
A Preliminaries508

We list and prove a few elementary lemmas used in subsequent proofs and discussions.509

Lemma 4 Let n ≥ m, A ∈ R
m×n and b ∈ R

m be such that S = {x ∈ R
n : Ax = b} 6= ∅. Let the510

singular value decomposition (SVD) of A⊤ be A⊤ = UΣV ⊤, where U ∈ R
n×r and V ∈ R

m×r have511

orthonormal columns, Σ = Diag(σ1, . . . , σr), σ1 ≥ . . . σr > 0, r = rank(A). For any x ∈ R
n, the512

projection of x onto S can be expressed as513

ΠS(x) = (I − UU⊤)x+ UΣ−1V ⊤b.

In particular, when A has full rank,514

ΠS(x) = (I −A⊤(AA⊤)−1A)x+A⊤(AA⊤)−1b.

515

Proof. The case of full rank A is well-known, see, e.g., [54, Eq. (1)]. For general A, Ax = b ⇔516

V ΣU⊤x = b. Recall that U and V consist of orthonormal columns and. Since V Σ has full column517

rank, there exists a unique w ∈ R
r such that V Σw = b. In fact, w = Σ−1V ⊤b. Therefore,518

Ax = b⇔ U⊤x = Σ−1V ⊤b.

Since U⊤ has full row rank, the formula follows directly from the full rank case. �519

Lemma 5 Under the same assumptions as Lemma 4, for any x ∈ R
n, it holds that520

σr · ‖x−ΠS(x)‖ ≤ ‖Ax− b‖.

521

Proof. By Lemma (4) and the fact that U and V have orthonormal columns,522

‖x−ΠS(x)‖ = ‖U(U⊤x− Σ−1V ⊤b)‖ = ‖U⊤x− Σ−1V ⊤b‖

= ‖Σ−1V ⊤(Ax− b)‖ ≤ ‖Σ−1‖‖Ax− b‖,

where ‖Σ−1‖ = 1
σr

. �523

Lemma 6 For B > 0 and g ∈ R
d, let524

x∗ = argmin

{

〈g, x〉+
d
∑

i=1

xi log xi : x ≥ 0, 1⊤x = B

}

.

Then, x∗
i = B · e−gi

∑
ℓ e

−gℓ
, i ∈ [d].525

Proof. It can be easily verified via KKT optimality conditions. The Lagrangian is526

L(x, λ) = 〈g, x〉+
∑

i

xi log xi − λ(1⊤x−B).

By the first-order condition, for any λ, the minimizer x(λ) of L(x, λ) has xi(λ) = eλ−1−gi . Primal527

feasibility implies
∑

i xi(λ) = B ⇒ eλ = B∑
i e

−(1+gi)
. Therefore,528

x∗
i = B ·

e−gi

∑

ℓ e
−gℓ

.

�529

13



A.1 Proof of Theorem 1530

Consider the minimization form of (1). Let pj ≥ 0 be the dual variable associated with constraint531
∑

i xij ≤ 1. The Lagrangian is532

L(x, p) =



−
∑

i

Bi log ui(x) +

〈

p,
∑

i

xi

〉

−
∑

j

pj



 .

The Lagrangian dual is533

max
p≥0

g(p) := min
x≥0
L(x, p). (8)

By assumption, there is a feasible x to (1) with ui(xi) > 0 for all i. Note that x′ = 1
2x is also feasible534

and ui(x
′
i) =

1
2ui(xi) > 0 by homogeneity of ui. Consider x′′ = x′ + δ, where δ > 0 is sufficiently535

small so that
∑

i x
′′
ij < 1 for all j. Then, x′′ > 0 and

∑

i x
′′
ij < 1 for all j. Therefore, (1) has a536

strictly feasible solution. Meanwhile, the dual (8) clearly has a strictly feasible solution p > 0 with537

g(p) = minx≥0 L(x, p) finite. Therefore, strong duality holds by Slater’s condition and the KKT538

conditions are necessary and sufficient for (primal and dual) optimality of a solution pair (x, p) (see,539

e.g., [7, Appendix D]). Let x∗ and p∗ be optimal solutions to the primal (1) and dual (8), respectively.540

Clearly, ui(x
∗
i ) > 0 for all i. By Lagrange duality, we have541

x∗ ∈ argmin
x≥0

L(x, p∗).

