at least
one state s’ with x(s’) < s for which gap(s’, 7*(s)) > 0. We note that this set is no larger than the
set Z,,; and further that even the smallest e (s, a) can still be much larger than gap,;,., as it is the
conditional average of the gaps. In particular, this leads to an arbitrary improvement in our example
in Figure 1 and an improvement of S'A in the example in Figure 7.

F.6 Nearly tight bounds for deterministic transition MDPs

We recall that for deterministic MDPs, € (s, a) = %, Va and the definition of the set
I 4t

Hs,a = {7'(' cell: S;r(s) =S, (IZ(S) = a, Jh S I{(S)7gap(827 a;;) > 0}

We note that V(s, a) < 1 as this is just the variance of the reward at (s, a). Theorem F.11 immediately
yields the following regret bound by taking t = K.
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Corollary F.12 (Explicit bound from (5)). Suppose the transition kernel of the MDP consists only of
point-masses. Then with probability 1 — 0, St rongEuler’s regret is bounded as

5 HLOG (M/$, K,gap(s,a))

kg%
v (e

R(K) < 0(
(s7a)3ns.a7é®

MK
—i—ZSH?’log ,log

s,a

min < lo MK MH
575 % gan(s, a)

M
+SAH3(SV H) log§>7

* J— s
where vg , = maxXzem, , V"

We now compare the above bound with the one in [30] again. For simplicity we are going to take

K to be the smaller of the two quantities in the logarithm. To compare the bounds, we compare
H(log(KM/é aH log(KM/§) opt | H

z .
Z(S,a)znmﬂ el D) o Z(s,a)ezsub (s~ Tt |gapmm . Recall that o € [0,1] is

defined as the smallest value such that for all (s, a,s’) € S x A x § it holds that
P(s'|s,a) — P(s'|s,7*(s)) < aP(s'|s,a).

For any deterministic transition MDP with more than one layer and one sub-optimal action it holds
that « = 1. We will compare V*(s1) — V™9 (s1) to gap(s,a) = Q*(s,7*(s)) — @*(s, a). This
comparison is easy as by Lemma F.1 we can write

V*(sl) — VT (sl) = Z wwz‘sva)(s’,a’) gap(s/a a/) = Z gap(s/a a/) > gap(87 a)'

(5,1‘1/)67"?5,{:) (s/,a/)eﬂ'(*&n’)
Hence, our bound in the worst case matches the one in Simchowitz and Jamieson [30] and can
actually be significantly better. We would further like to remark that we have essentially solved all of
the issues presented in the example MDP in Figure 1. In particular we do not pay any gap-dependent
factors for states which are only visited by 7*, we do not pay a gap,,;, factor for any state and we
never pay any factors for distinguishing between two suboptimal policies. Finally, we compare this
bound to the lower bound derived Theorem 4.5 only with respect to number of episodes and gaps.
Let S* be the set of all states in the support of an optimal policy

Z log(K) < R(K) < Z Hlog(K).

P * __ gy
(s,a)ES\S* x A H(v* — 0" (s1)) (5,0): 15,0 #0 v Us,a

The difference between the two bounds, outside of an extra H? factor, is in the sets S* and the set
{s,a : 11, , = 0}. We note that {s,a : Il , = 0} C S*. Unfortunately there are examples in which
{s,a : I, = 0} is O(1) and S* = Q(5) leading to a discrepancy between the upper and lower
bounds of the order 2(.S). As we show in Theorem E.11 this discrepancy can not really be avoided
by optimistic algorithms.

F.7 Tighter bounds for unique optimal policy.

If we further assume that the optimal policy is unique on its support, then we can show STRONGEULER
will only incur regret on sub-optimal state-action pairs. This matches the information theoretic lower
bound up to horizon factors. We begin by showing a different type of upper bound on the expected
gaps by the surpluses. Define the set 5, = range(B) where B is the r.v. which is the stopping time
with respect to 7. For any 7*, define the set

Or(m*) = | {(s.0) € 8 X A: Pre((Sn, An) = (5,0)Se(sp) = 56) = P, ((Sh, An) = (5,0)[S(s) = )}
SpEPK

This set has the following intuitive definition — whenever A g occurs we restrict our attention to the
MDP with initial state Sp. On this restricted MDP, Oy, is the set of state-action pairs which have
greater probability to be visited by the optimal 7* than by 7.
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Lemma F.13. Assume strong optimism and greedy Vy, i.e., Vi.(s) > max, Qy(s,a) forall s € S.
Then there exists an optimal 7 for which

