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Abstract

In offline reinforcement learning (RL), the goal is to learn a highly rewarding
policy based solely on a dataset of historical interactions with the environment.
The ability to train RL policies offline would greatly expand where RL can be
applied, its data efficiency, and its experimental velocity. Prior work in offline
RL has been confined almost exclusively to model-free RL approaches. In this
work, we present MOReL, an algorithmic framework for model-based offline RL.
This framework consists of two steps: (a) learning a pessimistic MDP (P-MDP)
using the offline dataset; (b) learning a near-optimal policy in this P-MDP. The
learned P-MDP has the property that for any policy, the performance in the real
environment is approximately lower-bounded by the performance in the P-MDP.
This enables it to serve as a good surrogate for purposes of policy evaluation and
learning, and overcome common pitfalls of model-based RL like model exploitation.
Theoretically, we show that MOReL enjoys strong performance guarantees for offline
RL. Through experiments, we show that MOReL matches or exceeds state-of-the-art
results in widely studied offline RL benchmarks. Moreover, the modular design
of MOReL enables future advances in its components (e.g., in model learning,
planning etc.) to directly translate into improvements for offline RL. Project
webpage: https://sites.google.com/view/morel

1 Introduction

The fields of computer vision and NLP have seen tremendous advances by utilizing large-scale
offline datasets [1, 2, 3] for training and deploying deep learning models [4, 5, 6, 7]. In contrast,
reinforcement learning (RL) [8] is typically viewed as an online learning process. The RL agent
iteratively collects data through interactions with the environment while learning the policy. Unfor-
tunately, a direct embodiment of this trial and error learning is often inefficient and feasible only
with a simulator [9, 10, 11]. Similar to progress in other fields of Al, the ability to learn from offline
datasets may hold the key to unlocking the sample efficiency and widespread use of RL agents.

Offline RL, also known as batch RL [12], involves learning a highly rewarding policy using only a
static offline dataset collected by one or more data logging (behavior) policies. Since the data has
already been collected, offline RL abstracts away data collection or exploration, and allows prime
focus on data-driven learning of policies. This abstraction is suitable for safety sensitive applications
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Figure 1: (a) Illustration of the offline RL paradigm. (b) Illustration of our framework, MOReL, which
learns a pessimistic MDP (P-MDP) from the dataset and uses it for policy search. (c) Illustration of
the P-MDP, which partitions the state-action space into known (green) and unknown (orange) regions,

and also forces a transition to a low reward absorbing state (HALT) from unknown regions. Blue dots
denote the support in the dataset. See algorithm 1 for more details.
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like healthcare and industrial automation where careful oversight by a domain expert is necessary for
taking exploratory actions or deploying new policies [13, 14]. Additionally, large historical datasets
are readily available in domains like autonomous driving and recommendation systems, where offline
RL may be used to improve upon currently deployed policies.

Due to use of static dataset, offline RL faces unique challenges. Over the course of learning, the agent
has to evaluate and reason about various candidate policy updates. This offline policy evaluation is
particularly challenging due to deviation between the state visitation distribution of the candidate
policy and the logging policy. Furthermore, this difficulty is exacerbated over the course of learning
as the candidate policies increasingly deviate from the logging policy. This change in distribution,
as a result of policy updates, is typically called distribution shift and constitutes a major challenge
in offline RL. Recent studies show that directly using off-policy RL algorithms with an offline
dataset yields poor results due to distribution shift and function approximation errors [15, 16, 17].
To overcome this, prior works have proposed modifications like Q-network ensembles [15, 18] and
regularization towards the data logging policy [19, 16, 18]. Most notably, prior work in offline RL
has been confined almost exclusively to model-free methods [20, 15, 16, 19, 17, 18, 21].