In other words, each x∗
i maximizes ri(xi, p

∗) := Bi log ui(xi)− 〈p
∗, xi〉 on xi ≥ 0. We show that542

(x∗, p∗) is a market equilibrium.543

Buyer optimality First, we verify that 〈p∗, x∗
i 〉 = Bi for all i. Assume that 〈p∗, x∗

i 〉 > Bi for544

some i. Let x̃i = (1− ǫ)x∗
i , where 0 ≤ ǫ < 1. Consider545

φ(ǫ) = Bi log ui((1−ǫ)x
∗
i )−〈p

∗, (1−ǫ)x∗
i 〉 = Bi log ui(x

∗
i )−〈p

∗, x∗
i 〉+Bi log(1−ǫ)+ǫ〈p∗, x∗

i 〉.

Note that φ is differentiable on (0, 1) and φ′(ǫ) = − Bi

1−ǫ + 〈p
∗, x∗

i 〉. Since 〈p∗, x∗
i 〉 > Bi, we have546

φ′(0) > 0. In other words, replacing x∗
i by x̃i with sufficiently small ǫ strictly decreases the value547

of Bi log ui(xi) − 〈p
∗, xi〉, contradicting to the choice of x∗. Therefore, 〈x∗, x∗

i 〉 ≤ Bi for all i.548

Completely analogously, we can also show that 〈p∗, x∗
i 〉 ≥ Bi for all i. Therefore, for each buyer i,549

x∗
i is feasible and depletes its budget Bi under prices p∗i . Hence, for any xi ∈ R

m
+ , 〈p∗, xi〉 ≤ Bi,550

since x∗
i maximizes ri(·, p∗), we have551

Bi log ui(x
∗
i )− 〈p

∗, x∗
i 〉 ≥ Bi log ui(xi)− 〈p

∗, xi〉.

Since 〈p∗, xi〉 ≤ Bi = 〈p
∗, x∗

i 〉, the above implies552

Bi log ui(x
∗
i ) ≥ Bi log ui(xi).

Therefore, ui(x
∗
i ) ≥ ui(xi). In other words, x∗

i ∈ Di(p
∗) for all i.553

Market clearance By the complementary slackness condition in Lagrange duality, for item j such554

that
∑

i x
∗
ij < 1, it must holds that p∗j = 0, completing the proof.555

Remark We can also assign any leftover of item j to any buyer i without violating its budget556

constraint, in order to “clear” the market. Meanwhile, since ui is CCNH, it is also “monotone” in the557

following sense: for any α ≥ 0,558

ui(x
∗
i + αej) ≥ ui(x

∗
i ) + αui(e

j) ≥ 0.

In other words, buyer i’s optimality is not affected by the assignment of any zero-price leftover.559

A.2 Characterizations of Hoffman constant560

We compare our definition of Hoffman constant and another common, explicit characterization.561

Recall that HX (A) is the smallest H such that, for any b, S = {x : Ax = b},562

‖x−ΠX∩S(x)‖ ≤ H‖Ax− b‖, ∀x ∈ X .
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For any matrix M , let B(M) be the set of nonsingular submatrices consisting of rows of M . Define563

H(M) = max
B∈B(M)

1

σmin(B)
<∞. (9)

The following fact is known (see, e.g., [34, §11.8] and [4, §2.1]).564

Lemma 7 Suppose the reference polyhedral set can be represented by inequality constraints X =565

{x : Cx ≤ d}. Then,566

HX (A) ≤ H

([

A
C

])

.

Clearly, H(M) is finite for any M . In fact, this is the most well-known characterization of Hoffman567

constant, and is tight in the following sense: let S = {x : Ax = b} for some arbitrary right hand side568

b, then it is the smallest constant H such that569

‖x−ΠX∩S(x)‖ ≤ H

∥

∥

∥

∥

[

Ax− b
(Cx− d)+

]∥

∥

∥

∥

for all x (not necessarily ∈ X ). However, for all of our purposes, that is, analysis of PG, x is always570

restricted to be ∈ X . Therefore, we choose to define HX (A) as such, consistent with [5] and [53].571

Meanwhile, the following is clear.572

Lemma 8 For any matrices A ∈ R
m×n, m ≤ n and C ∈ R

ℓ×n, it holds that573

H

([

A
C

])

≥ max

{

1

σmin(A)
, H(A)

}

.