H "
Er, | Y 82p(Sh, An)| < Er, [Z X(Sh, Ap & Ok(7")) Ex (S, Ap)
h=B h=B

Proof. One can write the optimistic value function for any s and 7 as follows

H
Vﬂ—(s) =E, |: Z Ek(Sh,Ah) +T(Sh,Ah)|SR(S) = S:|
h=kr(s)

= Ei(s,7(s)) +7(s,7(s)) + (P(]s,7(5)), V).
By backwards induction on H we show that for any s, x(s) < H V7™ < V. The base case holds

from the fact that on all s : k(s) = H, Vj.(s) is just the largest optimistic reward over all actions at s.
For the induction step it holds that

Vﬂ(s) = Ek(57 71—(8)) + T(Sa 7‘—(8)) + <P(|57 7T(S))’ Vﬂ>
< Ex(s,m(s)) +7(s,m(s)) + (P(:[s,m(s)), Vk)
= Qx(s,m(s)) < Vi(s),
where the first inequality holds from the induction hypothesis and the second inequality holds by
definition of the value function. We now have

H

> gap(Sh, An)

h=B

Er, =Eqr, [V*(SB) — Vi(SB)]

< Enr, [Vi(SB) = Vi(SB)] — Ex, [V*(S) — V*(SB)] .
Let us focus on the term E, [V*(Sp) — V*(Sp)]

Er, [V*(S) = V*(SB)] = Ex, [Ex, [V*(SB) = V*(SB)|SE]]

T* [ZhH:n(s) Ek(Sh, Ah)|Sm(s) = S}
=E,, |:Z Py, (SB _ S) X(SB = S) :

We can similarly expand the term E, [Vi(Sg) — Vi(Sg)]. By the definition of Oy (7*) it holds
that for any h > k(s)

E,Tk [Ek(Sh,Ah”SH(S) = S] —E - [Ek(ShaAhNSn(s) - 5}
< Eﬂ'k [X(ShaAh g Ok(ﬂ-*))Ek<Sh7Ah)|S’”~(s) = S] :

This implies

Er, {Zthn(s) X(Shy An & O(7*)) Er(Sh, An)|Su(s) = S]

E‘ﬂ'k [V*(SB) _V*(SB)] SET% Z ]P)ﬂ— (SB :S)

H
=En, lz X(Shs Ap & Ok (7)) Ex(Sh, An)

h=B

We next show a version of Lemma F.3 which takes into account the set Oy (7).

45



Lemma F.14. With the same assumptions as in Lemma F.13, there exists an optimal ©* for which

H H
Vi(s1) = Vi(s1) = Eny | D 8aP(Shs An) = D X(Shs An & Ox(n™))ew(Sn, An) |
=B h=B

where ¢y, is arbitrary.

Proof. Since E; is non-negative on all state-action pairs we have

rH H
Vi(s1) = V™ (s1) = Eq, Z Ex(Sh, Ap)| > Ex, Z Ey(Sh, Ap)
Lh=1 h=B

H
>Er, | Y X ((SnsAn) & Ok) En(Sh, Ar)

Lh=B
r H H
> B, | Y X((Sh, An) & Ok)Ex(Sn, An) | = Exy | Y X((Sh, An) & Ox)er(Sh, An)
Lh=B h=B
B H
> By | Y 88D(Sh, An) | =By | D X((Sn, An) & Ok)er(Sh, An) | 4
Lh=B h=B

where the second to last inequality follows from the definition of E}, and the last inequality follows
from Lemma F.13. U

Next, we define ¢, in the following way. Let

eu(s, ) = {€k(s,a) if (s,a). & Op(m*) 31
%) otherwise,
where €, is the clipping function defined in Equation 26. Lemma F.14 now implies that
H H
Vie(s1) — Va(s1) > Eq, [Z gap(Su, An) — Y _ & (Sh, An)
h=B h=B

This is sufficient to argue Lemma F.8 with gdp,(s,a) = w V €k (s, a) and hence arrive at a
version of Corollary F.12 which uses € as the clipping thresholds. Let us now argue that € (s, a) = oo
for all (s,a) € 7m* whenever 7* is the unique optimal policy for the deterministic MDP. To do so
consider (s,a) € 7* and 7, # 7*. Since the MDP is deterministic, 0y, is a singleton and is the the first
state s;, at which 7y, differs from 7*. We now observe that if k(s) < x(sp), this implies € (s, a) = 0o
as B(s, a) does not occur. Further, the conditional probabilities P ((Sk, An) = (s,a)|S(s,) = 5v)
and Pr, ((Sp, An) = (8,a)|Sk(s,) = sp) are both equal to 1 if x(s) > r(sp) and so (s,a) € Op(7*)
which implies €x (s, a) = co. Thus we can clip all gaps at (s,a) € 7* to infinity and they will never
appear in the regret bound. With the notation from Corollary F.12 we have the following tighter
bound.