Model-based RL (MBRL) presents an alternate set of approaches involving the learning of approxi-
mate dynamics models which can subsequently be used for policy search. MBRL enables the use of
generic priors like smoothness and physics [22] for model learning, and a wide variety of planning
algorithms [23, 24, 25, 26, 27]. As a result, MBRL algorithms have been highly sample efficient
for online RL [28, 29]. However, direct use of MBRL algorithms with offline datasets can prove
challenging, again due to the distribution shift issue. In particular, since the dataset may not span
the entire state-action space, the learned model is unlikely to be globally accurate. As a result,
planning using a learned model without any safeguards against model inaccuracy can result in “model
exploitation” [30, 31, 29, 28], yielding poor results [32]. In this context, we study the pertinent
question of how to effectively regularize and adapt model-based methods for offline RL.

Our Contributions: The principal contribution of our work is the development of MOReL (Model-
based Offline Reinforcement Learning), a novel model-based framework for offline RL (see figure 1
for an overview). MOReL enjoys rigorous theoretical guarantees, enables transparent algorithm design,
and offers state of the art (SOTA) results on widely studied offline RL benchmarks.

e MOReL consists of two modular steps: (a) learning a pessimistic MDP (P-MDP) using the offline
dataset; and (b) learning a near-optimal policy for the P-MDP. For any policy, the performance in
the true MDP (environment) is approximately lower bounded by the performance in the P-MDP,
making it a suitable surrogate for purposes of policy evaluation and learning. This also guards
against model exploitation, which often plagues MBRL.

e The P-MDP partitions the state space into “known” and “unknown” regions, and uses a large
negative reward for unknown regions. This provides a regularizing effect during policy learning
by heavily penalizing policies that visit unknown states. Such a regularization in the space of
state visitations, afforded by a model-based approach, is particularly well suited for offline RL. In
contrast, model-free algorithms [16, 18] are forced to regularize the policies directly towards the
data logging policy, which can be overly conservative.



o Theoretically, we establish upper bounds for the sub-optimality of a policy learned with MOReL, and
a worst case lower-bound for the sub-optimality of a policy learnable by any offline RL algorithm.
We find that these bounds match upto log factors, suggesting that the performance guarantee
of MOReL is nearly optimal in terms of discount factor and support mismatch between optimal and
data collecting policies (see Corollary 3 and Proposition 4).

e We evaluate MOReL on standard benchmark tasks used for offline RL. MOReL obtains SOTA results
in 12 out of 20 environment-dataset configurations, and performs competitively in the rest. In
contrast, the best prior algorithm [18] obtains SOTA results in only 5 (out of 20) configurations.

2 Related Work

Offline RL dates to at least the work of Lange et al. [12], and has applications in healthcare [33,
34, 35], recommendation systems [36, 37, 38, 39], dialogue systems [40, 19, 41], and autonomous
driving [42]. Algorithms for offline RL typically fall under three categories. The first approach utilizes
importance sampling and is popular in contextual bandits [43, 36, 37]. For full offline RL, Liu
et al. [44] perform planning with learned importance weights [45, 46, 47] while using a notion of
pessimism for regularization. However, Liu et al. [44] don’t explicitly consider generalization and
their guarantees become degenerate if the logging policy does not span the support of the optimal
policy. In contrast, our approach accounts for generalization, leads to stronger theoretical guarantees,
and obtains SOTA results on challenging offline RL benchmarks. The second, and perhaps most
popular approach is based on approximate dynamic programming (ADP). Recent works have
proposed modification to standard ADP algorithms [48, 49, 50, 51] towards stabilizing Bellman
targets with ensembles [17, 15, 19] and regularizing the learned policy towards the data logging
policy [15, 16, 18]. ADP-based offline RL has also be studied theoretically [26, 52]. However, these
works again don’t study the impact of support mismatch between logging policy and optimal policy.
Finally, model-based RL has been explored only sparsely for offline RL in literature [32, 53] (see
appendix for details). The work of Ross and Bagnell [32] considered a straightforward approach
of learning a model from offline data, followed by planning. They showed that this can have
arbitrarily large sub-optimality. In contrast, our work develops a new framework utilizing the notion
of pessimism, and shows both theoretically and experimentally that MBRL can be highly effective for
offline RL. Concurrent to our work, Yu et al. [54] also study a model-based approach to offline RL.

