
MeshSDF: Differentiable Iso-Surface Extraction

Edoardo Remelli ∗1 Artem Lukoianov ∗1,2 Stephan R. Richter 3

Benoît Guillard 1 Timur Bagautdinov 2 Pierre Baque 2 Pascal Fua 1

1CVLab, EPFL, {name.surname}@epfl.ch
2Neural Concept SA, {name.surname}@neuralconcept.com

3Intel Labs, {name.surname}@intel.com

1 Supplementary Material

In this supplementary material, we first remind the interested reader of why marching cubes are not
differentiable and provide a formal proof of our main differentiability theorem. We then discuss our
approach to speeding-up iso-surface extraction and performing end-to-end training. Finally, we give
additional details about our experiments on single-view reconstruction and drag minimization.

1.1 Non-differentiability of Marching Cubes

si ≥ 0

sj < 0

v

x = si
si−sj

(a) (b) si − sj

x

Figure 1: Marching cubes differentiation. (a) Marching Cubes determines the relative position x of
a vertex v along an edge via linear interpolation. This does not allow for effective back-propagation
when topology changes because of a singularity when si = sj . (b) We plot x, relative vertex position
along an edge. Note the infinite discontinuity for si = sj .

The Marching Cubes (MC) algorithm [14] extracts the zero level set of an implicit field and represents
it explicitly as a set of triangles. As discussed in the related work section, it comprises the following
steps: (1) sampling the implicit field on a discrete 3D grid, (2) detecting zero-crossing of the field
along grid edges, (3) assembling surface topology (i.e. the number of triangles within each cell and
how they are connected) using a lookup table and (4) estimating the vertex location of each triangle
by performing linear interpolation on the sampled implicit field. These steps can be understood as
topology estimation followed by the determination of surface geometry.

More formally, let S = {si} ∈ RN×N×N denote an implicit field sampled over a discrete Euclidean
grid G3D ∈ RN×N×N×3, where N denotes the resolution along each dimension. Within each voxel,
surface topology is determined based on the sign of si at its 8 corners. This results in 28 = 256
possible surface topologies within each voxel. Once topology has been assembled, vertices are
created in case the implicit field changes sign along one of the edges of the voxel.

∗Equal contribution

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

{s = 0}

{s + ∆s = 0}
v

n(v)

v′
n(v′)

v
n(v)

v′
n(v′)

v

n(v) = −∂v∂s

∆s→ 0

Figure 2: Iso-surface differentiation. We adopt a continuous model in terms of how small perturba-
tions of a signed distance function locally impact surface geometry. Here, we depict the geometric
relation between local surface change ∆v = v′ − v and a signed distance perturbation ∆s < 0,
which we exploit to compute ∂v

∂s in the formal derivation below.

Specifically, the vertex location v is determined using linear interpolation. Let x ∈ [0, 1] denote the
vertex relative location along an edge (Gi,Gj), where Gi and Gj are grid corners such that sj < 0
and si ≥ 0. This implies that if x = 0 then v = Gi and conversely if x = 1 then v = Gj . In the
MC algorithm, x is is determined as the zero crossing of the interpolant of si, sj , that is,

x =
si

si − sj
. (1)

Fig. 1(a) depicts this process. The vertex location is then taken to be

v = Gi + x(Gj −Gi). (2)

Unfortunately, this function is discontinuous for si = sj , as illustrated in Fig 1(b). Because of this,
we cannot swap the signs of si, sj through backpropagation. This prevents topology changes while
differentiating, as discussed in [12].

1.2 Proof of Differentiable Iso-Surface Result

Here we formally prove Theorem 1 from the main manuscript.
Theorem 1. Let us consider a signed distance function s and a perturbation function ∆s such that
s + ∆s is still a signed distance function. Given such ∆s, we define the associated local surface
change ∆v = v′ − v as the displacement between v′, the closest point to surface sample v on the
perturbed surface S′ = {q ∈ R3| s+ ∆s(q) = 0}, and the original surface sample v. It then holds
that

∂v

∂s
(v) = −n(v) = −∇s(v) , (3)

where n denotes the surface normals.