Proof. By definition (9), H ′ := H

([

A
C⊤

])

≥ H(A). If rank(A) = m, then H ′ ≥ 1
σmin(A)574

because A ∈ B

([

A
C

])

. If r = rank(A) < m, let the (nonzero) singular values of A be σ1 ≥ · · · ≥575

σr = σmin(A) > 0. Consider any B ∈ B(A) ⊆ B

([

A
C

])

with rank r (having exactly r rows), let576

its nonzero singular values be σ′
1 ≥ · · · ≥ σ′

r = σmin(B) > 0. Applying Cauhchy’s Interlacing577

Theorem (see, e.g., [31, Theorem 1]) on AA⊤ and its principal submatrix BB⊤, we have578

σ1 ≥ σ′
1 ≥ · · · ≥ σr ≥ σ′

r.

Therefore, H ′ ≥ 1
σmin(B) ≥

1
σmin(A) . �579

A.3 Proof of Theorem 2580

We follow the development in [38, §4 & Appendix F] and further articulate the constants. There, the581

authors show that proximal gradient achieves linear convergence under the so-called Proximal-PŁ582

inequality. Consider the following general nonsmooth problem583

F ∗ = min
x

F (x) = f(x) + g(x) (10)

where f is smooth convex with Lf -Lipschitz continuous gradient, g is simple closed proper convex584

and dom g ⊆ dom f . One iteration of the proximal gradient method with stepsize γ > 0 is as585

follows:586

xt+1 = Proxg
(

xt − γ∇f(xt)
)

= argmin
x

[

〈γ∇f(x), x− xt〉+
1

2
‖x− xt‖2 + g(x)

]

. (11)

For any α > 0 and any x ∈ dom g, define587

D(x, α) = −2αmin
x′

[

〈∇f(x), x′ − x〉+
α

2
‖x′ − x‖2 + g(x′)− g(x)

]

. (12)
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Say that F = f + g satisfies the proximal-PŁ inequality at x w.r.t. Λ ≥ λ > 0 if588

1

2
D(x,Λ) ≥ λ(F (x)− F ∗), (13)

Below is essentially [38, Theorem 5], which shows that the so-called Proximal-PŁ condition is589

sufficient for linear convergence. Note that, different from [38, Theorem 5], we only require (13) to590

hold for x ∈ X such that F (x) ≤ F (x0) instead of all x ∈ X . In addition, we note that in some591

cases (13) may hold with Λ > Lf , in which case the rate needs to be slightly adjusted. Since D(x, ·)592

is monotone [38, Lemma 1], (13) holds when Γ is replaced by Γ′ ≥ Γ. The statement and proof are593

the same as [38, pp. 9] otherwise.594

Theorem 9 Let x0 ∈ dom g. If f and g satisfies (13) for all x ∈ dom g such that F (x) ≤ F (x0),595

then xt defined by (11) starting from x0 with constant stepsize γ = 1/Lf converges linearly with596

rate 1− λ
L̄

, where L̄ = max{Λ, Lf}. In other words,597

F (xt)− F ∗ ≤

(

1−
λ

L̄

)t

(F (x0)− F ∗), t = 1, 2, . . .

598

Proof. By assumption, (13) holds for all x ∈ dom g, x ≤ F (x0). In particular, it holds for xt,599

t, 1, 2, . . . , since proximal gradient is a descent method, i.e., F (x0) ≥ F (x1) ≥ . . . (see, e.g., [3,600

Corollary 10.18]). Therefore, by Lf -Lipschitz continuity of ∇f , proximal gradient update (11),601

definition of D(x, ·), its monotonicity, and (13) for all xt,602

F (xt+1) ≤ F (xt) + 〈∇f(xt), xt+1 − xt〉+
Lf

2
‖xt+1 − xt‖2 + g(xt+1)− g(xt)

≤ F (xt) +

[

〈∇f(xt), xt+1 − xt〉+
L̄

2
‖xt+1 − xt‖2 + g(xt+1)− g(xt)

]

≤ F (xt)−
1

2L̄
D(xt, L̄)

≤ F (xt)−
λ

L̄

(

F (xt)− F ∗
)

⇒ F (xt+1)− F ∗ ≤

(

1−
λ

L̄

)

(

F (xt)− F ∗
)

.