A cornerstone of MOReL is the P-MDP which partitions the state space into known and unknown
regions. Such a hard partitioning was considered in early works like E3 [55], R-MAX [56], and
metric-E£3 [57], but was not used to encourage pessimism. Similar ideas have been explored in
related settings like online RL [58, 59] and imitation learning [60]. Our work differs in its focus on
offline RL, where we show the P-MDP construction plays a crucial role. Moreover, direct practical
instantiations of £ and metric-E> with function approximation have remained elusive.

3 Problem Formulation

A Markov Decision Process (MDP) is represented by M = {S, A, r, P, p, 7}, where, S is the state-
space, A is the action-space, 7 : SX A — [— Rax, Rmax] is the reward function, P : Sx Ax.S — R
is the transition kernel, pg is the initial state distribution, and ~ the discount factor. A policy defines
a mapping from states to a probability distribution over actions, 7 : S x A — R. The goal is to
obtain a policy that maximizes expected performance with states sampled according to po, i.e.:

Z’ytr(st,atﬂso = 31 (D
t=0

To avoid notation clutter, we suppress the dependence on py when understood from context, i.e.
J(r,M) = J,, (7, M). We denote the optimal policy using 7* := arg max, J,, (m, M). Typically,
a class of parameterized policies 7y € II(©) are considered, and the parameters 6 are optimized.

max Jp, (7, M) :=E;,, [V™ (s, M)], where, V™ (s, M) =E

In offline RL, we are provided with a static dataset of interactions with the environment consisting
of D = {(s;,a;,ri,5:)},. The data can be collected using one or more logging (or behavioral)
policies denoted by 7,. We do not assume logging policies are known in our formulation. Given D,
the goal in offline RL is to output a 7o, With minimal sub-optimality, i.e. J(7*, M) — J(mou, M).
In general, it may not be possible to learn the optimal policy with a static dataset (see section 4.1).
Thus, we aim to design algorithms that would result in as low sub-optimality as possible.



Model-Based RL (MBRL) involves learning an MDP M = {S, A, r, P, §y,~} which uses the
learned transitions P instead of the true transition dynamics P. In this paper, we assume the reward

function r is known and use it in M. If 7(+) is unknown, it can also be learned from data. The initial
state distribution gy can either be learned from the data or py can be used if known. Analogous to M,

we use J 5, (T, M) or simply J(, M) to denote performance of 7 in M.

4 Algorithmic Framework

For ease of exposition and clarity, we first begin by presenting an idealized version of MOReL,
for which we also establish theoretical guarantees. Subsequently, we describe a practical version
of MOReL that we use in our experiments. Algorithm 1 presents the broad framework of MOReL. We
now study each component of MOReL in greater detail.

Algorithm 1 MOReL: Model Based Offline Reinforcement Learning

Require Dataset D

Learn approximate dynamics model P:SxA—S using D.
Construct a-USAD, U : S x A — {TRUE, FALSE} using D. (see Definition 1).

Construct the pessimistic MDP Mp = {SUHALT, A, r}, Pp, p0,7}- (see Definition 2).
(OPTIONAL) Use a behavior cloning approach to estimate the behavior policy 7.

Tout + PLANNER (M, Tinis = 713
Return 7.

AN A S S

Learning the dynamics model: The first step involves using the offline dataset to learn an approx-
imate dynamics model ]5(~|s, a). This can be achived through maximum likelihood estimation or
other techniques from generative and dynamics modeling [61, 62, 63]. Since the offline dataset may
not span the entire state space, the learned model may not be globally accurate. So, a naive MBRL
approach that directly plans with the learned model may over-estimate rewards in unfamiliar parts of
the state space, resulting in a highly sub-optimal policy [32]. We overcome this with the next step.

Unknown state-action detector (USAD): We partition the state-action space into known and un-
known regions based on the accuracy of learned model as follows.

