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A Supplementary Material for Section 3

The theoretical guarantees obtained in Section 3 rely on the following two main lemmas. The first
lemma is from [2] and shows that given the previously observed rewards, contexts, and players’
actions, the reward function of player i belongs (with high probability) to the interval [µt(·, ·) ±
�t�t(·, ·)], for a carefully chosen confidence parameter �t � 0.
Lemma 7. Let r 2 Hk such that krkk  B and consider the kernel-ridge regression mean and

standard deviation estimates µt(·) and �t(·), with regularization constant � > 0. Then for any

� 2 (0, 1), with probability at least 1 � �, the following holds simultaneously over all x 2 D and

t � 1:

|µt(x)� r(x)|  �t�t(x),

where �t = B�
�1/2

+ ��
�1
q
2 log (

1
� ) + log(det(It +Kt/�)).

Therefore, according to Lemma 7, the function ucbt defined in (3) represents a valid upper confidence
bound for the rewards obtained by player i.

The second main lemma concerns the properties of the Multiplicative Weights (MW) update
method [26], which is used as a subroutine in our algorithms to compute the action distribution pt(zt)

(Line 3 of Algorithm 1) at each round. Its proof follows from standard online learning arguments
equivalently to, e.g., [27, Proposition 1].
Lemma 8. Consider a sequence of functions g1(·), . . . , gT (·) 2 [0, 1]

K
and let pt’s be the distribu-

tions computed using the MW rule:

pt[a] / exp

 
⌘t ·

t�1X

⌧=1

g⌧ (a)

!
a = 1, . . . ,K , (9)

where p1 is initialized as the uniform distribution. Then, provided that {⌘t}Tt=1 is a decreasing

sequence, for any action a
? 2 {1, . . . ,K}:

TX

t=1

gt(a
?
)�

TX

t=1

KX

a=1

pt[a] · gt(a) 
logK

⌘T
+

PT
t=1 ⌘t

8
.

A.1 The case of a finite (and small) number of contexts

In this section we consider the simple case of a finite (and small cardinality) set of contexts Z . In
such a case, a high-probability regret bound of O(

p
T |Z| logK + �T

p
T ) can be achieved when

C.GP-MW is run with the following strategy:

pt(zt)[a] / exp

 
⌘t ·

t�1X

⌧=1

ucb⌧ (a, a
�i
⌧ , z⌧ ) · 1{z⌧ = zt}

!
a = 1, . . . ,K . (10)

That is, p(zt) is computed using the sequence of previously computed upper confidence bound
functions for the game rounds in which the specific context zt was revealed.
Theorem 9. Fix � 2 (0, 1) and assume krikki  B. If player i plays according to C.GP-
MW using strategy (10) with � � 1, �t = B + ��

�1/2
p
2(�t�1 + log(2/�)), and ⌘t =

2

q
logK/

Pt
⌧=1 1{z⌧ = zt}, then with probability at least 1� �,

R
i
c(T ) 

p
T |Z| logK +

p
0.5T log(2/�) + 4�T

p
�T�T .
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Proof. Let ⇡
?

= argmax⇡2⇧i

PT
t=1 r

�
⇡(zt), a

�i
t , zt

�
. Our goal is to bound R

i
c(T ) =PT

t=1 r
�
⇡
?
(zt), a

�i
t , zt

�
� r
�
a
i
t, a

�i
t , zt

�
with high probability.

By conditioning on the event of the confidence lemma (Lemma 7) holding true, we can state that,
with probability at least 1� �/2,

R
i
c(T ) =

TX

t=1

r
�
⇡
?
(zt), a

�i
t , zt

�
� r
�
a
i
t, a

�i
t , zt
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TX

t=1

⇣
ucbt

�
⇡
?
(zt), a

�i
t , zt

�
� ucbt

�
a
i
t, a

�i
t , zt

�⌘
+

TX

t=1

2�t�t

�
a
i
t, a

�i
t , zt

�


TX

t=1

⇣
ucbt

�
⇡
?
(zt), a

�i
t , zt

�
� ucbt

�
a
i
t, a

�i
t , zt

�⌘

| {z }
R̂i

c(T )

+4�T

p
�T�T . (11)

The first inequality follows by the definition of ucbt(·) (see (3)), the specific choice of the confidence
level �t, and Lemma 7. The last inequality follows by [37, Lemma 5.4]. The rest of the proof
proceeds to show that, with probability at least 1� �/2,

R̂i
c(T ) 

p
T |Z| logK +

p
0.5T log(2/�) . (12)

The theorem statement then follows by a standard union bound argument.