Proof. Recalling the definition of signed distance field, from elementary geometry we have that

∆v = v′ − v = n(v′)d(v, S′) = n(v′) (s(v)−∆s(v)) = −n(v′)∆s(v). (4)

Now, observing that lim∆s→0 v
′ = v, we have

∂v

∂s
(v) = lim

∆s→0

∆v

∆s
= lim

∆s→0
−n(v′) = −n(v). (5)

Finally, recalling that for a signed distance field n(v) = ∇s(v), follows our claim.

Fig. 2 illustrates this proof.

1.3 Accelerating Iso-Surface Extraction

Recall that our approach to iso-surface differentiation method is independent from the technique used
to extract surface samples, meaning that any non-differentiable iso-surface extraction method could
be used to obtain an explicit surface from the underlying deep implicit field.

2

MeshSDF, baseline

MeshSDF, fast

N

lo
g(

tim
e)

Figure 3: Accellerated Iso-Surface extraction. When working in an iterative optimization setting,
we can exploit the fact that fθ, the implicit field underlying our surface mesh representation, will
change only little between iterations to evaluate it only where we will expect it to change and
consequently accelerate iso-surface extraction.

In practice, when operating in an iterative optimization settings such as those considered in the main
manuscript, we exploit the fact that the deep implicit field fθ is expected not to change drastically
from one iteration to another, and re-evaluate it only where we can expect new zero-crossings to
appear. In this setting, we evaluate fθ only at grid corners where |fθ| was smaller than a given
threshold at the previous iteration. This reduces the computational complexity of field-sampling from
O(N3) to O(N2) in terms of the grid size N , which brings noticeable speed ups, as illustrated in the
benchmark of Fig. 3.

1.4 Comparison to Deep Marching Cubes

Deep Marching Cubes (DMC) [12] is designed to convert point clouds into a surface mesh probability
distribution. It can handle topological changes but is limited to low resolution surfaces for the reasons
discussed in related work. In the visualization below, we compare our approach to DMC. We fit both
representations to a toy dataset consisting of two shapes: a genus-0 cow, and a genus-1 rubber duck.
We use a latent space of size 2. Our metric is Chamfer l2 distance evaluated on 5000 samples for unit
sphere normalized shapes and shown at the bottom of the figure. As reported in the original paper, we
found DMC to be unable to handle grids larger than 323 because it has to keep track of all possible
mesh topologies defined within the grid. By contrast, deep implicit fields are not limited in resolution
and can better capture high frequency details.

CD-l2 · 102 ↓

DMC@323

1.87

Ours@323

1.84

Ours@2563

1.80

ground
truth DMC@323

1.98

Ours@323

1.94

Ours@2563

1.90

ground
truth

1.5 End-to-End Training

Here, we demonstrate how our differentiable iso-surface extraction scheme can be used also to
backpropagate gradient to the weights of MeshSDF, thus enabling end-to-end training. Specifically,
let us consider a metric measuring the distance between two surfaces, such as the Chamfer l2 distance

Lchamfer =
∑
p∈P

min
q∈Q
‖p− q‖22 +

∑
q∈Q

min
p∈P
‖p− q‖22 , (6)

where P and Q denote surface samples.

3

Input

ResNet18 MLP
z

x

Prediction

DR

Silhouette

Ltask

Input
silhouette

Figure 4: Shilouette-driven refinment. At inference time, given an input image, we exploit the
differentiability of MeshSDF to refine the predicted surface so that to match input silhouette in image
space through Differentiable Rasterization [10].

We exploit our differentiability result to compute

∂Lchamfer

∂θ
=

∑
v∈V

∂Lchamfer

∂v

∂v

∂fθ

∂fθ
∂θ

(7)

=
∑
v∈V
−∂Lchamfer

∂v
∇fθ

∂fθ
∂θ

. (8)

That is, we can train MeshSDF so that to minimize directly our metric of interest.

We evaluate the impact of doing so in Tab. 1, where we fine-tune DeepSDF models trained minimizing
the loss functionLsdf of the main manuscript by further minimizingLchamfer. We refer to this variant as
MeshSDF. Unsurprisingly, fine-tuning pre-trained models by minimizing the metric of interest allows
us to obtain a boost in performance. In future work, we plan to pursue the following directions within
end-to-end training: increasing the level of detail in the generated surfaces by exploiting Generative
Adversarial Networks operating on surface mesh data [4], and train Single View Reconstruction
architectures in a semi-supervised setting, that is by using only differentiable rasterization/rendering
to supervise training.

