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Abstract

Components of machine learning systems are not (yet) perceived as security
hotspots. Secure coding practices, such as ensuring that no execution paths de-
pend on confidential inputs, have not yet been adopted by ML developers. We
initiate the study of code security of ML systems by investigating how nucleus
sampling—a popular approach for generating text, used for applications such as
auto-completion—unwittingly leaks texts typed by users. Our main result is that
the series of nucleus sizes for many natural English word sequences is a unique
fingerprint. We then show how an attacker can infer typed text by measuring these
fingerprints via a suitable side channel (e.g., cache access times), explain how this
attack could help de-anonymize anonymous texts, and discuss defenses.

1 Introduction

Machine learning (ML) models are composed from building blocks such as layer types, loss functions,
sampling methods, etc. Each building block typically has a few popular library implementations,
which are incorporated into many models—including models whose inputs are sensitive (e.g., private
images or typed text). Therefore, ML models are “security hotspots” and their implementations must
follow secure coding practices. This includes protecting the inputs from side channels, i.e., low-level
physical or microarchitectural side effects of the computation that are externally observable and leak
information about its internal state to concurrent, adversarial processes.

We use nucleus sampling [19], a leading approach for efficiently generating high-fidelity text, as a
case study of side-channel vulnerabilities in ML models. Given the output probabilities of a language
model such as GPT-2 [35], nucleus sampling draws candidates from a variable-sized “nucleus” of the
most probable words. It is the basis of applications such as text auto-completion [24, 44].

First, we demonstrate that the series of nucleus sizes produced when generating an English-
language word sequence is a fingerprint by showing that the nucleus size series of any sequence
satisfying a simple criterion is far from any other sequence, unless their textual contents substantially
overlap. We then derive a lower bound on the Euclidean distance between fingerprints that depends
only on the sequence length but not on the size or domain of the corpus.

Second, we show that implementations of nucleus sampling, such as the popular Hugging Face
Transformers package, contain a dangerous information leak. An attacker who runs a concurrent,
sandboxed application process on the user’s device can infer the nucleus size by indirectly measure the
number of iterations of a certain loop, and thus fingerprint the input text. We use Flush+Reload [47]
for our proof of concept, but the general approach works with any suitable side channel [17, 28, 32].

We design a fingerprint matching algorithm and show that (1) it tolerates noise in side-channel
measurements, and (2) does not produce false positives. Therefore, an attacker can accurately identify
the typed sequence out of many billions of possible candidates in an “open-world” setting, without
assuming a priori that the user’s input belongs to a known small dataset. This technique can help
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de-anonymize text by asynchronously matching fingerprints collected from the user’s device to
anonymous blog entries, forum posts, emails, etc. For example, we show that many of the anonymous
users’ posts on the infamous Silk Road forum have unique fingerprints.

We conclude by explaining how to mitigate the information leak and discuss the importance of
removing insecure coding patterns such as input-dependent loops from ML building blocks.

Ethics and responsible disclosure. The purpose of this study is to improve the security of popular
ML systems and help protect the privacy of their users. We disclosed our findings and our proposed
mitigation code by email to members of the Hugging Face engineering team responsible for the
implementation of nucleus sampling (identified via a contact at Hugging Face and GitHub’s commit
log) and a message to Hugging Face’s public Facebook contact point.

We use Silk Road posts as a case study only because they represent informal textual communications
whose authors likely wish to maintain their anonymity. Silk Road posts include offensive and
harmful content. We use this dataset solely for our proof-of-concept experiments. It does not
reflect our views in any way.

2 Background

2.1 Text generation via language model sampling

Let D be a dictionary, S = ∪i∈NDi a set of possible texts (sequences of dictionary words), and X ∈ S.
A language modelM : S → R|D| maps a “prefix” (x1, . . . , xn) ∈ S to a probability distribution(
p1, . . . p|D|

)
of the next word. Text auto-completion is a popular application of language generation.

As the user is typing some text X ∈ S, a language model is sampled at each time step t ∈ {1, .., |X|},
to generate a “probable” suffix for X [: t] (the prefix of X up to index t).