First, by straightforward application of the Hoeffding–Azuma inequality (e.g., [11, Lemma A.7]), it
follows that with probability at least 1� �/2,

TX

t=1

�� ucbt
�
a
i
t, a

�i
t , zt

�
�
X

a2Ai

pt(zt)[a] · ucbt
�
a, a

�i
t , zt

�

| {z }
Xt

�� 
p
0.5T log(2/�) , (13)

since the variables Xt’s form a martingale difference sequence, being
P

a2Ai pt(zt)[a] ·
ucbt

�
a, a

�i
t , zt

�
the expected value of ucbt

�
a
i
t, a

�i
t , zt

�
conditioned on the history

{ai⌧ , a�i
⌧ , z⌧ , ✏⌧}t�1

⌧=1 and on context zt. Then, using (13), R̂i
c(T ) can be bounded, with

probability 1� �/2, as

R̂i
c(T ) 

TX

t=1

ucbt

�
⇡
?
(zt), a

�i
t , zt

�
�
X

a2Ai

pt(zt)[a] · ucbt
�
a, a

�i
t , zt

�
+

p
0.5T log(2/�)

=

X

z2Z

X

t:zt=z

ucbt

�
⇡
?
(zc), a

�i
t , zc

�
�
X

a2Ai

pt(zc)[a] · ucbt
�
a, a

�i
t , zc

�
+

p
0.5T log(2/�) .

(14)

At this point, we can use the properties of the MW rule used to compute the distribution pt(z) 2 �
K .

Note that, for each context z 2 Z , the distribution pt(z) computed by C.GP-MW precisely follows
the MW rule (9) with the sequence of functions {ucb⌧ (·, a�i

⌧ , z)}⌧ :z⌧=z and the sequence of learning
rates {⌘⌧}Tz

⌧=1 = {2
p
logK/⌧}Tz

⌧=1, where Tz =
Pt

⌧=1 1{z⌧ = zt} is the number of times context
z was revealed. Hence, we can apply Lemma 8 for each context z and obtain:

X

t:zt=z

ucbt

�
⇡
?
(zc), a

�i
t , zc
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X
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pt(zc)[a] · ucbt
�
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p
Tz logK +

2
p
logK
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TzX
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p
Tz logK +
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logK
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p
Tz =

p
Tz logK . (15)
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Equation (15), together with the bound (14) leads to

R̂i
c(T ) 

X

z2Z

p
Tz logK +

p
0.5T log(2/�)


p
T |Z| logK +

p
0.5T log(2/�) ,

where in the last inequality we have used Cauchy–Schwarz inequality and
P

z2Z Tz = T . Hence,
we finally proved (12). Therefore, with probability at least 1� �/2� �/2 = 1� � we obtain the final
regret bound combining (11) and (12).

A.2 Proof of Theorem 1

Proof. Similarly to Appendix A.1, we let ⇡?
= argmax⇡2⇧i

PT
t=1 r

�
⇡(zt), a

�i
t , zt

�
and seek

to bound R
i
c(T ) =

PT
t=1 r

�
⇡
?
(zt), a

�i
t , zt

�
� r
�
a
i
t, a

�i
t , zt

�
with high probability. Recall that

Strategy 2 builds an ✏-net of the contexts space by creating new L1-balls in a greedy fashion. After T
game rounds, the set C contains the centers z 2 Z of the balls created so far. Moreover, at each round
t, the variable z

0
t indicates the ball that context zt has been associated to. According to this notation,

player i’s regret can be rewritten as

R
i
c(T ) =

X

z2C

X

t:z0
t=z

r
�
⇡
?
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t , zt

�
� r
�
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i
t, a
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t , zt

�

=

X

z2C

X
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t=z

r
�
⇡
?
(zt), a
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t , zt

�
� r
�
⇡
?
(z), a

�i
t , zt

�

| {z }
RL(T )

+

X

z2C

X

t:z0
t=z

r
�
⇡
?
(z), a

�i
t , zt

�
� r
�
a
i
t, a

�i
t , zt

�

| {z }
RC(T )

,

where in the last equality we have added and subtracted the term
P

z2C
P

t:z0
t=z r

�
⇡
?
(z), a

�i
t , zt

�
.

