
Supplementary Material for: Learning to Decode:
Reinforcement Learning for Decoding of Sparse

Graph-Based Channel Codes

S.1 Proof of Theorem 1

The proofs are ordered according to the claims in the theorem as follows.

1. There are p VN neighbors of a CN c ∈ Cu, and none of these VN neighbors can share another
CN neighbor due to the absence of 4-cycles. Thus, the number of VNs in NV (c) that have no
neighbors outside of Cu is at most (z − 1)/2 (each of these VNs has two other neighbors in the
remaining z − 1 CNs of Cu, and all are distinct). Thus, there are at least p − (z − 1)/2 VNs
adjacent to c that have at least one neighbor outside of Cu. This is true for all choices of c. Since
we may be counting each of these VNs up to two times, there are at least (p − [(z − 1)/2])z/2
VNs in W . The result follows.

2. If all the rows corresponding to the CNs of cluster Cu are in the same row group, then no two
CNs in Cu will have any VNs in common. Hence, each VN in NV (Cu) must also be adjacent to
C̄u, implying that NV (Cu) is a CCS with |NV (Cu)|= |Cu|p = zp.

3. Suppose that the CNs in Cu form triples, and let φ = {{c1, c2, c3}, . . . , {cz−2, cz−1, cz}},
|φ|= z/3, be a set of all these triples. Suppose that each CN triple in φ is associated to a
non-overlapping 6-cycle. Since, in this case, there will be |φ| non-overlapping 6-cycles in the
Tanner graph induced by Cu ∪ NV (Cu), and each 6-cycle has 3 VNs, the number of VNs that
have degree 2 with respect to Cu will be |φ|×3 = z. Note that there are zp edges emanating
from Cu since each CN degree is p. Hence, in the worst case, there will be zp − z distinct VNs
in NV (Cu), which is also a CCS since each of these degree 3 VNs are also connected to C̄u.

�

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

S.2 Algorithm 1

Algorithm 1: MAB-NS for LDPC codes
Input : L, H
Output: reconstructed signal

1 Initialization:
2 `← 0
3 mc→v ← 0 // for all CN to VN messages

4 mv→c ← Lv // for all VN to CN messages

5 L̂` ← L

6 Ŝ` ← HL̂`

7 foreach a ∈ [[m]] do
8 s

(a)
` ← gM (ŝ

(a)
`) // M-level quantization

9 end
// decoding starts

10 if stopping condition not satisfied or ` < `max then
11 s← index of S`

12 select CN a according to an optimum scheduling policy
13 foreach VN v ∈ N (a) do
14 compute and propagate ma→v

15 foreach CN c ∈ N (v) \ a do
16 compute and propagate mv→c

17 end
18 L̂

(v)
` ←

∑
c∈N (v)mc→v + Lv // update LLR of v

19 end
20 foreach CN j that is a neighbor of v ∈ N (a) do
21 ŝ

(j)
` ←

∑
v′∈N (j) L̂

(v′)
`

22 s
(j)
` ← gM (ŝ

(j)
`) // update syndrome S`

23 end
24 `← `+ 1 // update iteration

25 end

2

S.3 Details of Algorithm 2

Algorithm 2: Clustered Q-learning
Input : L , H
Output: Estimated Q`max

(su, au) for all u
1 Initialization: Q0(su, au)← 0 for all su, au and u
2 for each L ∈ L do
3 `← 0

4 L̂` ← L

5 Ŝ` ← HL̂`

6 foreach a ∈ [[m]] do
7 s

(a)
` ← gM (ŝ

(a)
`) // M-level quantization

8 end
9 while ` < `max do

10 schedule CN au according to an ε-greedy approach
11 select u as cluster index of CN au

12 S
(u,z)
` ← s

(j1)
` , s

(j2)
` , . . . , s

(jz)
` // CN indices j1, j2, . . . , jz ∈ {0, . . . ,m− 1} are in

ascending order for MQC, and randomly ordered for MQR. For MQO, their

ordering depends on the underlying cluster C̃∗
u

13 su ← index of S(u,z)
`

14 foreach VN v ∈ N (au) do
15 compute and propagate mau→v

16 foreach CN c ∈ N (v) \ au do
17 compute and propagate mv→c

18 end
19 L̂

(v)
` ←

∑
c∈N (v)mc→v + Lv // update LLR of v

20 end
21 foreach CN j that is a neighbor of v ∈ N (au) do
22 ŝ

(j)
` ←

∑
v′∈N (j) L̂

(v′)
`

23 s
(j)
` ← gM (ŝ

(j)
`) // update syndrome S`

24 end
25 s′u ← index of updated S

(u,z)
`

26 R`(su, au, s
′
u)← highest residual of CN au

27 compute Q`+1(su, au)
28 `← `+ 1 // update iteration

29 end
30 end

3