Pure sampling draws the next word y according to the probabilities given byM (x1, . . . xn), then
invokesM on (x1, . . . , xn, y), and so on. Typically, sampling stops when a special end-of-sequence
or end-of-sentence token is sampled, or when the probability of the entire sampled sequence (estimated
by multiplying the model’s output probabilities for the sampled words) drops below a certain threshold.
Other approaches include greedy sampling, which simply sets xn+1 ← argmaxM (x1, . . . , xn),
and top-k sampling, which selects words corresponding to the top k highest values inM (x1, . . . xn)
and applies pure sampling to them according to their probabilities (normalized to sum up to 1).
Different sampling methods generate text with different properties [19, 43]. Pure sampling produces
poor-quality text (often, incomprehensible gibberish) as perceived by humans, while greedy sampling
results in a lack of language diversity, often with highly unnatural repetition.

Nucleus sampling [19] is similar to top-k sampling but instead of choosing candidates based on ranks,
it chooses the maximal set (“nucleus”) of top-ranked words such that the sum of their probabilities is
≤ q. It produces high-quality, high-diversity text [19] and performs well on metrics, including the
Human Unified with Statistical Evaluation (HUSE) score [18].

2.2 Microarchitectural side channels

Process isolation in modern systems is a leaky abstraction. If a user’s process and an attacker’s
concurrent process share physical hardware resources, the attacker can infer information about the
user’s activity by analyzing contention patterns on the cache (see below), cache directories [45],
GPU [30], translation lookaside buffer [15], and many other resources. These attacks, known as
microarchitectural side channels, can be exploited by any untrusted, low-privilege process. Side-
channel attacks have been demonstrated on many PC and mobile [28] platforms, and even from
Javascript or WebAssembly code within the highly restricted browser sandbox [14, 31].

Several programming patterns are especially vulnerable to side-channel attacks. Loop arguments
are a textbook example [27]: loops take longer to execute than non-iterative code, their execution
time can be inferred using coarse timers, and their side effects on microarchitectural resources are
repeated many times, amplifying the signal. Loops whose iterations depend on some secret can leak
this secret through many microarchitectural [15, 29, 47] and physical [12, 13] side channels.

Cache side channels. Cache memory is shared even among isolated processes. When the contents
of physical memory addresses are loaded or evicted by any process, it affects how fast that memory
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can be accessed by other processes. Therefore, memory access times measured by one process can
reveal which memory addresses are accessed by another process. Cache attacks have been used
to extract cryptographic keys [7, 29, 32, 33, 47, 49], steal login tokens [37], defeat OS security
mechanisms [25], sniff user inputs [28], and more [36, 49, 50].

Flush+Reload [17, 47] is a popular type of cache attacks. When a victim process and a concurrent
attacker process load the same shared library or a file, a single set of physical memory addresses
containing the file’s content is mapped into both processes’ virtual address space. In this situation,
the attacker can (1) cause the eviction of a specific memory address (“flush”), (2) wait, and (3) reload
this memory address. Short reload time reveals that the victim has accessed this address after the
eviction but before the load. If memory addresses monitored by the attacker do not contain shared
memory, other cache attacks such as Prime+Probe [32, 33] may be used instead.

3 Fingerprinting auto-completed text sequences

Consider a text auto-completion assistant that uses nucleus sampling (see Section 2.1). At each step t,
the user has typed X [: t]. The assistant usesM (X [: t]) to generate nucleus q and samples from it
to auto-complete the user’s text. The user may accept the completion or manually type in the next
word. For texts that are typed over multiple “sessions,” e.g., in separate forum posts, we assume the
assistant stops sampling at the end of every text and resets. Let IM,q (X) ∈ R|X| be the resulting
nucleus size series (NSS). Figure 1 shows an example.

3.1 Fingerprints of text sequences

Let X,Y ∈ S be text sequences s.t. |X| = |Y |. We say that X and Y are similar if they have
identical subsequences of length N starting at the same index, i.e., ∃i ∈ Z, 0 ≤ i < |X| − N s.t.
X [i : i+N ] = Y [i : i+N ]. We set N = 50, which is a very rigorous criterion for similarity: if
two sequences have a common 50-word subsequence in exactly the same position, they are likely
identical or have some identical source (and are thus semantically close to each other).