Table 1: End-to-end training. We exploit end-to-end-differentiability to fine-tune pre-trained
DeepSDF networks so that to that to minimize directly our metric of interest, Chamfer distance.

Category DeepSDF(train) MeshSDF(train) DeepSDF(test) MeshSDF(test)

Cars 0.00071 0.00064 (↓ 9%) 0.00084 0.00067 (↓ 20%)
Chairs 0.00145 0.00133 (↓ 8%) 0.00407 0.00259 (↓ 36%)

1.6 Single View Reconstruction

We first provide additional details on the Single View Reconstruction pipeline presented in the main
manuscript. Then, for each experimental evaluation of the main paper, we first introduce metrics in
details, and then provide additional qualitative results. To foster reproducibility, we will make our
entire code-base publicly available.

Architecture. Fig 4 depicts our full pipeline. As in earlier work [15, 3], we condition our deep
implicit field architecture on the input images via a residual image encoder [8], which maps input
images to latent code vectors z. Specifically, our encoder consists of a ResNet18 network, where we
replace batch-normalization layers with instance normalization ones [22] so that to make harder for
the network to use color cues to guide reconstruction. These latent codes are then used to condition
the signed distance function Multi-Layer Perceptron (MLP) architecture of the main manuscript,
consisting of 8 Perceptrons as well as residual connections, similarly to [18]. We train this architecture,
which we dub MeshSDF (raw), by minimizing Lsdf (Eq.1 on the main manuscript) wrt. θ on a training
set of image-surface pairs.

At inference time, we exploit end-to-end differentiability to refine predictions as depicted in Fig 4.
That is, given the camera pose associated to the image and the current value of z, we project vertices
and facets into a binary silhouette in image space through a differentiable rasterization function
DRsilhouette [10]. Ideally, the projection matches the observed object silhouette S in the image, which

4

is why we define our objective function as

Ltask = ‖DRsilhouette(M(z))− S‖1 , (9)

which we minimize with respect to z. In practice, we run 400 gradient descent iterations using
Adam [11] and keep the z with the smallest Ltask as our final code vector.

Evaluation on ShapeNet. We used standard train/test splits along with the renderings provided
in [25] for all the comparisons we report. We evaluate different approaches based on the following
SVR metrics:

• Chamfer l2 pseudo-distance: Common evaluation metric for measuring the distance
between two uniformly sampled clouds of points P,Q, defined as

CD-l2(P,Q) =
∑
p∈P

min
q∈Q
‖p− q‖22 +

∑
q∈Q

min
p∈P
‖p− q‖22. (10)

We evaluate this metric by sampling 2048 points from reconstructed and target shape, which
are re-scaled to fit into a unit-radius sphere.

• Earth Mover distance: This metric measures the distance between two point clouds by
solving an assignment problem

EMD(P,Q) = min
Φ:P→Q

∑
p∈P
‖p− Φ(p)‖2, (11)

where, for all but a zero-measure subset of point set pairs, the optimal bijection Φ is unique
and invariant under infinitesimal movement of the points. In practice, the exact computation
of EMD is too expensive and we implement the (1 + ε) approximation scheme of [5]. We
evaluate this metric by sampling 2048 points from reconstructed and target shape, which are
re-scaled to fit into a unit-radius sphere.

• Intersection over Union: Since all information about an object’s shape is situated on its
surface, and to allow comparison to methods that do not produce watertight surfaces (such
as [7]) we propose to evaluate object similarity by measuring surface-to-surface IoU. In
practice, denoting as V the function mapping a cloud of points to a binary voxel grid, this
metric reads

IoU(P,Q) =
intersection(V(P),V(Q))

union(V(P),V(Q))
(12)

We evaluate this metric by sampling 5000 points and setting up the voxel grid divide the
object bounding box at resolution 50× 50× 50.

• F-score: The F-Score has been recently proposed [21] for evaluating SVR algorithms. It
explicitly evaluates the distance between object surfaces and is defined as the harmonic mean
between precision and recall at a given distance threshold d. We refer the reader to [21]
for more details about this metric. We evaluate this metric by sampling 10000 points from
reconstructed and target shape and set 5% of the object bounding box length as distance
threshold.