Definition 1. («-USAD) Given a state-action pair (s, a), define an unknown state action detector as:

U%(s,a) = {FALSE (i.e. Known) if Drv (p(.\s,a),P(.|s7a)) < « can be guaranteed 2)

TRUE (i.e. Unknown) otherwise

Intuitively, USAD provides confidence about where the learned model is accurate. It flags state-
actions for which the model is guarenteed to be accurate as “known”, while flagging state-actions
where such a guarantee cannot be ascertained as “unknown”. Note that USAD is based on the ability
to guarantee the accuracy, and is not an inherent property of the model. In other words, there could
be states where the model is actually accurate, but flagged as unknown due to the agent’s inability to
guarantee accuracy. Two factors contribute to USAD’s effectiveness: (a) data availability: having
sufficient data points “close” to the query; (b) quality of representations: certain representations, like
those based on physics, can lead to better generalization guarantees. This suggests that larger datasets
and research in representation learning can potentially enable stronger offline RL results.

Pessimistic MDP construction: We now construct a pessimistic MDP (P-MDP) using the learned
model and USAD, which penalizes policies that venture into unknown parts of state-action space.

Definition 2. The («, k)-pessimistic MDP is described by Mp = {SUHALT, A,r,, If’p, 00,7}
Here, S and A are states and actions in the MDP M. HALT is an additional absorbing state we

introduce into the state space of Mp. Do is the initial state distribution learned from the dataset D. ~y
is the discount factor (same as M ). The modified reward and transition dynamics are given by:

if U%(s,a) = TRUE
or s = HALT rp(s,a) =
P(s'|s,a) otherwise

[ — 1 =
By (s']s,a) = o(s" = HALT) { K if s = HALT

r(s,a) otherwise



§(s" = HALT) is the Dirac delta function, which forces the MDP to transition to the absorbing state
HALT. For unknown state-action pairs, we use a reward of —r, while all known state-actions receive
the same reward as in the environment. The P-MDP heavily punishes policies that visit unknown
states, thereby providing a safeguard against distribution shift and model exploitation.

Planning: The final step in MOReL is to perform planning in the P-MDP defined above. For simplicity,
we assume a planning oracle that returns an e.-sub-optimal policy in the P-MDP. A number of
algorithms based on MPC [23, 64], search-based planning [65, 25], dynamic programming [49, 26],
or policy optimization [27, 51, 66, 67] can be used to approximately realize this.

4.1 Theoretical Results

In order to state our results, we begin by defining the notion of hitting time.

Definition 3. (Hitting time) Given an MDP M, starting state distribution py, state-action pair (s, a)
and a policy T, the hitting time T(Z a) is defined as the random variable denoting the first time action

a is taken at state s by ™ on M, and is equal to oo if a is never taken by 7 from state s. For a set of

, , d .
state-action pairs S C S x A, we define T :efmm(sva)es T(Tg o)

We are now ready to present our main result with the proofs deferred to the appendix.

Theorem 1. (Policy value with pessimism) The value of any policy 7 on the original MDP M and
its (o, Riax )-pessimistic MDP M, satisfies:

~ 2R pax ~ 27Rmax 2R ppax "
J s (1, >J , — - D , — S — -E { M} , and
o (T, Mp) = J py (0, M) 1—~ v (po: fo) 1—)2 -7 ~ v an
~ 2Rmax ~ 27Rmax
. < - D = .
']Po (W?MP) = JI)O(T(?M) + 1_ ~y TV(pOa PO) + (1 — 7)2 @,

where T} denotes the hitting time of unknown states U 4 {(s,a) : U*(s,a) = TRUE} by m on M.
Theorem 1 can be used to bound the suboptimality of output policy 7, of Algorithm 1.
Corollary 2. Suppose PLANNER in Algorithm 1 returns an e, sub-optimal policy. Then, we have