Let π be a procedure that receives as input X ∈ S and returns a vector in R|X|. We say that π (X)
is a fingerprint if there exists a monotonically increasing uniqueness radius U : N→ R such that
for any Y ∈ S which is not similar to X and |Y | = |X|, ‖π (X)− π (Y )‖ > U (|X|) where ‖.‖ is
the Euclidean norm. In other words, there exists a “ball” around the fingerprint of any sequence X
such that no other sequence has its fingerprint within that ball (unless it is similar to X). This defines
an open-world fingerprint, i.e., the uniqueness of a sequence’s fingerprint holds with respect to all
natural-language sequences and not just a specific dataset.

3.2 Nucleus size series is a fingerprint

We conjecture that π (X) = IM,q (X) of any English sequence is a fingerprint, as long as
IM,q (X) is sufficiently “variable.” We define variability of IM,q (X) = (n1, . . . , n|X|) as√

1
|X|
∑|X|

i=1(ni − µ)2), where µ = 1
|X|
∑|X|

i=1 ni (by analogy with statistical variance). We say
that X is variable if variability of its NSS is greater than some T ∈ R. T depends on the language
modelM, and is set to 1450 in our experiments.

It is computationally infeasible to compute ‖π (X)− π (Y )‖ for every pair X,Y ∈ S in the English
language. To validate our conjecture, we show that when a “variable” X and another sequence Y
are sampled from a real-world English corpus and X and Y are not similar, it always holds that
‖π (X)− π (Y )‖ > U (|X|) for a large U (|X|). Critically, U depends only on the sequence length
but not the size or domain of the corpus from which X is drawn. Furthermore, this holds for any Y ,
variable or not. This implies that there are no other fingerprints within the U -radius ball of π (X).

Generating NSS. We downloaded 5 “subreddit” archives from Convokit [8] that have the fewest
common users: asoiaf, india, OkCupid, electronic_cigarette, and Random_Acts_of_Amazon. We
also downloaded the sports subreddit that has more active users and posts. We then aggregated each
user’s posts into longer sequences (up to 3000 words) by concatenating them in chronological order.

To simulate auto-completion running in the background while a text sequence is being typed, we
invoke the Hugging Face Transformers language generator (run_generation.py) to drive a GPT-
2 [35] language model (gpt2-small) and output one word for every prefix. We use nucleus size
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with q = 0.9. To reduce computational complexity, we modified the script to save the encoder’s
hidden state for every prefix, so it is necessary to decode only one additional word for the next prefix.

Many sequences are variable. The fraction of variable sequences depends on the domain: 43.6%
for the OkCupid dataset, 62.8% for asoiaf, 77.6% for india, 71.6% for electronic_cigarette, 41.6% for
Random_Acts_Of_Amazon, 42% for sports. Variability seems to be strongly and inversely correlated
with the average post length, i.e., short posts result in high variability. The average post length
is 50.3 for OkCupid dataset, 35.8 for asoiaf, 38.0 for india, 42.9 for electronic_cigarette, 49.2 for
Random_Acts_Of_Amazon, 60.6 for sports. We conjecture that the (re-initialized) language model is
more “uncertain” about the next word at the beginning of posts, and large nucleus sizes correspond to
high variability. Figure 1 illustrates this effect.

We conclude that, even when posts are relatively long (e.g., sports), many (>40%) sequences are
variable. This fraction may be lower when individual texts are much longer, e.g., blog posts.

NSS of a variable sequence is unique. We measure pairwise Euclidean distances between the NSS
of variable sequences and the NSS of other (not necessarily variable) sequences. Figure 2a shows the
histogram (smoothed by averaging over a 10-bucket window) for 500 randomly chosen 2700-word
sequences from the OkCupid dataset. Sample density decreases exponentially with distance from
the density peak, which is around 105k. Because we omit the pairs where neither NSS is variable,
this effect is asymmetric: density decreases slower above the peak than below the peak. Exponential
decay to the left ensures that the lowest values observed in practice are never too far from the peak.

To verify this on a larger scale, we confirmed that the lowest pairwise distance between a variable
NSS and any other NSS is consistent regardless of the dataset size (Figure 2b) or domain (Figure 2c).