In Table 2, we further compare our method to state-of-the-art single view reconstruction algorithms
in terms of F-score. Similarly to what reported in the main manuscript for CD, EMD and IoU,
performing imaged-based refinement allows us to outperforms all other state-of-the-art approaches
also in terms of this metric.

Evaluation on Pix3D. We followed closely the evaluation pipeline proposed together with this
dataset [20]. That is, we focus on the chair category, and exclude from the evaluation all images where
the object we want to reconstruct is truncated or occluded, resulting in 2894 test images. We then use
ground truth bounding boxes to crop the image to a window centered around the object. To evaluate
fairly reconstruction performance, we segment the background off for all methods presented in Table
2 of the main paper but for [20], that achieves state-of-the-art performance in joint segmentation
and reconstruction on this benchmark. We do so to give a sense of the impact of assuming to
have accurate segmentation information on reconstruction quality. Finally, following the evaluation

5

Table 2: Single view reconstruction results on ShapeNet Core. Exploiting end-to-end differentia-
bility to perform image-based refinement allows us to outperform all prior methods also in terms of
F-Score.

Metric Method plane bench cabinet car chair display lamp speaker rifle sofa table phone boat mean

F-Score% ↑

AtlasNet 91 86 74 94 91 84 81 80 96 91 91 90 90 89
Pixel2Mesh 88 95 94 97 94 92 89 89 95 96 93 97 94 93

Mesh R-CNN 87 91 90 95 90 89 83 85 93 92 90 95 91 90
DISN 94 94 89 96 90 92 78 85 96 96 87 96 93 91

MeshSDF(raw) 92 95 92 98 94 91 85 86 96 94 91 95 93 91
MeshSDF 96 97 94 98 97 95 91 91 98 96 94 98 95 95

pipeline designed in [20], we only have access to ShapeNet synthetic data to train our models, that is
we don’t have access to any Pix3D image at training time. The main challenge of this benchmark is
therefore to design an architecture that is robust to the change of domain. Finally, we use evaluation
metrics as originally proposed in [20]:

• Chamfer
√
l2 pseudo-distance:

CD-
√
l2(P,Q) =

∑
p∈P

min
q∈Q
‖p− q‖2 +

∑
q∈Q

min
p∈P
‖p− q‖2, (13)

where P and Q are clouds of points. We evaluate this metric by sampling 1024 points from
reconstructed and target shape, which are re-scaled to fit into a [0.5, 0.5]3 bounding box.2

• Earth Mover distance: We use the same metric as above, but follow the approximation
scheme of [20] in this case. We evaluate this metric by sampling 1024 points from recon-
structed and target shape, which are re-scaled to fit into a [0.5, 0.5]3 bounding box.

• Intersection over Union: We evaluate object similarity by measuring volume-to-volume
IoU. In practice, denoting as F the function mapping a surface meshM to a filled-in binary
voxel grid, this metric reads

IoUvol(P,Q) =
intersection(F(P),F(Q))

union(F(P),F(Q))
, (14)

where P,Q denote surface meshes. We evaluate this metric by setting up the voxel grid
divide the surface mesh bounding box at resolution 32× 32× 32.

Additional qualitative results. We provide additional qualitative comparative results on both
ShapeNet and Pix3D in Fig 8,9. Furthermore, in Fig 10 we show failure cases, which we obtain by
selecting samples for which refinement does not bring any improvement. Furthermore, we refer the
reader to the supplementary video for animations depicting the impact of iterative refinement on the
reconstruction.

1.7 Aerodynamic Shape Optimization

Here we provide more details on how we performed the aerodynamic optimization experiments
presented in the main manuscript. The overall pipeline for the optimisation process is depicted in
Fig. 5, and additional optimization results are shown in Fig. 11.

1.7.1 Dataset

As described in the main manuscript, we consider the car split of the ShapeNet [2] dataset for this
experiment. Since aerodynamic simulators typically require high quality surface triangulations to
perform CFD simulations reliably, we (1) follow [19] and automatically remove internal part of each
mesh as well as re-triangulate surfaces and (2) manually filter out corrupted surfaces. After that, we
train a DeepSDF auto-decoder on the obtained data split and, using this model, we reconstruct the
whole dataset from the learned parameterization. The last step is needed so that to provide fair initial
conditions for each method of the comparison in Tab. 3 of the main manuscript, that is to allow all
approaches to begin optimization from identical meshes.