Joo (7, M) = o (Tour, M) < €x + Zi]?n: - Drv(po, po) + (?i%";‘;xz ca+ 21%": ‘E [’YTJ } .
Theorem 1 indicates that the difference in any policy 7’s value in the («, Ryax) pessimistic MDP
Mp and the original MDP M depends on: i) the total variation distance between the true and learned
starting state distribution Drv (po, fo), ii) the maximum total variation distance « between the learned
model P(-|s, a) and the true model P(-|s, a) over all known states i.e., {(s,a)|U%(s,a) = FALSE}
and, iii) the hitting time 777 " of unknown states I/ on the original MDP M under the optimal policy

7*. As the dataset size increases, Drv (po, fo) and « approach zero, indicating E [’yTJ } determines

the sub-optimality in the limit. For comparison to prior work, Lemma 5 in Appendix A bounds this

quantity in terms of state-action visitation distribution, which for a policy m on M is expressed as

d™M(s,a) & (1—~) YooV P(st = s,a; = also ~ po, T, M). We have the following corollary:

Corollary 3. (Upper bound) Suppose the dataset D is large enough so that « = Dy (po, fo) = 0.
Then, the output T, of Algorithm 1 satisfies:

W e
TR

Prior results [15, 44] assume that d™ “M(Up) = 0, where Up &f {(s,a)|(s,a,r,8") ¢ D} DU is
the set of state action pairs that don’t occur in the offline dataset, and guarantee finding an optimal
policy under this assumption. Our result significantly improves upon these in three ways: 1) Up
is replaced by a smaller set I/, leveraging the generalization ability of learned dynamics model,
ii) the sub-optimality bound is extended to the setting where full support coverage is not satisfied i.e.,
d™ M (U) > 0, and iii) the sub-optimality bound on 7, is stated in terms of unknown state hitting
time T3 ", which can be significantly better than a bound that depends only on d™ M (U). To further
strengthen our results, the following proposition shows that Corollary 3 is tight up to log factors.

QRmax ¥
Jpo (", M) — J oo (Tou, M) < € + T -E [’yTM ] < eé€r+



Proposition 4. (Lower bound) For any discount factor v € [0.95,1), support mismatch ¢ €
(0 %} and reward range [— Ry, Ruaxl, there is an MDP M, starting state distribution

’ log T—
po, optimal policy 7 and a dataset collection policy my, such that i) d™ M (Up) < ¢ and ii) any
policy 7 that is learned solely using the dataset collected with m, satisfies:

~ Rmax €
J M) —J M) > . ,
PU(T( ) 140 (7T ) e 4(1 . 7)2 IOg 1i’y

where Up % {(s,a) : (s,a,7,8") & D for any r,s'} denotes state action pairs not in the dataset D.
We see that fore < (1—7)/(log ﬁ), the lower bound obtained by Proposition 4 on the suboptimality

of any offline RL algorithm matches the upper bound of Corollary 3 up to an additional log factor.
Fore > (1 —~)/(log ﬁ), Proposition 4 also implies (by choosing ¢ = (1 — v)/(log ﬁ) <€)
that any offline algorithm must suffer at least constant factor suboptimality in the worst case. Finally,

we note that as the size of dataset D increases to oo, Theorem 1 and the optimality of PLANNER
together imply that J,, (mou, M) > J,, (75, M) since E {’yTl:b} goes to 0. The proof is similar to
that of Corollary 3 and is presented in Appendix A.

4.2 Practical Implementation Of MOReL

We now present a practical instantiation of MOReL (algorithm 1) utilizing a recent model-based NPG
approach [28]. The principal difference is the specialization to offline RL and construction of the
P-MDP using an ensemble of learned dynamics models.

Dynamics model learning: We consider Gaussian dynamics models [28], P(:|s,a) =
N (fs(s,a),%2), with mean fy(s,a) = s + oa MLPy ((s — ps)/0s, (@ — pa)/0a), where
Ls, Ts, [la, 04 are the mean and standard deviations of states/actions in D; oa is the standard
deviation of state differences, i.e. A = s’ — s,(s,s’) € D; this parameterization ensures local
continuity since the MLP learns only the state differences. The MLP parameters are optimized using
maximum likelihood estimation with mini-batch stochastic optimization using Adam [68].