Algorithm 1 Nucleus sampling [24]
1: procedure SAMPLE_SEQUENCE(M, p,X)
2: logits←M (X) // get logits
3: logits← TOP_P_FILTERING(logits, p)
4: next← MULTINOMIAL_SAMPLE(logits)
5: return next
6:
7: procedure TOP_P_FILTERING(logits, p)
8: sorted_logits, indices←DESCEND_ARGSORT(logits)

9: cum_probs←CUM_SUM(SOFTMAX(sorted_logits))
10: not_in_p← [ ]
11: for i ∈ {1...LEN(logits)} do
12: if cum_probs[i] > p then
13: not_in_p.APPEND(indices[i])

14: for i ∈ not_in_p do ← number of iterations
15: logits[i]← −∞ corresponds to nucleus size

return logits
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Figure 2: Nucleus size series (NSS) are fingerprints.

NSS of a variable sequence is a fingerprint. To formally satisfy our definition of a fingerprint, NSS
of variable sequences must have a uniqueness radius that depends on N . To show this for a given
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N , we take the dataset with the lowest average variability and fit a log-normal distribution, which is
the best fit among 90 distributions [10], to its sample histogram, as shown in Figure 2a. We chose
U(N) such that, on our fitted distribution, the probability to sample an element lower than U(N) is
ε ≡ 10−18, which we consider negligible. Figure 2c shows U(N) for various N .

3.3 Execution path of nucleus sampling reveals nucleus sizes

Algorithm 1 shows the pseudo-code of nucleus sampling. After obtaining the probability of each
possible next token from the language model, it calls TOP_P_FILTERING, which sorts and sums up
the probabilities. It then selects the tokens whose cumulative probability is outside top_p and sets the
corresponding logits to −∞, i.e., removes these tokens. If an adversary can infer the number of loop
iterations in line 14, he can learn the number of tokens removed from the vocabulary and thus the
nucleus size, which is equal to the vocabulary size minus the number of removed tokens.

Auto-completion exposes not just the nucleus size at each step, but also the number of completed
words before it stops due to low probability or end-of-sequence token. The series of these numbers,
in addition to nucleus sizes, may be an even stronger fingerprint, but we leave this to future work.

4 Attack overview

4.1 Threat model

Consider a user who types text into a program that uses an auto-completion assistant based on
nucleus sampling. At the same time, an attacker is running a concurrent, low-privilege process on the
user’s machine, (e.g., inside another application). Memory isolation and sandboxing ensure that the
attacker’s process cannot directly access the user’s keyboard entries, nor the resulting text.

The attacker’s goal is to infer the nucleus size series, which are revealed through the loop iteration
count (see Section 3.3), via any available side channel (see Section 2.2). We assume that the attacker
has access to the victim’s language-model implementation. This is plausible for popular, publicly
released code as GPT-2 and Hugging Face. If the victim is using an off-the-shelf auto-completion
assistant as part of a commercial software package, the same code is likely available to potential
attackers. Therefore, for any candidate text, the attacker can (re)produce the corresponding nucleus
size series by re-running the model on the prefixes of this text.

We also assume that the attacker’s measurement of the side channel is “aligned,” i.e., the attacker
can tell when the language model is queried to auto-complete a prefix (inferring this is relatively
straightforward—see Section 5.1). The measurement can be imprecise, but we show that the error is
bounded (see Appendix A in supplementary materials).

Figure 3: Attack overview.

One application of this attack is de-anonymization (see Figure 3). Consider a user who anonymously
publishes some text on Reddit, Twitter, or a blog. In the online phase of the attack, while the user is
typing, the attacker collects a trace by measuring the available side channel. The attacker stores all
traces, along with user identifiers such as the IP address of the machine where the trace was collected.
In a later, offline phase, the attacker obtains anonymously published texts and attempts to match them
against the collected traces.
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4.2 Matching an anonymous text to a side-channel trace

Algorithm 2 shows how the attacker can match a text sequence X against previously collected traces.
First, generate the nucleus size series (NSS) of X . If this NSS is sufficiently long and variable (see
Section 3.2), GENTRACES(candidate_traces, |X|) creates a list of candidate traces whose length
is equal to |X| = N . It drops all shorter traces and, for longer traces, considers all contiguous
sub-traces of length N . Then compute the distance from every candidate trace to the NSS of X . If
this distance is under some threshold τN that depends on N , declare a successful match. Figure 5
illustrates how the trace “matches” the fingerprint of the correct text but not those of other texts.