Repeatedly applying the above inequality completes the proof. �603

Then, we prove Theorem 2. Clearly, problem (2) is (10) with g(x) = δX (x) and PG is a special604

case of proximal gradient. By Theorem 9, in order to prove Theorem 2, it suffices to establish the605

Proximal-PŁ condition (13) (for all x ∈ X , f(x) ≤ f(x0) for some initial iterate x0). Let X ∗ be the606

set of optimal solutions to (2) and f∗ be the optimal objective value. Since h is µ-strongly convex and607

f(x) = h(Ax), there exists z∗ ∈ dom f such that S = {x : Ax = z∗} and X ∗ = X ∩ S . Therefore,608

for any x ∈ X , xp := ΠX∗(x), we have609

f(xp) = h(Axp) ≥ h(Ax) + 〈∇h(Ax), A(xp − x)〉+
µ

2
‖A(xp − x)‖2.

Note that610

〈∇h(Ax), A(xp − x)〉 = 〈A⊤∇h(Ax), xp − x〉 = 〈∇f(x), xp − x〉.

Hence, for any x ∈ X , by strong convexity of h and definition of H = HX (A), we have611

f(xp) ≥ f(x) + 〈∇f(x), xp − x〉+
µ

2
‖A(x− xp)‖

2

= f(x) + 〈∇f(x), xp − x〉+
µ

2
‖Ax− z∗‖2

≥ f(x) + 〈∇f(x), xp − x〉+
µ

2H2
‖x− xp‖

2,
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Therefore,612

f∗ ≥ f(x) + 〈∇f(x), xp − x〉+
µ

2H2
‖x− xp‖

2

≥ f(x) + min
y∈X

{

〈∇f(x), y − x〉+
µ

2H2
‖y − x‖2

}

≥ f(x)−
H2

2µ
D
(

x,
µ

H2

)

⇒
1

2
D
(

x,
µ

H2

)

≥
µ

H2
(f(x)− f∗).

Thus, (13) holds for all x ∈ X , f(x) ≤ f(x0) with613

Λ = λ =
µ

H2
.

Since ∇f(x) = A⊤∇h(Ax) and h is (µ,L)-s.c., its Lipschitz constant can be chosen as614

Lf = L‖A‖2.

By Theorem 9, PG with stepsize γ = 1
Lf

converges linearly with rate615

1−
µ
H2

max
{

µ
H2 , L‖A‖2

} = 1−
µ

max{µ,LH2‖A‖2}
.

Finally, convergence of the distance to optimality ‖xt −ΠX (xt)‖ is straightforward: for any x ∈ X ,616

by the strong convexity of h and definition of H ,617

f(x)− f∗ = h(Ax)− h(Axp) ≥
µ

2
‖Ax−Axp‖

2 =
µ

2
‖Ax− z∗‖2 ≥

µ

2H
‖x− xp‖

2.

�618

Remark A special case is when d ≥ r (recall that A ∈ R
d×r) and rank(A) = r. In this case,619

f(x) = h(Ax) itself is strongly convex with modulus µσmin(A)
2. In this case, classical analysis (e.g.,620

[3, §10.6]) implies linear convergence with rate 1− µσmin(A)2

L‖A‖2 . Meanwhile, in the above analysis, we621

have X ∗ = {x∗} = S = {x : Ax = z∗} = X ∩ S (since x∗, z∗ are unique and rank(A) = r). By622

Lemma 5, for any x, it holds that623

‖x−ΠX∗(x)‖ ≤
1

σmin(A)2
‖Ax− z∗‖.

Therefore, by the definition of Hoffman constant, HX (A) ≤ 1
σmin(A)2 and the classical rate under624

strong convexity is recovered.625

A.4 Proof of Theorem 3626

Let X ∗ be the set of optimal solutions to (2). First, recall the following lemma [64, Lemma 14],627

which ensures the first part of the theorem, that is, uniqueness of Ax∗ and q⊤x∗ for all x∗ ∈ X ∗.628

Lemma 9 There exist unique z∗ ∈ R
r and w∗ ∈ R such that for any x∗ ∈ X ∗,629

Ax∗ = z∗, 〈q∗, x〉 = w∗.