Unknown state-action detector (USAD): In order to partition the state-action space into known
and unknown regions, we use uncertainty quantification [69, 70, 71, 72]. In particular, we consider
approaches that track uncertainty using the predictions of ensembles of models [69, 72]. We learn
multiple models {fy,, f¢,,. ..} Where each model uses a different weight initialization and are
optimized with different mini-batch sequences. Subsequently, we compute the ensemble discrepancy
as disc(s,a) = max;; ||fs,(s,a) — fs,(s,a)| ,» Where fy, and fy, are members of the ensemble.
With this, we implement USAD as below, with threshold being a tunable hyperparameter.

FALSE (i.e. Known) if disc(s,a) < threshold

. 3
TRUE (i.e. Unknown) if disc(s,a) > threshold ®)

Upractical(57 a) = {

5 Experiments

Through our experimental evaluation, we aim to answer the following questions:

1. Comparison to prior work: How does MOReL compare to prior SOTA offline RL algorithms [15,
16, 18] in commonly studied benchmark tasks?

2. Quality of logging policy: How does the quality (value) of the data logging (behavior) policy,
and by extension the dataset, impact the quality of the policy learned by MOReL?

3. Importance of pessimistic MDP: How does MOReL compare against a naive model-based RL
approach that directly plans in a learned model without any safeguards?

4. Transfer from pessimistic MDP to environment: Does learning progress in the P-MDP, which
we use for policy learning, effectively translate or transfer to learning progress in the environment?

To answer the above questions, we consider commonly studied benchmark tasks from OpenAl
gym [73] simulated with MuJoCo [74]. Our experimental setup closely follows prior work [15, 16, 18].
The tasks considered include Hopper-v2, HalfCheetah-v2, Ant-v2, and Walker2d-v2, which



HalfCheetah-v2 Hopper-v2 Walker2D-v2 Ant-v2

Figure 2: Illustration of the suite of tasks considered in this work. These tasks require the RL agent
to learn locomotion gaits for the illustrated simulated characters.

are illustrated in Figure 2. We consider five different logged data-sets for each environment, totalling
20 environment-dataset combinations. Datasets are collected based on the work of Wu et al. [18],
with each dataset containing the equivalent of 1 million timesteps of environment interaction. We
first partially train a policy () to obtain values around 1000, 4000, 1000, and 1000 respectively
for the four environments. The first exploration strategy, Pure, involves collecting the dataset solely
using m,. The four other datasets are collected using a combination of 7, a noisy variant of m,,
and an untrained random policy. The noisy variant of ,, utilizes either epsilon-greedy or Gaussian
noise, resulting in configurations eps-1, eps-3, gauss-1, gauss-3 that signify various types and
magnitudes of noise added to 7. Please see appendix for additional experimental details.

We parameterize the dynamics model using 2-layer ReLU-MLPs and use an ensemble of 4 dynamics
models to implement USAD as described in Section 4.2. We parameterize the policy using a 2-layer
tanh-MLP, and train it using model-based NPG [28]. We evaluate the learned policies using rollouts
in the (real) environment, but these rollouts are not made available to the algorithm in any way for
purposes of learning. This is similar to evaluation protocols followed in prior work [18, 15, 16].
We present all our results averaged over 5 different random seeds. Note that we use the same
hyperparameters for all random seeds. In contrast, the prior works whose results we compare against
tune hyper-parameters separately for each random seed [18].

Comparison of MOReL’s performance with prior work We compare MOReL with prior SOTA
algorithms like BCQ, BEAR, and all variants of BRAC. The results are summarized in Table 1. For
fairness of comparison, we reproduce results from prior work and do not run the algorithms ourselves,
since random-seed-specific hyperparameter tuning is required to achieve the results reported by prior
work [18]. We provide a more expansive table with additional baseline algorithms in the appendix.
Our algorithm, MOReL, achives SOTA results in 12 out of the 20 environment-dataset combinations,
overlaps in error bars for 3 other combinations, and is competitive in the remaining cases. In contrast,
the next best approach (a BRAC variant) achieves SOTA results in 5 out of 20 configurations.