Choosing τN to ensure no false positives. Let V ⊆ S the set of texts whose NSS is variable, X ∈ V
a variable text, and Y ∈ S any text s.t. X,Y have the same length N but are not similar. Let t
be a trace measured while the user was typing Y . We want to avoid false positives, i.e., Y ’s trace
mistakenly matched to X: ‖IM,q (X)− t‖ < τN . Let TY be the probability distribution of traces
measured while the user is typing Y , and let d(N) be the bound on the attacker’s measurement error:

Prt←TY [‖IM,q (Y )− t‖ < d(N)] ≥ 1− ε for some small ε (1)

From Section 3.2, we have that, for uniformly sampled X and Y ,

Pr
X,Y

U←V×S
[‖IM,q (Y )− IM,q (X)‖ > U(N)] ≥ 1− ε (2)

For any t,X, Y such that the events in Equations 1 and 2 hold, the distance from t to X’s fingerprint
is bound by the triangle inequality: ‖IM,q (X)− t‖ ≥ U(N)− d(N)—see Figure 4. By setting the
threshold τN ← U(N)− d(N), we guarantee that for random X ∈ V and Y ∈ S, the probability of
a false positive where ‖IM,q (X)− t‖ < τN is at most 2ε (by union bound).

Algorithm 2 Matching a sequence to trace
1: procedure MATCHING(X, candidates)
2: IM,q (X)← FIND_NSS(M, q,X)
3: if IM,q (X) not variable then
4: return not_variable
5: for t ∈ GENTRACES(candidates, |X|) do
6: if ‖IM,q (X)− t‖ < τ|t| then
7: return t
8: return no_match Figure 4: Bound on measurement error and

uniqueness radius ensures no false positives.

Figure 5: The trace matches its text’s NSS, and does not
match to another text’s NSS.

Beyond distance-based matching.
Our matching algorithm is simple,
very conservative, and amenable to
theoretical analysis. A real-world
attacker who is not interested in
provable guarantees could use much
more sophisticated methods. Con-
volutional neural networks often out-
perform distance-based methods [38,
40], especially with noisy measure-
ments [38]. For our task, these
methods are likely to be effective
even when using a very noisy side
channel where d(N) is higher than
U(N). Empirically demonstrating
their precision for time-series finger-
print matching with an extremely low
base rate [4] would take many billions
of measurements, however.
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5 Fingerprinting via a cache side channel

Our proof of concept uses a Flush+Reload attack (see Section 2.2). For this attack, we show that
the noise d(N) of the attacker’s measurements of nucleus sizes is much smaller than the uniqueness
radius U(N) of nucleus size series. This attack thus has high recall and no false positives (see
Section 4.2). We also demonstrate that uniqueness radius grows faster than measurement noise
as a function of the sequence length N . Therefore, even for noisier measurements from a different
side channel, machine, or software setup, we expect that there exists an N such that U(N) >> d(N).

5.1 Experimental setup

Our “victim” uses an auto-completion app based on Hugging Face’s PyTorch code driving a GPT-2-
small language model, as in Section 3.2. We used Hugging Face [23] and Pytorch [34] code versions
from, respectively, 7/18/2019 and 7/22/2019. The victim and attacker run as (isolated) processes on
the same core of an 8-core, Intel Xeon E5-1660 v4 CPU. If PyTorch is installed on the machine, the
libtorch.so shared object (SO) is in a public, world-readable directory. The victim loads this SO
into their process. The attacker loads the same SO, thus the SO’s physical memory addresses are
mapped into the virtual process space of both the attacker and the victim (operating systems have a
copy-on-write policy for SOs in physical memory). The attacker uses Flush+Reload to monitor the
first instruction of a function called within the loop, as shown in Figure 6.

Figure 6: Assembly code of the loop in lines 14-15 of Algorithm 1, implemented in libtorch.so.