630

The next lemma is essentially [4, Lemma 2.5]. Different from the statement of [4, Lemma 2.5],631

we keep ‖∇h(z∗)‖ instead of bounding it by supx∈X ‖∇h(Ax)‖. We also define C = f(x0)− f∗
632

instead of C = supx∈X f(x) − f∗, since subsequent application of the lemma only involves PG633

iterates xt, which have monotone decreasing objective values f(x0) ≥ f(x1) ≥ . . . The proof634

remains unchanged otherwise.635
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Lemma 10 Let z∗ be as in Lemma 9 and x0 ∈ X . For any x ∈ X such that f(x) ≤ f(x0), it holds636

that637

‖x−ΠX∗(x)‖2 ≤ κ (f(x)− f∗) ,

where, same as in Theorem 3, κ = HX (A)2
(

C + 2GDA + 2(G2+1)
µ

)

, C = f(x0)− f∗,638

G = ‖∇h(z∗)‖, DA = supx,y∈X ‖A(x− y)‖.639

Finally, take Lf = L‖A‖2 as a Lipschitz constant of ∇f . By Lemma 10 and [38, §4.1], it holds that640

(2) satisfies the proximal-PŁ inequality (13) with641

Λ = λ =
1

2κ

for all x ∈ X such that f(x) ≤ f(x0) (in particular, for all xt, t = 1, 2, . . . ). By Theorem 9, PG642

converges linearly with rate 1− λ
max{Λ,Lf}

= 1− 1
max{1,2κL‖A‖2} .643

Remark Lemma 10 shows that QG holds. Similar convergence guarantees can also be derived644

from other QG-based analysis, e.g., [27, Corollary 3.7].645

A.5 Linear convergence of PG with linesearch646

First, we consider the more general proximal gradient setup (10). Let Lf be a Lipschitz constant647

of ∇f and the Proximal-PŁ inequality 13 holds with Λ ≥ λ ≥ 0 for all x ∈ dom g such that648

F (x) ≤ F (x0). Let α ≥ 1, β ∈ (0, 1), Γ > 0 (increment factor, decrement factor, upper bound on649

stepsize, respectively). The linesearch subroutine LSα,β,Γ is defined in Algorithm 1.650

Algorithm 1 xt+1, γt, kt ← LSα,β,Γ(x, γ, kprev) with parameters α ≥ 1, β ∈ (0, 1), Γ > 0.

If kprev = 0, set γ(0) = min{αγ,Γ}. Otherwise, set γ(0) = γ.
For k = 0, 1, 2, . . .

1. Compute x(k) = Proxλ(k)g(x− γ(k)∇f(x)).
2. Break if

f(x(k)) ≤ f(x) + 〈∇f(x), x(k) − x〉+
1

2γ(k)
‖x(k) − x‖2. (14)

3. Set γ(k+1) = βγ(k) and continue to k + 1.
Return xt+1 = x(k), γt = γ(k), kt = k.

In this way, proximal gradient with linesearch can be described formally as follows: starting from651

x0 ∈ dom f , γ−1 = Γ, k−1 = 0, perform the following iterations652

(xt+1, γt, kt)← LSα,β,Γ(x
t, γt−1, kt−1), t = 1, 2, . . .

Note that (14) holds for any γ(k) ≤ 1
Lf

(see, e.g., [3, Theorem 10.16]). Therefore, Algorithm 1653

terminates when γ(0)βk ≤ 1
Lf

. This means654

γt ≥ γ̃ := min

{

Γ,
β

Lf

}

. (15)

for all t. Note that we explicitly include the case of Γ ≤ 1
Lf

, although in practice Γ is often set very655

large. Clearly,656

Γβk ≤ γ̃ ⇔ k ≥
log Γ

γ̃

log 1
β

.

Therefore, in Algorithm 1, the backtracking iteration index satisfies kt ≤
log Γ

γ̃

log 1
β

for all t. Note that if657

the loop breaks at kt, the number of Prox evaluations is exactly kt + 1.658
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Let659

L̄ = max

{

1

γ̃
,Λ

}

= max

{

1

Γ
,
Lf

β
,Λ

}

. (16)

Then, monotonicity of D(x, ·) implies, for all x ∈ dom g such that F (x) ≤ F (x0),660

1

2
D(x, L̄) ≥

1

2
D(x,Λ) ≥ λ (F (x)− F ∗) .

Following the proof of Theorem 9 (or that of [38, Theorem 5]), we have661

F (xt+1) ≤ F (xt) + 〈∇f(xt), xt+1 − xt〉+
Lf

2
‖xt+1 − xt‖2 + g(xt+1)− g(xt)

≤ F (xt) + 〈∇f(xt), xt+1 − xt〉+
L̄

2
‖xt+1 − xt‖2 + g(xt+1)− g(xt)

≤ F (xt)−
1

2L̄
D
(

xt, L̄
)

≤ F (xt)−
λ

L̄
(F (xt)− F ∗)

⇒ F (xt+1)− F ∗ ≤

(

1−
λ

L̄

)

(

F (xt)− F ∗
)

.