2In the main manuscript we have dubbed this metric as Chamfer l1 by mistake. We will fix when we revise
the paper.

6

Grid Points

Predicted SDF Reconstructed Mesh

MeshSDF Gradient (Theorem 1)

Ltask

Figure 5: Aerodynamic optimization pipeline. We encode a shape we want to optimize using
DeepSDF (denoted as SDF block on the figure) and obtain latent code z. Then we start our iterative
process. First, we assemble an Euclidean grid and predict SDF values for each node of the grid. On
this grid we run the Marching Cubes algorithm (MC) to extract a surface mesh. We then run the
obtained shape through a Mesh CNN (CFD) to predict pressure field from which we compute drag as
our objective function. Using the proposed algorithm we obtain gradients of the objective w.r.t. latent
code z and do an optimization step. The loop is repeated until convergence.

Pr
ed

ic
te

d

pmin

0

pmax

Figure 6: Simulated and predicted pressure fields. Pressure fields for different shapes simulated
with OpenFoam (top) and predicted by the Mesh Convolutional Neural Network (bottom).

We obtain ground truth pressure values for each car shape with OpenFoam [9], setting an inflow
velocity of 15 meters per second and airflow density equal 1.18. Each simulation was run for at most
5000 time steps and took approximately 20 minutes to converge. Some result of the CFD simulations
are depicted in the top row of Fig. 6.

We will make both the cleaned car split of ShapeNet and the simulated pressure values publicly
available.

1.7.2 CFD prediction

We train a Mesh Convolutional Neural Network to regress pressure values given an input surface
mesh, and then compute aerodynamic drag by integrating the regressed field. Specifically, we used
the dense branch of the architecture proposed in [1] and replaced Geodesic Convolutions [16] by
Spline ones [6] for efficiency.

A comparison for the predicted and simulated pressure values may be seen in Fig. 6.

1.7.3 Implementation Details

In this section we provide the details needed to implement the baselines parameterizations presented
in the main manuscript.

7

Initial Shape Vertex-vise Scaling

FreeForm PolyCube MeshSDF

Figure 7: Soft constraints reserving space for driver and engine. The figure illustrates the con-
straints we put on the surfaces during the optimization process. The constraints are shown for the
initial shape, and then for all presented parameterizations. Note, that the constraints we put are soft,
and thus may be violated.

• Vertex-vise optimization In this baseline, we optimize surface geometry by flowing gradi-
ents directly into surface mesh vertices, that is without using a low-dimensional parame-
terization. In our experiments, we have found this strategy to produce unrealistic designs
akin to adversarial attacks that, although are minimizing the drag predicted by the network,
result in CFD simulations that do not convergence. This confirms the need of using a
low-dimensional parameterization to regularize optimization.

• Scaling We apply a function fCx,Cy,Cz
(V) = (CxVx, CyVy, CzVz)

T to each vertex of the
initial shape. Here Ci are 3 parameters describing how to scale vertex coordinates along the
corresponding axis. As we may see from the Tab. 3 of the main manuscript, such a simple
parameterization already allows to improve our metric of interest.

• FreeForm Freeform deformation is a very popular class of approaches in engineering
optimization. A variant of this parameterization was introduced in [1], where it led to good
design performances. In our experiments we are using the parameterization described in [1]
with only a small modification: to enforce the car left and right sides to be symmetrical we
square sinuses in the corresponding terms. We also add l2-norm of the parameterization
vector to the loss as a regularization.

• PolyCube Inspired by [23] we create a grid of control points to change the mesh. The
grid size is 8 × 8 × 8 and it is aligned to have 20% width padding along each axis. The
displacement of each control point is limited to the size of each grid cell, by applying tanh.
During the optimization we shift each control point depending on the gradient it has and
then tri-linearly interpolate the displacement to corresponding vertices. Finally, we enforce
the displacement field to be regular by using Gaussian Smoothing (σ = 1, kernel size = 3).
This results in a parameterization that allows for deformations that are very similar to the
one of [23].

As we describe in the main paper, to prevent the surface from collapsing to a point, we put a set of
soft-constraints to reserve space for driver and engine. The constraints are represented on the figure 7.