Table 1: Results in various environment-exploration combinations. Baselines are reproduced from Wu
et al. [18]. Prior work does not provide error bars. For MOReL results, error bars indicate the standard
deviation across 5 different random seeds. We choose SOTA result based on the average performance.

Environment: Ant-v2 Environment: Hopper-v2
Algorithm | BCQ BEAR BrAC | Best MOReL Algorithm | BCQ BEAR BrAC | Best MOReL
[15]  [16] [18] | Baseline (Ours) [15]  [16] [18] | Baseline (Ours)
Pure 1921 2100 2839 2839 3663247 Pure 1543 0 2291 2774 3642+54
Eps-1 1864 1897 2672 2672 3305+413 Eps-1 1652 1620 2282 2360 3724446
Eps-3 1504 2008 2602 2602 3008+231 Eps-3 1632 2213 1892 2892 3535491
Gauss-1 1731 2054 2667 2667 3329+270 Gauss-1 1599 1825 2255 2255 3653+52
Gauss-3 1887 2018 2640 2661 3693+33 Gauss-3 1590 1720 1458 2097 3648148
Environment: HalfCheetah-v2 Environment: Walker-v2
Algorithm | BCQ BEAR BrAC | Best MOReL Algorithm | BCQ BEAR BrAC | Best MOReL
[151 [16] [18] | Baseline (Ours) [151  [16] [18] | Baseline (Ours)
Pure 5064 5325 6207 6209 6028+192 Pure 2095 2646 2694 2907 3709+159
Eps-1 5693 5435 6307 6307 5861+£192 Eps-1 1921 2695 3241 3490 28994588
Eps-3 5588 5149 6263 6359 5869+139 Eps-3 1953 2608 3255 3255 3186492
Gauss-1 5614 5394 6323 6323 6026+74 Gauss-1 2094 2539 2893 3193 4027+314
Gauss-3 | 5837 5329 6400 6400 58924128 Gauss-3 1734 2194 3368 3368 2828+589
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Figure 3: MOReL and Naive MBRL learning curves. The x-axis plots the number of model-based NPG
iterations, while y axis plots the return (value) in the real environment. The naive MBRL algorithm is
highly unstable while MOReL leads to stable and near-monotonic learning. Notice however that even
naive MBRL learns a policy that performs often as well as the best model-free offline RL algorithms.

Quality of logging policy Section 4.1
indicates that it is not possible for any
offline RL algorithm to learn a near-

Table 2: Value of the policy learned by MOReL (5 ran-
dom seeds) when working with a dataset collected with
arandom (untrained) policy (Pure-random) and a par-

optimal policy when faced with support
mismatch between the dataset and optimal

tially trained policy (Pure-partial).

policy. To verify this experimentally = Environment Pure-random | Pure-partial
for MOReL, we consider two datasets

(of the same size) collected using the  Hopper-v2 2354 +443 3642 + 54
Pure strategy. The first uses a partially = HalfCheetah-v2 | 2698 4 230 6028 £ 192
trained policy 7, (called Pure-partial), Walker2d-v2 1290 + 325 3709 £ 159
which is the same as the Pure dataset  ppt_y2 1001 + 3 3663 + 247

studied in Table 1. The second dataset is
collected using an untrained random Gaussian policy (called Pure-random). Table 2 compares
the results of MOReL using these two datasets. We observe that the value of policy learned
with Pure-partial dataset far exceeds the value with the Pure-random dataset. Thus, the
value of policy used for data logging plays a crucial role in the performance achievable with offline RL.