The regret term RL(T ) can be bounded using Lr-Lipschizness of r(·) in its first argument and
Lp-Lipschizness of the optimal policy:

RL(T ) 
X

z2C

X

t:z0
t=z

Lrk⇡?
(zt)� ⇡

?
(z)k1 

X

z2C

X

t:z0
t=z

LrLpkzt � zk1

 LrLpT ✏ ,

where in the last step we have used that, when z
0
t = z, zt belongs to the ball centered at z.

We can now proceed in bounding RC(T ). Note that we can apply the same proof steps of Ap-
pendix A.1 (namely, Equations (11) and (13)) to show that, with probability at least 1 � �, we
have:

RC(T ) 
X

z2C

X

t:z0
t=z

ucbt

�
⇡
?
(zt), a

�i
t , zt

�
�
X

a2Ai

pt(zt)[a] · ucbt
�
a, a

�i
t , zt

�

+ 4�T

p
�T�T +

p
0.5T log(2/�) .

where we have conditioned on the event of Lemma 7 and applied the Hoeffding-Azuma inequality.
At this point, we can use the properties of the MW rule used in Strategy 2 to compute pt(zt) at each
round. Note that Strategy 2 corresponds to maintaining a distribution for each z 2 C and update it
when context zt belongs to such ball. After T rounds, for each z 2 Z let Tz =

PT
t=1 1{z0t = z} be

the number of times the revealed context belonged to the ball centered at z. Hence, for each z 2 C, a
straightforward application of Lemma 8 leads to:

X
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�
⇡
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 0.5

p
logKTz +

2
p
logK

8
2

p
Tz =

p
Tz logK .

where we have used the same steps to obtain Equation (15) in Appendix A.1. Hence, summing over
all the contexts in C we obtain

RC(T ) 
X

z2C

p
Tc logK + 4�T

p
�T�T +

p
0.5T log(1/�2)


p
T |C| logK + 4�T

p
�T�T +

p
0.5T log(1/�2)

= ✏
�c/2

p
T logK + 4�T

p
�T�T +

p
0.5T log(1/�2) .

In the last inequality we have used |C|  (1/✏)
c, because the contexts space Z ✓ [0, 1]

c can be
covered by at most (1/✏)c balls of radius ✏ such that the distance between their centers is at least ✏.

Therefore, combining the bounds for RL(T ) and RC(T ), the contextual regret of player i is bounded,
with probability at least 1� �, by:

R
i
c(T )  LrLpT ✏+ ✏

�c/2
p
T logK + 4�T

p
�T�T +

p
0.5T log(2/�)

= (LrLp)
c

c+2 T
c+1
c+2 + (LrLp)

c
c+2T

c+1
c+2

p
logK + 4�T

p
�T�T +

p
0.5T log(2/�) .

where we have substituted the choice of ✏ = (LrLp)
� 2

c+2T
� 1

c+2 .

A.3 Proof of Theorem 2

Proof. We let Ri
c(⇡, T ) =

PT
t=1 r

�
⇡(zt), a

�i
t , zt

�
� r
�
a
i
t, a

�i
t , zt

�
be the regret of player i with

respect to a generic policy ⇡ : Z ! Ai. Our goal is to bound R
i
c(⇡, T ) in expectation, with respect to

the random sequence of contexts and played actions. For ease of exposition, we use the notation v···T
to indicate the sequence of variables v1, . . . , vT . Moreover, we will explicitly consider an adaptive
adversary that selects a�i

t as a function a
�i
t = f(Ht�1) of the history Ht�1 := {ai···t�1, z···t�1} but

not of zt.

First, note that the expected value of Ri
c(⇡, T ) is still a random variable which depends on the

realization of the observation noise ✏t’s. As it was done in proof of Theorems 1 and Appendix A.1,
we can condition on the event of the confidence Lemma 7, and state that, with probability at least
1� �/2, it can be bounded by

Ez···T
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···T

⇥
R

i
c(⇡, T )

⇤
= Ez···T
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···T

"
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t=1

r
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�
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�
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�
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i
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�
+
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t=1

2�t�t
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i
t, a

�i
t , zt

�
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"
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t=1
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�
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�i
t , zt

�
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�
a
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t , zt

�
#

| {z }
R̂i

c(⇡,T )

+4�T

p
�T�T , (16)

where we have used the definition of ucbt(·), �t set according to Lemma 7, and [37, Lemma 5.4].