1.7.4 Additional Regularization for MeshSDF

In order to avoid generating unrealistic designs with MeshSDF, we introduce an additional regular-
ization term Lconstraint in the optimization, similarly to the regularizations introduced in the baseline
parameterizations discussed above.

8

In our experiments, we began by using a standard penalty on l2 norm of the latent code, Lconstraint =
α||z||22. However, even though it prevented most of the runs from converging to unrealistic shapes,
we found converged shapes to still be coarse and noisy in some cases.

We therefore opted for a more conservative regularization strategy, reading

Lconstraint = α
∑

z′∈Zk

||z− z′||22
|Zk|

, (15)

where Zk = z0, z1, . . . , zk denote the k closest latent vectors to z from the training set of DeepSDF.
In our experiments we set k = 10, α = 0.2. This regularization limits exploration of the latent space,
but guarantees more robust and realistic optimisation outcomes.

In our aerodynamics optimization experiments, different initial shapes yield different final ones. We
speculate that this behavior is due to the presence of local minima in the latent space of DeepSDF,
even though we use the Adam optimizer [11] , which is known for its ability to escape some of them.
We are planning to address the problem more thoroughly in future.

1.8 Comparison to implicit field differentiable rendering

Recent advances in differentiable rendering [13] have shown that is possible to render continuous
SDFs differentiably by carefully designing a differentiable version of the sphere tracing algorithm. By
contrast, we simply use MeshSDF end-to-end differentiability to exploit an off-the-shelf differentiable
rasterizer to achieve the same result. To highlight the advantages of doing so, we take the generative
model of Section 1.4, initialize latent code so that to generate the cow, and then minimize silhouette
distance with respect to the duck. In the table below we compare our approach to [13]. Sphere tracing
requires to query the network along each camera ray in a sequential fashion, resulting in longer
computational time with respect to our approach, which projects surface triangles to image space and
then rasterizes them in parallel. Furthermore, our approach requires less function evaluation, as we
do not need to sample densely the volume around the field zero-crossing.

Method l2 silhouette distance ↓ # network queries ↓ run time [s] ↓

Liu20 [most efficient settings, 5122 renders] 0.005973 898k 1.24
MeshSDF [isosurface at 2563, 5122 renders] 0.004625 266k 0.29

References
[1] Pierre Baqué, Edoardo Remelli, Francois Fleuret, and Pascal Fua. Geodesic Convolutional Shape Opti-

mization. In ICML, 2018.
[2] Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li, Silvio

Savarese, Manolis Savva, Shuran Song, Hao Su, et al. Shapenet: An information-rich 3d model repository.
arXiv preprint arXiv:1512.03012, 2015.

[3] Z. Chen and H. Zhang. Learning implicit fields for generative shape modeling. In Conference on Computer
Vision and Pattern Recognition, 2019.

[4] Shiyang Cheng, Michael Bronstein, Yuxiang Zhou, Irene Kotsia, Maja Pantic, and Stefanos Zafeiriou.
Meshgan: Non-linear 3d morphable models of faces, 2019.

[5] H. Fan, H. Su, and L. Guibas. A Point Set Generation Network for 3D Object Reconstruction from a Single
Image. In Conference on Computer Vision and Pattern Recognition, 2017.

[6] Matthias Fey, Jan Eric Lenssen, Frank Weichert, and Heinrich Müller. SplineCNN: Fast geometric
deep learning with continuous B-spline kernels. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2018.

[7] Thibault Groueix, Matthew Fisher, Vladimir G Kim, Bryan C Russell, and Mathieu Aubry. A papier-mâché
approach to learning 3d surface generation. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 216–224, 2018.

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In Conference on Computer Vision and Pattern Recognition, Jun 2016.

[9] Hrvoje Jasak, Aleksandar Jemcov, Zeljko Tukovic, et al. Openfoam: A c++ library for complex physics
simulations. In International workshop on coupled methods in numerical dynamics, volume 1000, pages
1–20. IUC Dubrovnik Croatia, 2007.

[10] Hiroharu Kato, Yoshitaka Ushiku, and Tatsuya Harada. Neural 3d mesh renderer. In Conference on
Computer Vision and Pattern Recognition, 2018.

[11] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2014.
[12] Y. Liao, S. Donné, and A. Geiger. Deep Marching Cubes: Learning Explicit Surface Representations. In

Conference on Computer Vision and Pattern Recognition, pages 2916–2925, 2018.