Summarizing the above discussion, we have the following convergence guarantee for PG with662

linesearch.663

Theorem 10 Let α ≥ 1, β ∈ (0, 1) and Γ > 0. For problem (10) satisfying the Proximal-664

PŁinequality with Λ ≥ λ > 0 for all x ∈ dom g such that F (x) ≤ F (x0), proximal gradient665

(11) with linesearch subroutine LSα,β,Γ described in Algorithm 1 generates iterates xt such that666

F (xt+1)− F ∗ ≤

(

1−
λ

L̄

)t
(

F (x0)− F ∗
)

, t = 1, 2, . . . , (17)

where L̄ is defined in (16). Furthermore, each iteration requires at most 1 +
log Γ

γ̃

log 1
β

number of Prox667

evaluations.668

Proof of Theorem 4. In the above discussion, when g(x) = δX (x), we can replace the Lipschitz669

constant Lf by the restricted one LX
f throughout, since Algorithm 1 ensures xt ∈ X for all t. It670

remains to apply Theorem 10. For q = 0, Λ = λ = µ
H2 and L̄ = max

{

1
Γ ,

LX

f

β , µ
H2

}

. Therefore, the671

rate is672

1−
λ

L̄
= 1−

µ

max{µ,H2/Γ, H2LX
f /β}

.

For q 6= 0, Λ = λ = 1
2κ and L̄ = max

{

1
Γ ,

LX

f

β , 1
2κ

}

. Therefore, the rate is673

1−
1

max{1, 2κLX
f /β, 2κ/Γ}

.

�674

A.6 Other utility functions675

Recall that, by Theorem (1), for any CCNH utilities ui, optimal solutions to the EG convex program676

(1) correspond to equilibrium allocation and prices.677

CES utilities are parametrized by a nondegenerate v and exponent ρ ∈ (−∞, 1]\{0}:678

ui(xi) =





m
∑

j=1

vijx
ρ
ij





1/ρ

.
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Clearly, ρ = 1 gives linear utilities. For ρ < 1, it has been shown that Proportional Response679

dynamics achieves linear convergence in prices and utilities [67, Theorem 4] under their notion of680

ǫ-approximate market equilibrium [67, pp. 2693].681

Cobb-Douglas utilities represent substitutive items and take the following form, for parameters682

λ = (λi), λi ∈ ∆m:683

ui(xi) = Πjx
λij

ij .

In this case, EG (1) decomposes item-wise into simple problems with explicit solutions. Specifically,684

for each item j, the minimization problem is685

min
x:,j∈∆n

−
∑

i

Biλij log xij .

Let pj be the Lagrangian multiplier associated with constraint
∑

i xij = 1. The Lagrangian is686

L(x:,j , pj) = −
∑

i

Biλij log xij + pj

(

∑

i

xij − 1

)

.

By first-order stationarity condition, for any pj ∈ R, L(x:,j , pj) is minimized when687

xij =
Biλij

pj
. (18)

Substituting it into L and discarding the constants w.r.t. pj , we have688

g(pj) =

(

∑

i

Biλij

)

log pj − pj ,

which is maximized at equilibrium prices689

p∗j =
∑

i

Biλij .

Therefore, by 18, the equilibrium x∗ under Cobb-Douglas utilities is given by690

x∗
ij =

Biλij
∑

i Biλij
, ∀ i, j.

B Linear utilities691

B.1 Shmyrev’s convex program692

Under linear utilities, it turns out that we can also compute market equilibrium via the following693

convex program due to Shmyrev [58, 8]. In this convex program, the variables are the bids bij , i ∈ [n],694

j ∈ [m] and prices pj , j ∈ [m].695

max
∑

i,j

bij log vij −
∑

j

pj log pj s.t.
∑

i

bij = pj , j ∈ [m],
∑

j

bij = Bi, i ∈ [n], b ≥ 0.