Now, we consider a generic sequence {✏t}Tt=1 of noise realizations and proceed bounding the
expected value of R̂i

c(⇡, T ) for any of such sequences. Moreover, as in [28] we will make use of a
ghost sample z0 ⇠ ⇣ which is sampled from the contexts’ distribution independently from the whole
history HT of the game. Also, we now explicitly consider the adaptiveness of the adversary. Using
the law of total expectation, the expected value of R̂i

c(⇡, T ) can be rewritten as

Ez···T
ai
···T

⇥
R̂i

c(⇡, T )
⇤
= Ez···T

ai
···T

"
TX

t=1

ucbt

�
⇡(zt), f(Ht�1), zt

�
� ucbt

�
a
i
t, f(Ht�1), zt

�
#
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= Ez···T
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"
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�
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� ucbt

�
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�
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⇤
#
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"
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Ezt

⇥
ucbt

�
⇡(zt), f(Ht�1), zt

�
�
X

a2Ai

pt(zt)[a] · ucbt
�
a, f(Ht�1), zt

�
| Ht�1

⇤
#
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"
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t=1

Ez0

⇥
ucbt

�
⇡(z0), f(Ht�1), z0

�
�
X

a2Ai

pt(z0)[a] · ucbt
�
a, f(Ht�1), z0

�
| Ht�1

⇤
#

= Ez···T
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···T
z0

"
TX

t=1

ucbt

�
⇡(z0), f(Ht�1), z0

�
�
X

a2Ai

pt(z0)[a] · ucbt
�
a, f(Ht�1), z0

�
#

(17)

The second equality follows by the law of total expectation. The third equality holds since,
conditioned on the history Ht�1, ait is distributed according to pt(zt). The fourth equality follows
since zt and z0 have the same distribution and the functions ucbt(·) and pt(·) do not depend on the
realization of zt. The last inequality is obtained by applying again the law of total expectation.

At this point, we can apply Lemma 8 considering the sequence of functions g1, . . . , gT with
g⌧ (·) = ucb⌧ (·, f(H⌧�1), z0) for ⌧ = 1, . . . , T and noting that, for each z0, pt(z0) computed using
the MW rule (5) corresponds to the distribution computed according to rule (9) for each t = 1, . . . , T .
Therefore, (17) implies that

Ez···T
ai
···T

⇥
R̂i

c(⇡, T )
⇤
 logK

⌘T
+

PT
t=1 ⌘t

8
.

Finally, the theorem statement is obtained substituting the bound above in (16) and considering the
constant learning rate ⌘t =

p
8 log(K)/T .

B Supplementary Material for Section 4

B.1 Proof of Proposition 4 (Finite-time approximation of c-CCEs)

Proof. After T rounds of the contextual game, consider a generic player i. By definition of contextual
regret, see (1), we have

1

T

TX

t=1

r
i
(at, a

�i
t , zt) �

1

T

TX

t=1

r
i
(⇡(zt), a

�i
t , zt)�

R
i
c(T )

T
8⇡ 2 ⇧

i
. (18)

Let now ⇢T be the empirical policy up to time T , defined as in Section 4.1. Then, it is not hard to
verify that the above cumulative rewards for player i can be written as

1

T

TX

t=1

r
i
(at, a

�i
t , zt) =

1

T

TX

t=1

E
a⇠⇢T (zt)

r(a, zt) ,

1

T

TX

t=1

r
i
(⇡(z), a

�i
t , zt) =

1

T

TX

t=1

E
a⇠⇢T (zt)

r(⇡(z), a
�i
, zt) .

Therefore, (18) becomes:

1

T

TX

t=1

E
a⇠⇢T (zt)

r(a, zt) �
1

T

TX

t=1

E
a⇠⇢T (zt)

r(⇡(z), a
�i
, zt)�

R
i
c(T )

T
8⇡ 2 ⇧

i
. (19)

Note that this is precisely the condition of ✏-c-CCE (see Definition 3) for player i. The final result is
then simply obtained by considering the player with the highest regret.
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B.2 An alternative notion of c-CCE for stochastic contexts

