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1 Stability results for the Multiparameter Persistence Image

The Multiparameter Persistence Image is built from the Vineyard Decomposition associated to the
fibered barcode, which is a collection of successive matchings of barcodes. Fix a 2D persistence
moduleM(f). Considering a collection of lines {`i}, Landi’s external stability result [Lan14] implies
that as a pair of lines `i and `j get closer together, bcd(f`i) and bcd(f`j ) converge. This implies that
the persistence image is a sensible construction in the sense that there are not discontinuous jumps in
the barcodes along the matchings, provided the cover by the lines is fine enough. Moreover, these
considerations also imply that for sufficiently close lines, the vineyard matching closely approximates
the bottleneck distance matching.

By Landi’s internal stability result [Lan14], for any two 2D persistence modules M(f) and M(g)
that are close in the interleaving distance, bcd(f`i) is close to bcd(g`i), with a Lipshitz constant that
depends on the slope of the lines. One would hope that this would ultimately imply stability for the
multiparameter persistence image. However, stability results will obtain only when these matchings
are themselves stable in the 2D persistence module.

The key issue however is that under certain circumstances the trajectories produced by the matchings
are arbitrary and hence can be dramatically affected by noise. Specifically, when matching barcodes
bcd(f`i) and bcd(f`i+1

) in which distinct bars b`i and b′`i in bcd(f`i) are matched to a pair of
identical bars b`i+1

and b′`i+1
in bcd(f`i+1

) the choice of identification is arbitrary. Composing with
a third matching from bcd(f`i+1

) to bcd(f`i+2
) which separates the bars b`i+1

and b′`i+1
again, both

trajectories are possible. Thus, given a path of matchings in which matchings of bars merge, the
decomposition into distinct paths of bars cannot be expected to be stable.

We will say that a collection of lines L = {`i} is κ-generic for a 2D persistence module M(f) if
for any pair of trajectories in the associated Vineyard Decomposition DL(f) there does not exist an
index i such that mi(b`i) and mi(b

′
`i
) are closer than κ to one another (in the ‖ · ‖∞ norm between

the bars seen as 2D points). Given a κ-generic trajectory for M(f), if dI(M(f),M(g)) < ε < κ,
then the paths will not get closer than ε− κ. As such, we consider stability under the assumption that
the perturbations are smaller than κ. One thing to note is that given the computation of the vineyard
decomposition, it is straightforward to compute what the constant of genericity is, which we think of
as being akin to a condition number.

We now assume that we are considering trajectories which are κ-generic and consider stability results
for interleaved 2D persistence modules M(f) and M(g) such that dI(M(f),M(g)) << κ. (In what
follows, we consider the case of a collection of parallel lines for simplicity.) The basis for stability
results for the multiparameter persistence image is the following easy geometric result.
Proposition 1.1. Let `1 and `2 be two adjacent parallel lines parameterized by the vector eθ that
are distance δ apart. Suppose that b1 ∈ bcd(f`1) and b2 ∈ bcd(f`2) are matched bars in the
barcodes along `1 and `2 respectively. Given another 2D persistence module M(g) such that
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dI(M(f),M(g)) < ε, then the change in the area of the quadrilateral specified by b1 and b2 is
bounded by (2δε)/ẽ. Along a path of k parallel lines at most δ apart, the change in area of the region
trace out by the bars is bounded by k · (2δε)/ẽ.

Proof. The change in the parallelogram is bounded by two parallelograms (on the top and on the
bottom) with side lengths ε

ẽ and δ. Since the area of a parallelogram is bounded by the area of the
rectangle with corresponding side lengths, the bound for a pair of lines follows. For a path of bars,
summing along the path yields (k − 1) εδẽ .

As an immediate corollary of the proposition, for a collection of lines {`i}, we can bound the change
in the area of the region swept out by the matched barcodes.
Corollary 1.2. Let M(f) and M(g) be 2D persistence diagrams such that dI(M(f),M(g)) < ε
and assume that the sizes of DL(f) and DL(g) are bounded by N and each path of matchings has
maximum length c before it hits the diagonal. Then

|Af −Ag| ≤ Nc
εδ

ẽ
,

where Af and Ag denote the areas of the regions formed as the union of the parallelograms in R2

specified by the matchings.