(19)

Given an optimal solution b∗, equilibrium prices and allocations are then given by p∗j =
∑

i b
∗
ij and696

x∗
ij =

b∗ij
p∗

j
, respectively.697

B.2 Proof of Lemma 1698

Any x ∈ X satisfies x ≤ 1. Therefore, 〈vi, xi〉 ≤ ‖vi‖1‖x
∗
i ‖∞ ≤ ‖vi‖1 = ūi. For the lower bound,699

recall that at an equilibrium allocation x∗ ensures that every buyer gets at least the utility of the700

proportional share, that is,701

〈vi, x
∗
i 〉 ≥

〈

vi,
Bi

‖B‖1
1

〉

=
Bi‖vi‖1
‖B‖1

=
¯
ui.
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B.3 Uniqueness of equilibrium quantities and convergence of ut, pt702

Convergence of ut to u∗ can be easily seen as follows. Let xt be the PG iterates and h̃, A, f = h̃(Ax),703

µ be defined as in §3 and f∗ = minx∈X f(x). Since h̃ is µ-strongly convex, we have704

µ

2
‖ut − u∗‖2 ≤ h̃(ut)− h̃(u∗) ≤ h̃(Axt)− f∗,

which converges linearly. Next, we show uniqueness of p∗ via simple arguments and construct a705

sequence of linearly convergent prices pt.706

Lemma 11 Assume that v is nondegenerate. Then, the equilibrium prices p∗ under linear utilities707

are unique.708

Proof. By Theorem 1 and [21, Lemma 3], p∗ is an optimal solution (together with some β∗) to the709

following problem (dual of (1) with linear utilities): �710

min
p, β

∑

j

pj −
∑

i

Bi log βi s.t. p ≥ 0, β ≥ 0, pj ≥ vijβi, ∀ i, j. (20)

Here, strong duality holds since there clearly exist primal and dual strictly feasible solutions with711

finite objective values given nondegenerate v (c.f. Theorem 1 and Appendix A.1). We can eliminate712

p by letting pj = maxi vijβi for all j and rewrite (20) as713

min
β

∑

j

max
i

vijβj −
∑

i

Bi log βi s.t. β ≥ 0.

In the above, since the objective is strongly convex and the feasible region is β ≥ 0, the optimal714

solution β∗ is clearly unique. Furthermore, it must hold that β∗ > 0 (since the optimal objective715

value is finite and strong duality holds). For p∗ optimal to (20), it must hold that p∗j = maxi vijβ
∗
i .716

In fact, p∗j ≥ maxi vijβ
∗
i by feasibility and, for any strict inequality, decreasing the corresponding p∗j717

strictly decreases the objective. �718

The following lemma provides simple upper and lower bounds on feasible and equilibrium prices,719

respectively. The lower bounds are slightly strengthened over the existing one [8, Lemma 17].720

Lemma 12 Let p∗ be equilibrium prices under linear utilities with nondegenerate valuations v. Then,721

¯
pj ≤ p∗j ≤ p̄j for all j, where

¯
pj = maxi

vijBi

‖vi‖1
and p̄j = ‖B‖1.722

Proof. It is essentially the same as the proof of Lemma 2, except that, at optimality, ui ≤ ‖vi‖1 +Bi723

can be strengthened to ui ≤ ‖vi‖1 (utility of each buyer is at most that of having a unit of every item).724

�725

A linearly convergent sequence of pt Here, all norms are vector norms. Note that each step of PG726

is of the form xt+1 = ΠX (x̄t), where x̄t = xt − γ∇f(xt). Since ∇f is Lf -Lipschitz, the mapping727

φ1 : x 7→ x− γ∇f(xt)

is Lipschitz continuous (w.r.t. ‖ · ‖2) with constant 1 + γLf = 2 (where γ = 1
L‖A‖2 is the fixed728

stepsize). Meanwhile, we have the following.729

Lemma 13 Let y ∈ R
n and y∗ = Π∆n(y). There exists a unique multiplier λ ∈ R, which can be730

computed in O(n log n) time, such that731

n
∑

i=1

(yi − λ)+ = 1. (21)