In Section 4 we defined the notion of c-CCE (Definition 3) for a contextual game described by an
arbitrary sequence of contexts z1, . . . , zT . In this section, we consider the case in which contexts are
stochastic samples from the same distribution ⇣, i.e., zt ⇠ ⇣ for all t. In such a case, the following
alternative notion of c-CCE can be defined by considering the expected context realization (rather
than considering the time-averaged game as in Definition 3).
Definition 10. Consider a contextual game and assume contexts are sampled i.i.d. from distribution

⇣. A contextual coarse-correlated equilibrium for stochastic contexts (c-⇣-CCE) is a policy

⇢ : Z ! �
|A|

mapping contexts to distributions over A such that:

E
z⇠⇣

E
a⇠⇢(z)

r
i
�
a, z
�
� E

z⇠⇣
E

a⇠⇢(z)
r
i
�
⇡(z), a

�i
, z
�

8⇡ 2 ⇧
i
, 8i = 1, . . . , N . (20)

Moreover, ⇢ is an ✏-c-⇣-CCE if the above inequality is satisfied up to an ✏ 2 R+ accuracy.

Similarly to Proposition 4, the following proposition shows that, in this specific setting, c-⇣-CCEs
can also be approached whenever players minimize their contextual regrets.
Proposition 11 (Asymptotic and finite-time convergence to c-⇣-CCEs). Consider a contextual game

and assume contexts are sampled i.i.d. from distribution ⇣ . Let ⇢T be the empirical policy at round T .

Then, as T ! 1, if players have vanishing contextual regrets, ⇢T converges to a c-⇣-CCE almost

surely. Moreover, after T game rounds, let R
i
c(T )’s denote the players’ contextual regrets, � 2 (0, 1),

and assume Z is finite. Then, with probability at least 1� �, ⇢T is a ✏-c-⇣-CCE with

✏  2

r
log(|Z| · |A|)

2
+

log(2/�)

2T
+ max

i2{1,...,N}

R
i
c(T )

T
.

Compared to CCEs (and c-CCEs), c-⇣-CCEs can be approximated in finite time only with high-
probability and with an extra approximation factor of O(log(|Z| |A|) + log(1/�)/T ). Intuitively,
this is because the empirical distribution of observed contexts needs to concentrate around the true
contexts distribution ⇣. We recover asymptotic convergence to c-⇣-CCEs since such distribution
converges to ⇣ with probability 1.

Proof. By definition of contextual regret, see (1), for each player i

1

T

TX

t=1

r
i
(at, a

�i
t , zt) �

1

T

TX

t=1

r
i
(⇡(zt), a

�i
t , zt)�

R
i
c(T )

T
8⇡ 2 ⇧

i
. (21)

Let ⇣T be the empirical distribution of observed contexts. Moreover, let ⇢T be the empirical policy
up to time T , defined in Section 4.1. Then, following the same steps of Proof of Proposition 4:

1

T

TX

t=1

r
i
(at, a

�i
t , zt) = E

z⇠⇣T
E

a⇠⇢T (z)
r(a, z) ,

1

T

TX

t=1

r
i
(⇡(z), a

�i
t , zt) = E

z⇠⇣T
E

a⇠⇢T (z)
r(⇡(z), a

�i
, z) .

Therefore, (21) rewrites as

E
z⇠⇣T

E
a⇠⇢T (z)

r(a, z) � E
z⇠⇣T

E
a⇠⇢T (z)

r(⇡(z), a
�i
, z)� R

i
c(T )

T
8⇡ 2 ⇧

i
. (22)

As T ! 1, ⇣T ! ⇣ as contexts are i.i.d. samples from ⇣. Moreover, if players use no-regret
strategies, Ri

c(T )/T ! 0 for i = 1, . . . N and hence the above inequality implies that ⇢T converges
to a c-⇣-CCE (see Definition 10).

For finite T , the above inequality resembles the desired c-⇣-CCE condition, with the difference that
the outer expectations are taken with respect to the empirical contexts’ distribution ⇣T instead of the
true one. To cope with this, we show that such expectations indeed concentrate, up to some accuracy,
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around the expectations with respect to the true distribution ⇣. More precisely, we show that with
probability at least 1� �

���� E
z⇠⇣T

f(z, ⇢T ) � E
z⇠⇣

f(z, ⇢T )

���� 
r

log(|Z| · |A|)
2

+
log(2/�)

2T
, (23)

where f(z, ⇢T ) = Ea⇠⇢T (z) r(a, z). Moreover, the same condition holds for f(z, ⇢T ) =

Ea⇠⇢T (z) r(⇡(z), a
�i
, z) for each ⇡ 2 ⇧

i. Combined with (22), this implies that for each player i
and each ⇡ 2 ⇧

i, with probability 1� �,

E
z⇠⇣

E
a⇠⇢T (z)

r(a, z) � E
z⇠⇣

E
a⇠⇢T (z)

r(⇡(z), a
�i
, z)� 2

r
log(|Z| · |A|)

2
+

log(2/�)

2T
� R

i
c(T )

T
,

which would prove Proposition 11.

