
We thank all reviewers for their constructive feedback, and provide responses to specific concerns:1

[R1: Maximum likelihood (ML) VS RL objectives ] The fundamental difference is between “many to one”2

and “one to many” settings. A ML objective is good choice for prediction tasks where the goal is to match3

each input to its exact output. This includes models which predict properties from molecules, since each4

molecule has a well-determined property. However, for the inverse problem the data severely underspecifies5

the mapping, since any given property combination has many diverse molecules which match; nearly all of6

these are not present in the training data. As the ML objective is only measured on the training pairs, any7

output that is different from the training data target is penalized. Therefore, a model which generates novel8

molecules with the correct properties would be penalized by ML training, as it does not produce the exact9

training pairs; but, it would have a high reward and thus be encouraged by an RL objective.10

[R2: Plausibility of the generated molecules, GA mutation] Thanks for your insightful comments on11

plausibility; we include here additional results on molecule quality. Indeed, QM9 does not represent any12

real molecule distribution — we do note that all the molecules we show have 9 heavy atoms, consistent13

with the training dataset. Figure 1 shows example generations from the model trained on the ChEMBL. We14

then run a series of quality filters from Brown et al. [2019], which aim to detect those which are “potentially15

unstable, reactive, laborious to synthesize, or simply unpleasant”. Of our valid generated molecules, we find16

71.3% pass the quality filters, nearly the same success rate as the test set molecules themselves, 72.2%; if we17

were to normalize as in Table 1 of Bradshaw et al. [2019], our performance of ≈ 98.7% outperforms nearly18

all approaches considered. We agree that GA mutations are a more relevant way to edit molecules, but this19

still suffers from the same fundamental problem that local changes can have large effects on the properties.20

[R3: Molecule generation baselines] Most other work for molecule generation cannot do so in one step,21

instead using the model as part of an iterative optimization procedure (e.g. RL or Bayesian optimization).22

The most competitive model we are aware of is Kang and Cho [2018], which can indeed do direct conditional23

generation. In Table 2 we compare our results using the ChEMBL-trained model on the task considered in24

their paper, generating conditioned on a single target property. Despite our model not being tailored for this25

task, we perform similarly well or better in terms of property accuracy, and furthermore, we do so far faster26

— their model employs a beam search decoder averaging 4.5 seconds per molecule, with ours requiring 627

milliseconds. Additionally, their model has only 10% uniqueness of the generated molecules, in comparison28

with 81% for us; a massive increase in diversity.29

Figure 1: Example generated molecules from the ChEMBL
model; red indicates failing the quality filters.

Target Kang & Cho Ours

MolWt=250 250.3±6.7 253.8 ±11.8
MolWt = 350 349.6±7.3 351.7 ±12.5
MolWt = 450 449.6±8.9 450.9±13.2
Logp = 1.5 1.539±0.301 1.571±0.371
Logp = 3 2.984±0.295 3.034± 0.348
Logp = 4.5 4.350±0.309 4.499±0.338
QED= 0.5 0.527±0.094 0.502±0.079
QED = 0.7 0.719±0.088 0.691 ±0.063
QED = 0.9 0.840± 0.070 0.882± 0.044

Table 2: Comparing with the the strongest baseline on
conditional molecule generation task

[R2, R4: RL baseline] We actually did run an RL baseline (Eq. 2) on QM9 — we mention this in the main30

paper (lines 239-241), and the (generally uncompetitive) RL results are in Appendix Tables 1.4 & 1.5. As31

expected, the novelty of the generated molecules increased greatly as the model was able to simulate novel32

molecules during training, but the validity and conditional generation performance were far worse. Training33

such an objective even for QM9 was quite costly (6 times slower than our approach), and for ChEMBL34

did not converge in a reasonable time. While this might be addressable by more advanced control variate35

schemes, the main motivation of this paper is to take advantage of the RL objective while avoiding expensive36

computational costs and unstable training.37

[R3, R4: Contributions, NLP] As noted conditional generation tasks often occur in NLP, but the setting is38

usually much more constrained: typically, the “properties” are individual binary attributes such as sentiment39

(positive or negative), or discrete styles (“romantic”, “humorous”, etc). Conditioning on a small number of40

binary labels means most methods for style transfer in NLP use auxiliary classifiers as a training signal, and41

are not easily adapted to larger numbers of real-valued attributes.42

[R3: Relation to RAML] We discuss the work of Norouzi et al. [2016] in detail in Section 3.3. There are a43

number of differences, from motivation (we target an RL objective directly) to implementation (we resample44

potential training sequences). They also do not use the entropy term in training, only to motivate derivations.45