The multidimensional persistence image is a discretization of this area. To see that it is stable for
sufficiently small perturbations, we recall the expression

(IL,R,p,σ(f))i,j =
∑

I∈DL(f)

w(I) ·
(
ω(`∗) exp

(
−min`∈I ‖Pi,j , `‖2

σ2

))
,

at each grid point (i, j). Focusing on the Gaussian, If dI(M(f),M(g)) < ε is sufficiently small, the
bar realizing the min is unchanged and the distance |Pi,j , `|2 changes by a most ε. Since we can
bound the change in the value of the Gaussian in terms of kε (and some additional constants), local
stability follows as long as the weightings are themselves stable. For the choices used in the body of
the text, this is true by the discussion above and the work of Landi.

2 The Multiparameter Persistence Image is finer than the fibered barcode

In this section, we provide a simple example of a pair of graphs that rise to distinct 2D persistence
modules that cannot be distinguished with the fibered barcode but can be distinguished by the
Multiparameter Persistence Image.

We recall that in the 1D setting, one can compute a persistence diagram when X is a graph G with
vertices V (G) and f is a function defined on the nodes of G, that is, f : V (G) → R, and is then
extended in a piecewise-linear way on the edges of G. The topological structures of G, such as its
branches and loops, can then be encoded in the corresponding persistence diagram.

Figure 1: Each parameter α generates a subgraph of the full graph G. A branch pointing downward
is detected as a new connected component in the second subgraph, until it gets merged to the other
component in the third subgraph. This creates a point in dimension 0 in the corresponding persistence
diagram. The loop and the connected component of the graph persist infinitely, leading to points with
infinite ordinates.

The following example involves a bifiltration on graphs.
Example 2.1. Let G1 and G2 be two graphs defined with

G1 = {{a, b, c, d}, {[a, c], [b, c]}}
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three connected nodes and one isolated one) and

G2 = {{a, b}, {}}
(two isolated nodes). Moreover, let

f1(a) = [0, 1], f1(b) = [1, 0], f1(c) = [1, 1], f1(d) = [1, 1] and f2(a) = [0, 1], f2(b) = [1, 0].

ThenG1 andG2 have the exact same fibered barcodes (and thus identical Multiparameter Persistence
Landscapes1 and Kernels) in dimension 0. See Figure 2.
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0 1
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Figure 2: Vineyard Decomposition, Multiparameter Persistence Image with power q = 0, Multipa-
rameter Persistence Image with power q = 2 and Multiparameter Persistence Landscape of G1 (top
row) and G2 (bottom row). Even though the Multiparameter Persistence Landscapes are the same,
both Multiparameter Persistence Images successfully distinguish the graphs (even though it is harder
to see for q = 0: values are slightly different around the center of the images). Moreover, the Multi-
parameter Persistence Kernel values (computed with the Sliced Wasserstein Kernel SW [CCO17])
are the same: KKSW

(G1, G2) = KKSW
(G1, G1) ' 138.59.

3 Time series descriptions

Descriptions of sizes and number of classes are available in Table 1.

Dataset Train Test Length Nb classes
DistalPhalanxOutlineAgeGroup 400 139 80 3
DistalPhalanxOutlineCorrect 600 276 80 2

DistalPhalanxTW 400 139 80 6
ECG200 100 100 96 2

GunPoint 50 150 150 2
ItalyPowerDemand 67 1029 24 2
MedicalImages 381 760 99 10

Plane 105 105 144 7
ProximalPhalanxOutlineAgeGroup 400 205 80 3
ProximalPhalanxOutlineCorrect 600 291 80 2

ProximalPhalanxTW 400 205 80 6
SwedishLeaf 500 625 128 15

SyntheticControl 300 300 60 6
GunPointAgeSpan 135 316 150 2

GunPointMaleVersusFemale 135 316 150 2
GunPointOldVersusYoung 136 315 150 2

PowerCons 180 180 144 2
Table 1: Training and testing sizes, and time series length for our experiments.