Corollary F.15. Suppose the transition kernel of the MDP consists only of point-masses and there
exists a unique optimal 7*. Then with probability 1 — 6, St rongEuler’s regret is bounded as

wE) <o 3 LOG (M5, K, gap(s, a)
(s,a)gm* gap(57 a)
3 .
" A s mm{log 5 ’loggap(s,a)}

(s,a)gm*

M
+ SAH3(S Vv H)log 5) .

Comparing terms which depend polynomially on 1/gap to the information theoretic lower bound in
Theorem 4.5 we observe only a multiplicative difference of H?2.
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F.8 Alternative to integration lemmas

The following lemma is an alternative to the integration lemmas when bounding the sum of the
clipped surpluses and in some cases allows us to save additional factors of H.

Lemma F.16. Consider the following optimization problem

K vy 10%(23 1 75)

maximize E

T, LK k )
k=1 Zj:l Ly

(32)
IOg(Z x])

s.t. 1<z, 0<a,<1, —zek Vk e [K],

k
Zj:l Ty

with (vi);e(x) € RE and (¢;);c(x) € RE. Then the optimal value of Problem 32 is bounded for any
t€[K]as

€t

) 1 1
4Utlog(t/\1+2)—1—4@:\/105;(}(/\1—!—2) (K —1t), (33)
€ €Kk
where vy = maxyc[y Vk and vf = MaXf >k>¢ Vk-

Proof. Denote by X}, = Zle x; the cumulative sum of z;. The proof consists of splitting the
objective of (32) into two terms:

zt: vkxk\/log Xk) Z vkxk\/log X) (34)
k=1 2 k=t+1 vV Xk

and bounding each by the corresponding one in (33) respectively.

Before doing so, we derive the following bound on the sum of %, terms:

M X
X — Xk 1 Mo ]
< —dr =2(v/ X1 — /X)) 35
k;Jrl kzrr;Ll VX " x, Ve ’ ( . : )

where the inequality is due to X}, being non-decreasing.

Consider now each term in the objective in (34) separately.

Summands up to ¢: Since X, is non-decreasing, we can bound

ivkka mi z_ Do Viog(X:)V/X;

@) 7
< 2% log(Xy),
€t

where (i) follows from (35) using the convention Xy = 0 and (4¢) from the optimization constraint
V1og(Xy) > €4/ X;. It remains to bound log(X;) by 2log (t A1+ E%) Since all increments z;
are at most 1, the bound log(X;) < log(¢) holds.

We claim the following:

Claim F.17. For any z s.t. log(z) < log(log(x)/a) it holds that log(x) < 2log(1 + 1/a).

Proof. First, we note that if 0 < = < e, then log(log(x)) < 0 and thus the assumption of the claim

implies log(x) < log(1/a). Next, assume that z > e. Then we have % < 1/e, which
together with the assumption of the claim implies log(z) < 1/elog(z) + log(1/a) or equivalently
O

log(x) < (1/a). Noting that e/(e — 1) < 2 completes the proof.
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The constraints of the problem enforce v/ X < 7”025)('“), which implies after squaring and taking
the log: log(X%) < log(log(X%)/€2). Thus, using Claim F.17 yields:

log(X:) < 2log(k A1 +1/e). (36)

Summands larger than t:  Let v; = maxy. ¢«r<x vk. For this term, we have

K
VNog(Xg)

Z Uk Og B L g log(K A1 +1/e%) Y %

k=t+1 VX k=t+1 V Xk

e VIos(I A1+ 1/62) (VX — /X))
< 407 \Jlog(K A1+ 1/é3)(v/Xie — X1)

< 47 \Jlog(K A 1+ 1/e)(VE — ),

where we first bounded log(Xy) < log(X ), because X}, is non-decreasing, and used the upper
bound on log(X ). Then we applied (35) and finally used 0 < z < 1.
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