9

Image Pixel2Mesh [24] DISN [25] MeshSDF(raw) MeshSDF

Figure 8: Comparative results for SVR on ShapeNet.

[13] Shaohui Liu, Yinda Zhang, Songyou Peng, Boxin Shi, Marc Pollefeys, and Zhaopeng Cui. Dist: Rendering
deep implicit signed distance function with differentiable sphere tracing. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 2019–2028, 2020.

[14] W.E. Lorensen and H.E. Cline. Marching Cubes: A High Resolution 3D Surface Construction Algorithm.
In ACM SIGGRAPH, pages 163–169, 1987.

[15] L. Mescheder, M. Oechsle, M. Niemeyer, S. Nowozin, and A. Geiger. Occupancy Networks: Learning
3D Reconstruction in Function Space. In Conference on Computer Vision and Pattern Recognition, pages
4460–4470, 2019.

[16] Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola, Jan Svoboda, and Michael M
Bronstein. Geometric deep learning on graphs and manifolds using mixture model cnns. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pages 5115–5124, 2017.

[17] A. Mosińska, P. Marquez-Neila, M. Kozinski, and P. Fua. Beyond the Pixel-Wise Loss for Topology-Aware
Delineation. In Conference on Computer Vision and Pattern Recognition, pages 3136–3145, 2018.

[18] J. J. Park, P. Florence, J. Straub, R. A. Newcombe, and S. Lovegrove. Deepsdf: Learning continuous signed
distance functions for shape representation. In Conference on Computer Vision and Pattern Recognition,
2019.

[19] Fun Shing Sin, Daniel Schroeder, and Jernej Barbič. Vega: non-linear fem deformable object simulator.
Computer Graphics Forum, 32(1):36–48, 2013.

10

Image Pixel2Mesh [24] DISN [25] MeshSDF(raw) MeshSDF

Figure 9: Comparative results for SVR on Pix3D.

[20] Xingyuan Sun, Jiajun Wu, Xiuming Zhang, Zhoutong Zhang, Chengkai Zhang, Tianfan Xue, Joshua B.
Tenenbaum, and William T. Freeman. Pix3d: Dataset and methods for single-image 3d shape modeling. In
Conference on Computer Vision and Pattern Recognition, 2018.

[21] M. Tatarchenko, S. Richter, R. Ranftl, Z. Li, V. Koltun, and T. Brox. What Do Single-View 3D Recon-
struction Networks Learn? In Conference on Computer Vision and Pattern Recognition, pages 3405–3414,
2019.

[22] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Instance normalization: The missing ingredient
for fast stylization, 2016.

[23] Nobuyuki Umetani and Bernd Bickel. Learning three-dimensional flow for interactive aerodynamic design.
ACM Transactions on Graphics (TOG), 37(4):1–10, 2018.

[24] Nanyang Wang, Yinda Zhang, Zhuwen Li, Yanwei Fu, Wei Liu, and Yu-Gang Jiang. Pixel2mesh:
Generating 3d mesh models from single rgb images. In European Conference on Computer Vision, 2018.

[25] Qiangeng Xu, Weiyue Wang, Duygu Ceylan, Radomir Mech, and Ulrich Neumann. Disn: Deep implicit
surface network for high-quality single-view 3d reconstruction. In Advances in Neural Information
Processing Systems, pages 492–502, 2019.

11

Image Pixel2Mesh [24] DISN [25] MeshSDF(raw) MeshSDF

Figure 10: Failure cases for SVR on Pix3D. Reconstruction refinement based on L1 silhouette
distance fails at capturing fine topological details for challenging samples. In the future, we plan to
perform refinement using image-based loss functions that are more sensitive to topological mistakes
[17].

12

Figure 11: MeshSDF aerodynamic optimizations.

13

	Supplementary Material
	Non-differentiability of Marching Cubes
	Proof of Differentiable Iso-Surface Result
	Accelerating Iso-Surface Extraction
	Comparison to Deep Marching Cubes
	End-to-End Training
	Single View Reconstruction
	Aerodynamic Shape Optimization
	Dataset
	CFD prediction
	Implementation Details
	Additional Regularization for MeshSDF

	Comparison to implicit field differentiable rendering