It remains to show (23). For a given policy ⇢ : Z ! �
|A|, a straightforward application of

Hoeffding’s inequality [21] shows that for any ✏ > 0

P
���� E

z⇠⇣T
f(z, ⇢) � E

z⇠⇣
f(z, ⇢)

���� > ✏

�
 2 exp

�
� 2T ✏

2
�
, (24)

where we have used the fact that f(z, ⇢) = Ea⇠⇢(z)r
i
(a, z) 2 [0, 1] and that z1, . . . , zT are i.i.d.

sampled from ⇣. Unfortunately, we cannot apply the condition above directly to the empirical policy
⇢T , since it is not fixed a-priori, but is computed as a function of the realized samples z1, . . . , zT .
However, we can consider the set PT of all the possible empirical policies ⇢ : Z ! �

|A| resulting
from T rounds of the repeated game. Note that each of such policies is uniquely defined by the
sequence {ait, a�i

t zt}Tt=1 of revealed contexts and actions played up to round T . Therefore, PT is a
finite set of cardinality |PT | = (|Z| · |A|)T . Hence, it holds

P
���� E

z⇠⇣T
f(z, ⇢T ) � E

z⇠⇣
f(z, ⇢T )

���� > ✏

�
 P


sup
⇢2PT

���� E
z⇠⇣T

f(z, ⇢) � E
z⇠⇣

f(z, ⇢)

���� > ✏

�

= P

2

4
[

⇢2PT

⇢���� E
z⇠⇣T

f(z, ⇢) � E
z⇠⇣

f(z, ⇢)

���� > ✏

�3

5

 |PT | P
���� E

z⇠⇣T
f(z, ⇢) � E

z⇠⇣
f(z, ⇢)

���� > ✏

�

 2|PT | exp
�
� 2T ✏

2
�
.

The first equality holds since, given a set of random variables x1, . . . , xn, asking that supi xi > ✏ is
equivalent to asking that at least one of the xi’s is greater than ✏. The second inequality is a standard
probability union bound, while the last inequality follows by (24). This proves (23) after setting the
right hand side equal to � and substituting

��PT

�� = (|Z| · |A|)T .

B.3 Proof of Proposition 6 (Convergence to approximate efficiency)

Proof. For ease of notation, let ⇡1
?, . . . ,⇡

N
? be the optimal policies that solve (8), so that OPT =

1
T

PT
t=1 �

�
⇡
1
?(zt), . . . ,⇡

N
? (zt), zt

�
. Using the definitions of contextual regret and (�, µ)-smoothness,

the sum of cumulative rewards can be lower bounded as:

1

T

TX

t=1

NX

i=1

r
i
(a

i
t, a

�i
t , zt)

� 1

T

TX

t=1

NX

i=1

r
i
�
⇡
i
?(zt), a

�i
t , zt

�
�

NX

i=1

R
i
c(T )

T
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� 1

T

TX

t=1

h
�(zt) · �

�
⇡
1
?(zt), . . . ,⇡

N
? (zt), zt

�
� µ(zt) · �(a1t , . . . , aNt , zt)

i
�

NX

i=1

R
i
c(T )

T

� �̄ ·OPT� µ̄ · 1
T

TX

t=1

�(a
1
t , . . . , a

N
t , zt) �

NX

i=1

R
i
c(T )

T
.

In the first inequality we have used the definition of contextual regret (see (1)) with respect to policy
⇡
i
? for each player (note that ⇡i

? is not necessarily the optimal policy in hindsight for player i). In the
second inequality we have used the fact that the game is

�
�(zt), µ(zt)

�
-smooth at each time t and

applied condition (7) with outcomes a1 = (a
1
t , . . . , a

N
t ) and a2 =

�
⇡
1
?(zt), . . . ,⇡

N
? (zt)

�
. The last

inequality follows from the definition of �̄, µ̄, and OPT.