To determine when typing starts or ends, the attacker can use any side channel from Section 2.2 to
probe the auto-completion application or shared libraries. For segmenting the trace into prefixes, the
attacker can use CPU timestamps for each Flush+Reload hit to identify the gaps. Measured traces
must be processed to remove noise and outliers—see Appendix A in supplementary materials.

Human editing such as deleting or rewriting “pollutes” the measured trace with nucleus sizes
corresponding to deleted subsequences. This may cause false negatives, but not false positives. The
attacker can try to guess which trace chunks originate from edits and remove them before matching.
When there are many edits, this has a nontrivial computational cost, which can be offset by using
auxiliary information from the side channel to guide the guesses (e.g., timing, nucleus sizes, and
control flow of the code that operates the language model). We did not evaluate these methods
because human editing is difficult to simulate at scale, and leave them for future work.
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Figure 7: Measurement error and attack recall.

5.2 Measurement error and attack recall

The analysis in Section 4.2 assumes that the side-channel measurement error is bounded by some
d(N). After measuring 1566 traces from the reddit-sports dataset and removing noisy traces, we fit a
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normal distribution and set d(N) to 10 standard deviations above the mean. The fit is tight but not
perfect—see Appendix A. Figure 7a shows d(N) as a function of N , and how the uniqueness radius
U(N) diverges from d(N).

This illustrates the fundamental characteristic that enables our attack: pairwise distances between
fingerprints grow faster as a function of sequence length N than the attacker’s measurement
error. Therefore, if a sequence is long enough, the attacker can match the fingerprint without false
positives. This property can hold for any side channel, not just Flush+Reload. The key requirement is
that the (squared) error of a single measurement is, on average, smaller than the (squared) difference
between the nucleus sizes in the same position of different sequences.

In Algorithm 2, we set the threshold τN to U(N)− d(N), so that the recall, after noisy trace filtering,
is equal to the probability that measurement error is below U(N)− d(N). Figure 7c shows recall for
different N : when N ≥ 1900, recall is greater than 99%. When accounting for the 6% of traces that
were filtered out as too noisy (Appendix A), this is equivalent to recall >93%.

5.3 Case studies

We show that users of real-world anonymous forums would have been vulnerable if they had used
auto-completion based on nucleus sampling.

Silk Road forum. We used an archive of Silk Road forum posts [39] created by one of the participants
in October 2013, after the Silk Road marketplace was shut down but before the forums were taken
offline. For each of 41 users who had at least 2700 words in their posts, we concatenated their posts
in chronological order into a single sequence and generated the corresponding NSS fingerprints. An
individual post has 50.6 words on average.

We simulated the auto-completion process for each user’s sequence using the Hugging Face Trans-
formers language generator and applied our proof-of-concept attack from Section 3.2. In reality,
posts may be separated by unrelated typing, but (a) it is relatively straightforward to identify the
current application via techniques from Section 2.2, and (b) the attacker knows when the typing
begins and ends (see Section 5.1). To ensure even stronger isolation, we ran the attack process in
an AppArmor [3] sandbox (by default, it still lets the attacker read PyTorch shared objects). These
experiments were done on the same machine as in Section 5.1.

We truncated all traces to N=2700 and filtered out NSS that are not sufficiently variable. This left 18
users out of 41. For each of them, we computed the measurement error of the attack, i.e., the distance
between the measured trace and NSS—see Appendix B in supplementary materials. In all cases, the
error is less than U(N) − d(N), thus the attack would have been able to correctly de-anonymize
these 18 users with no false positives or false negatives.

Ubuntu Chat. We selected the 200 most active users from the Ubuntu Chat corpus [41] and followed
the same procedure as above to generate the NSS fingerprints of their posts. The average post
length is 9.5 words. Because posts are short, the sequences of all selected users are sufficiently
variable. Filtering out noisy traces and (for technical reasons) 2 users with irregular characters in
their usernames left 186 traces. For all of them, the error was less than d(N), so there were no
false positives, and for all except one, the error was less than U(N)− d(N), so they were identified
correctly. The overall recall is 93.4%.