Computation times for homological dimension 1 are available in Table 2.

Cross-validated resolutions are available in Table 3.
1A weighted version of the Multiparameter Persistence Landscape is defined in [Vip20], which could

potentially distinguish these two multifiltrations, but it is unclear how to choose the weight and implement it.
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Dataset MP-K MP-L MP-I
DistalPhalanxOutlineAgeGroup 10109.2 631.2 135.0
DistalPhalanxOutlineCorrect 53402.7 2075.8 503.8

DistalPhalanxTW 10251.9 354.2 80.0
ProximalPhalanxOutlineAgeGroup 13657.6 590.8 147.2
ProximalPhalanxOutlineCorrect 44267.2 1240.0 299.0

ProximalPhalanxTW 13913.1 238.6 56.8
ECG200 1806.0 1972.4 336.0

ItalyPowerDemand 68895.0 1144.0 227.9
MedicalImages 74510.8 1699.6 406.0

Plane 1929.8 898.5 203.0
SwedishLeaf 22657.8 1779.4 460.8
GunPoint 2012.0 2387.5 343.8

GunPointAgeSpan 11829.7 2499.1 560.0
GunPointMaleVersusFemale 11816.2 2580.8 628.3
GunPointOldVersusYoung 14067.8 3190.4 802.7

PowerCons 9002.4 2934.9 791.7
SyntheticControl 18559.3 661.5 165.5

Table 2: Computation time (s) for time series in dimension 1.

Dataset MP-I MP-L P-I P-L
DistalPhalanxOutlineAgeGroup 2,500 2,500 2,500 100
DistalPhalanxOutlineCorrect 2,500 2,500 100 100

DistalPhalanxTW 2,500 2,500 100 100
ProximalPhalanxOutlineAgeGroup 2,500 100 2,500 100
ProximalPhalanxOutlineCorrect 100 2,500 2,500 100

ProximalPhalanxTW 2,500 100 2,500 2,500
ECG200 100 2,500 100 2,500

ItalyPowerDemand 2,500 100 2,500 100
MedicalImages 2,500 2,500 100 2,500

Plane 2,500 2,500 100 100
SwedishLeaf 2,500 2,500 100 100
GunPoint 2,500 2,500 100 2,500

GunPointAgeSpan 100 100 2,500 2,500
GunPointMaleVersusFemale 2,500 100 100 100
GunPointOldVersusYoung 2,500 2,500 100 100

PowerCons 2,500 2,500 2,500 100
SyntheticControl 100 2,500 100 2,500

Table 3: Best resolutions (selected with cross-validation) for time series.

Cross-validation results are available in Table 4.

4 Graph experiments

We made a series of experiments on graph classification. It is natural to imagine that topological
features of the graphs might require multiple functions to be fully recovered, see Figure 1. In these
experiments, we use the Ricci curvature and the heat kernel signature with time 10 (similarly to what
was used in [ZW19, CCI+20]) for computing multiparameter persistence in homological dimension
0. Data come from standard graph classification data sets containing biological and social network
graphs. See Table 5 for a description of the graph classification tasks. Moreover, we use the exact
same parameters than the ones we used for time series and immunofluorescence images classification
(see main paper, Section 4), except for the lines, which are now computed using the minima and
maxima of Ricci curvature and heat kernel signatures.

Results are displayed in Table 6. Accuracies are averaged over 5 train/test splits of the data sets
obtained with 5 stratified folds. Here, all of the multidimensional persistence summaries have
essentially the same performance, although the Multiparameter Persistence Kernel is slightly better
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Dataset MP-I MP-L P-I P-L
DistalPhalanxOutlineAgeGroup 80.8 ± 0.17 80.0 ± 0.14 80.0 ± 0.15 80.0 ± 0.13
DistalPhalanxOutlineCorrect 80.7 ± 0.05 76.3 ± 0.09 74.8 ± 0.08 71.3 ± 0.07