At this point, note that 1
T

PT
t=1 �(a

1
t , . . . , a

N
t , zt) � 1

T

PT
t=1

PN
i=1 r

i
(a

i
t, a

�i
t , zt) since by defini-

tion of social welfare �(a, z) �
PN

i=1 r
i
(a, z) for all (a, z). Then, the above inequalities imply

that

1

T

TX

t=1

�(a
1
t , . . . , a

N
t , zt) � �̄ ·OPT� µ̄ · 1

T

TX

t=1

�(a
1
t , . . . , a

N
t , zt) �

NX

i=1

R
i
c(T )

T
,

which after rearranging yields the desired result.

C Contextual Traffic Routing - Experimental Setup

In this section we describe the experimental setup of the contextual traffic routing game of Section 5.
We consider the traffic network of Sioux-Falls, a directed graph with 24 nodes and 76 edges and use the
game model of [32]. Data from [25, 1] include node coordinates and capacities Ce 2 R+ of each net-
work’s edge e = 1, . . . , 76. Moreover, data also include the units (e.g., cars) that need to be sent from
any node to any other node in the network, for a total of 528 distinct origin-destination pairs. Hence,
we let N = 528 be the number of agents in the network and assume, at every round, each agent i
needs to send d

i units from origin node O
i to destination node D

i. In order to send these units, each
agent can choose one of the K = 5 shortest routes between O

i and D
i. We let xi

t 2 R76 represent
the route chosen by agent i at round t, where xi

t[e] = di if edge e belongs to such route, and x
i
t[e] = 0

otherwise. Moreover, we let x�i
t =

P
j 6=i x

j
t represent the routes chosen by the rest of the agents.

At each round, the network displays different capacities (network’s capacities represent the contextual
information of the game) which are observed by the agents and should be used to choose better routes,
depending on the circumstances. This is different from the game model of [32] where network capac-
ities are assumed constant. We let the context vector zt 2 R76

+ represent the network’s capacities at
round t, and assume each zt is i.i.d. sampled from a static distribution ⇣ . The contexts distribution ⇣ is
generated as follows. We let Z be a set of 10 randomly generated capacity profiles z where z[e] is uni-
formly distributed in [0, 1.2 ·Ce] for e = 1, . . . , 76. Then, we let ⇣ be the uniform distribution over Z .

Given context zt and routes xi
t, x

�i
t , the reward of each agent i is:

r
i
(x

i
t, x

�i
t , zt) = �

76X

e=1

x
i
t[e] · te(xi

t + x
�i
t , zt[e]) ,

where te(·) is the traveltime function of edge e (i.e., the relation between number of units traversing
edge e and the time needed to traverse it). Such functions are unknown to the agents, and according
to [25, 1] are defined by the Bureau of Public Roads (BPR) congestion model:

te(x, z) = fe ·
 
1 + 0.15

⇣
x

z

⌘4
!
,

where fe 2 R+ is the free-flow traveltime of edge e (also provided by the network’s data). At the
end of each round, hence, we quantify the congestion of each edge e with the quantity 0.15((x

i
t[e] +

x
�i
t [e])/zt[e])

4.
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To run our experiments, we estimate upper and lower bounds on the agents’ rewards by sampling
10

0
000 random contexts and game outcomes, and feed such bounds to the agents so that rewards

can be scaled in the [0, 1] interval. Moreover, at each round agents receive a noisy measurement
of their rewards, with noise standard deviation � set to 0.1%. To run ROBUSTLINEXP3 [28,
Theorem 1] we set learning rate ⌘ = 0.3 and exploration parameter � = 0.2 (we observe worse
performance when setting them to their theoretical values). For GP-MW we use the composite
kernel k(xi

t, x
�i
t , zt) = k1(x

i
t) ⇤ k2(x

i
t + x

�i
t ) used also in [32], while for C.GP-MW the kernel

k(x
i
t, x

�i
t , zt) = k1(x

i
t) ⇤ k2((x

i
t + x

�i
t )/zt), where k1 is a linear kernel and k2 is a polynomial

kernel of degree 4. However, we observe similar performance when polynomials of different degrees
are used or when k2 is the widely used SE kernel. Kernel hyperparameters are optimized offline over
100 random datapoints and kept fixed. We set ⌘t according to Theorems 1 and 2, and confidence level
�t = 2.0 (theoretical values for �t are found to be overly conservative, as also observed in [37, 32]).
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