6 Mitigation

To replace Algorithm 1, we suggest Algorithm 3 which follows two standard guidelines for crypto-
graphic code. First, it avoids data-dependent memory accesses at a granularity coarser than a cache
line [6, 16], thus an attacker cannot mount a Flush+Reload attack to count how many times a code
line executes. Whereas Algorithm 1 iterates over indices i where cum_probs[i] > p (testing if i is
within the p-nucleus) and assigns −∞, Algorithm 3 entirely avoids control flows that depend on the
condition cum_probs[i] > p.1 Second, execution time should not be correlated with secret data [11].
Figures 8a and 8b show the relationship between the nucleus size and execution time of the token

1To this end, we use the expression FLOAT(cum_probs[i] > p) · MAX_FLOAT · 2 in Line 6, which
resolves to either∞ if cum_probs[i] > p, or 0 otherwise. The multiplication by 2 invokes a float overflow in
the case of cum_probs[i] > p, which resolves to∞, as per IEEE 754 floating point arithmetic standard [26].
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removal loop with and without the mitigation, indicating that our implementation (which has a fixed
number of iterations) reduces the correlation.

The cost of our mitigation is a 1.15x average slowdown in the loop execution time, which translates
into only a 0.1% increase in the runtime of SAMPLE_SEQUENCE (which itself accounts for a tiny
fraction of the execution time relative to the encoder/decoder passes). When simulating auto-
completion on a 2700-word sequence in the setup from Section 5.1, there was a negligible, 0.3%
runtime difference in favor of our algorithm, implying that the difference between Algorithms 1 and 3
is dominated by other factors, such as natural fluctuations in the CPU load.

Algorithm 3 Top-p filtering with a fixed number
of loop iterations.
1: procedure TOP_P_FILTERING(logits, p)
2: sorted_logits, indices←ARGSORT_DESCEND(logits)
3: cum_probs←CUM_SUM(SOFTMAX(sorted_logits))
4:
5: for i ∈ {1...LEN(logits)} do
6: z ← FLOAT(cum_probs[i] > p) ·MAXFLOAT · 2
7: logits[indices[i]]← logits[indices[i]]− z

8:
9: return logits

(a) Nucleus size vs. run time (original)

(b) Nucleus size vs. run time (mitigation)

Figure 8: Execution time of the token removal loop
with and without the mitigation.

No implementation is immune to side channels, however. Address bits within a cache line could
still leak through the cache on certain processors [48]. Even without input-dependent paths, loop
runtimes may still slightly depend on the input due to value-dependent execution times of floating-
point operations [2] (an attacker must be able to measure the loop very accurately to exploit this).
Mitigations of these and other side-channel risks incur implementational and runtime overheads [11].

We believe that our implementation strikes a good balance by substantially increasing the gap between
what side-channel attacks can achieve on specific platforms in controlled laboratory conditions vs.
what is available to real-world attackers. We argue that removing “easy” targets like input-dependent
loops should be a minimal security standard for core ML building blocks.

7 Related work

Prior work showed how to infer model architectures and weights—but not inputs—via model
execution time [9], addresses of memory accesses leaked by GPUs [21] and trusted hardware
enclaves [22], and or via cache [20, 46] and GPU [30] side channels.

The only prior work on inferring model inputs required hardware attacks, such as physically probing
the power consumption of an FPGA accelerator [42], physically probing an external microcontroller
executing the model [5], or inferring coarse information about the input’s class from hardware
performance counters [1]. To the best of our knowledge, ours is the first work to show the feasibility
of inferring neural-network inputs in a conventional, software-only setting, where the attacker is
limited to executing an isolated malicious application on the victim’s machine.

8 Conclusions

We used nucleus sampling, a popular approach for text generation, as a case study of ML systems
that unwittingly leak their confidential inputs. As our main technical contribution, we demonstrated
that the series of nucleus sizes associated with an English-language word sequence is a fingerprint
which uniquely identifies this sequence. We showed how a side-channel attacker can measure these
fingerprints and use them to de-anonymize anonymous text. Finally, we explained how to mitigate
this leak by reducing input-dependent control flows in the implementations of ML systems.

9



Broader Impact

This work will help improve security of ML code by (a) identifying a new category of potential
vulnerabilities faced by ML systems that operate on sensitive data, and (b) explaining how to design
implementations so as to mitigate this risk. This research will primarily benefit implementors of ML
models and, in general, increase trust in ML systems.
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