Importance of Pessimistic MDP

To highlight the importance of P-MDP, we consider the Pure-partial dataset outlined above. We
compare MOReL with a naive MBRL approach that first learns a dynamics model using the offline data,
followed by running model-based NPG without any safeguards against model inaccuracy. The results
are summarized in Figure 3. We observe the naive MBRL approach already works well, achieving
comparable results to prior methods like BCQ and BEAR. However, MOReL clearly exhibits more sta-
ble and monotonic learning progress. This is particularly evident in Hopper-v2, HalfCheetah-v2,
and Walker2d-v2, where an uncoordinated set of actions can result in the agent falling over. Fur-
thermore, in the case of naive MBRL, we observe that performance can quickly degrade after a
few hundred steps of policy improvement, such as in case of Hopper-v2, HalfCheetah-v2. This
suggests that the learned model is being over-exploited. In contrast, with MOReL, we observe that the
learning curve is stable and nearly monotonic even after many steps of policy optimization.

Transfer from P-MDP to environment

Finally, we study how the learning progress in P-MDP relates to the progress in the environment. Our
theoretical results (Theorem 1) suggest that the value of a policy in the P-MDP cannot substantially
exceed the value in the environment. This makes the value in the P-MDP an approximate lower
bound on the true performance, and a good surrogate for optimization. In Figure 4, we plot the value
(return) of the policy in the P-MDP and environment over the course of learning. Note that the policy
is being learned in the P-MDP, and as a result we observe a clear monotonic learning curve for value
in the P-MDP, consistent with the monotonic improvement theory of policy gradient methods [75, 76].
We observe that the value in the true environment closely correlates with the value in P-MDP. In
particular, the P-MDP value never substantially exceeds the true performance, suggesting that the
pessimism helps to avoid model exploitation.
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Figure 4: Learning curve using the Pure-partial dataset, see paper text for details. The policy is
learned using the pessimistic MDP (P-MDP), and we plot the performance in both the P-MDP and
the real environment over the course of learning. We observe that the performance in the P-MDP
closely tracks the true performance and never substantially exceeds it, as predicted in section 4.1.
This shows that the policy value in the P-MDP serves as a good surrogate for the purposes of offline
policy evaluation and learning.

6 Conclusions

We introduced MOReL, a new model-based framework for offline RL. MOReL incorporates both
generalization and pessimism (or conservatism). This enables MOReL to perform policy improvement
in known states that may not directly occur in the static offline dataset, but can nevertheless be
predicted using the dataset by leveraging the power of generalization. At the same time, due to the
use of pessimism, MOReL ensures that the agent does not drift to unknown states where the agent
cannot predict accurately using the static dataset.

Theoretically, we obtain bounds on the suboptimality of MOReL which improve over those in prior
work. We further showed that this suboptimality bound cannot be improved upon by any offline RL
algorithm in the worst case. Experimentally, we evaluated MOReL in the standard continuous control
benchmarks in OpenAl gym and showed that it achieves state of the art results. The modular structure
of MOReL comprising of model learning, uncertainty estimation, and model-based planning allows
the use of a variety of approaches such as multi-step prediction for model learning, abstention for
uncertainty estimation, or model-predictive control for action selection. In future work, we hope to
explore these directions.
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Broader Impact

This paper studies offline RL, which allows for data driven policy learning using pre-collected datasets.
The ability to train policies offline can expand the range of applications where RL can be applied as
well as the sample efficiency of any downstream online learning. Since the dataset has already been
collected, offline RL enables us to abstract away the exploration or data collection challenge. Safe
exploration is crucial for applications like robotics and healthcare, where poorly designed exploratory
actions can have harmful physical consequences. Avoiding online exploration by an autonomous
agent, and working with a safely collected dataset, can have the broader impact of alleviating safety
challenges in RL. That said, the impact of RL agents to the society at large is highly dependent on the



design of the reward function. If the reward function is designed by malicious actors, any RL agent,
be it offline or not, can present negative consequences. Therefore, the design of reward functions
requires checks, vetting, and scrutiny to ensure RL algorithms are aligned with societal norms.
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