DistalPhalanxTW 78.0 ± 0.02 77.0 ± 0.02 76.8 ± 0.03 77.2 ± 0.05
ProximalPhalanxOutlineAgeGroup 82.2 ± 0.11 81.0 ± 0.13 80.2 ± 0.11 80.5 ± 0.12
ProximalPhalanxOutlineCorrect 77.5 ± 0.03 79.3 ± 0.04 73.7 ± 0.07 74.0 ± 0.04

ProximalPhalanxTW 77.8 ± 0.02 78.8 ± 0.04 76.2 ± 0.03 75.8 ± 0.03
ECG200 83.0 ± 0.07 80.0 ± 0.12 75.0 ± 0.11 69.0 ± 0.06

ItalyPowerDemand 86.6 ± 0.06 86.6 ± 0.07 71.6 ± 0.13 59.7 ± 0.15
MedicalImages 60.9 ± 0.02 57.5 ± 0.03 55.1 ± 0.03 54.6 ± 0.04

Plane 89.5 ± 0.04 89.5 ± 0.03 88.6 ± 0.03 79.0 ± 0.09
SwedishLeaf 78.8 ± 0.04 58.8 ± 0.01 48.0 ± 0.04 38.8 ± 0.03
GunPoint 92.0 ± 0.08 90.0 ± 0.12 88.0 ± 0.05 78.0 ± 0.17

GunPointAgeSpan 95.6 ± 0.02 88.9 ± 0.04 94.8 ± 0.02 91.9 ± 0.06
GunPointMaleVersusFemale 97.0 ± 0.01 89.6 ± 0.03 89.6 ± 0.05 85.9 ± 0.06
GunPointOldVersusYoung 99.3 ± 0.01 95.6 ± 0.05 97.1 ± 0.06 95.6 ± 0.03

PowerCons 91.1 ± 0.1 80.6 ± 0.06 84.4 ± 0.06 75.6 ± 0.09
SyntheticControl 56.3 ± 0.05 53.0 ± 0.05 50.0 ± 0.04 44.7 ± 0.06

Table 4: Cross-validation classification results for time series.

Dataset Nb graphs Nb classes Av. nodes Av. edges Av. β0 Av. β1
BZR 405 2 35.75 38.36 1.0 3.61
COX2 467 2 41.22 43.45 1.0 3.22
DHFR 756 2 42.43 44.54 1.0 3.12

IMDB-BINARY 1,000 2 19.77 96.53 1.0 77.76
IMDB-MULTI 1,500 3 13.00 65.94 1.0 53.93

MUTAG 188 2 17.93 19.79 1.0 2.86
PROTEINS 1,113 2 39.06 72.82 1.08 34.84

Table 5: Datasets description. β0 (resp. β1) stands for the 0th-Betti-number (resp. 1st), that is the
number of connected components (resp. cycles) in a graph. In particular, an average β0 = 1.0 means
that all graph in the dataset are connected, and in this case β1 = #{edges} −#{nodes}.

in almost all cases. In this case, the conclusion we draw is that the fibered barcodes alone already
contain all the salient topological information. Notice again that the fibered barcodes remain superior
to the 1D-persistence summaries, however.

Dataset P MP-K MP-L MP-I
BZR 82.7 ± 2.5 86.2 ± 2.6 85.7 ± 2.5 84.2 ± 2.3
COX2 76.0 ± 4.1 79.9 ± 1.8 79.0 ± 3.3 77.9 ± 2.7
DHFR 70.9 ± 3.1 81.7 ± 1.9 79.5 ± 2.3 80.2 ± 2.2

IMDB-BINARY 54.0 ± 1.9 68.2 ± 1.2 71.2 ± 2.0 71.1 ± 2.1
IMDB-MULTI 36.3 ± 1.1 46.9 ± 2.6 46.2 ± 2.3 46.7 ± 2.7

MUTAG 79.2 ± 7.7 86.1 ± 5.2 84.0 ± 6.8 85.6 ± 7.3
PROTEINS 65.4 ± 2.7 67.5 ± 3.1 65.8 ± 3.3 67.3 ± 3.5

Table 6: Classification results for graphs.
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