Moreover, the mapping φ2 : y 7→ λ is piecewise linear and 1-Lipschitz continuous w.r.t. ‖ · ‖1.732

Proof. By the KKT conditions for simplex projection (see, e.g., [65, §3]), it holds that there exists733

unique λ such that734

y∗ = (y − λ1)+.
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Suppose there exists λ1 < λ2 that satisfy (21). Then, since the left-hand side of (21), denoted as735

w(λ), is monotone decreasing in λ, it must hold that w(λ) = 1 for all λ ∈ [λ1, λ2]. In other words,736

w(·) is constant on [w1, w2]. This further implies w(λ) = 0 for all w ∈ [w1, w2], a contradiction.737

Therefore, λ = φ2(y) is uniquely defined. Let I+(y), I0(y), I−(y) denote the set of indices i ∈ [n]738

such that yi > λ, yi = λ, yi < λ, respectively (where λ = φ2(y)). We have739

λ =

∑

i∈I+(y) yi − 1

|I+(y)|
=

∑

i∈I+(y)∪I0(y) yi − 1

|I+(y)|+ |I0(y)|
,

which is piecewise linear in y since there are only finitely many index possible sets of indices and740

I+(y) is always nonempty (otherwise
∑

i(yi − λ)+ = 0). To see Lipschitz continuity, let y′ be741

such that ‖y′ − y‖1 ≤ ǫ, where 0 < ǫ < min{|yi − yj | : i, j ∈ [n], yi 6= yj}. It must hold that742

I+(y) ⊆ I+(y′). In other words, λ′ = φ2(y
′) does not deactivate any i ∈ I+(y), only bringing new743

i ∈ I0(y). Hence, it holds that |λ′ − λ| ≤ ‖y−y′‖1

|I+(y)| ≤ ‖y − y′‖1. In other words, φ2 is 1-Lipschitz744

continuous w.r.t. ‖ · ‖1.745

Finally, [65, Algorithm 1]) computes λ and y∗ in O(n log n) time. �746

Slightly abusing the notation, let φ2 also denote the mapping from x ∈ R
n×m to λ ∈ R

m, that is,747

λj = ϕ2(x1j , . . . , xnj). Let748

φ(x) = φ2(φ1(x))/γ

and pt = φ(xt). Here, φ1 is 2-Lipschitz continuous and φ2 is 1-Lipschitz continuous w.r.t. ‖ · ‖1.749

For any optimal solution x∗ ∈ X ∗, by x∗ = ΠX (x∗) and KKT conditions for (1) and (20), it can be750

seen that751

p∗ = φ(x∗).

Using the Lipschitz continuity properties of φ1, φ2 and Theorem 2 (properties ), we have752

‖pt − p∗‖1 = ‖φ(xt)− φ(ΠX∗(xt))‖1 ≤
1

γ
‖φ1(x

t)− φ1(ΠX∗(xt))‖1

≤
n

γ
‖φ1(x

t)− φ1(ΠX∗(xt))‖ ≤
2n

γ
· ‖xt −ΠX∗(xt)‖

≤
2n

γ
·

√

2HX (A)

µ
(f(xt)− f∗)

≤
2n

γ

√

2HX (A)

µ
·

(

1−
µ

2HL‖A‖2

)t/2

·
√

f(x0)− f∗.

Therefore, we can take C = 2n
γ

√

2HX (A)
µ ·

√

f(x0)− f∗ and ρ =
√

1− µ
2HL‖A‖2 ∈ (0, 1).753

Since p∗ ≥
¯
p > 0, we can bound the maximum relative price error ηt = maxj

|pt
j−p∗

j |

p∗

j
as follows,754

where
¯
pmin = minj

¯
pj .755

ηt ≤
‖pt − p∗‖1

¯
pmin

≤
C

¯
pmin

· ρt.

C QL utilities756

C.1 Derivation of the QL-Shmyrev convex program (4)757

In [21, Lemma 5], the convex program for the equilibrium prices is as follows:758

min
∑

j

pj −
∑

i

Bi log βi s.t. vijβi ≤ pj , ∀ i, j, 0 ≤ β ≤ 1. (22)

Note that it is simply the dual of EG under linear utilities (20) with additional constraints β ≤ 1.759

Assuming v is nondegenerate, by a change of variable and Lagrange duality, we can derive the dual760
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of (22). First, at optimality, it must holds that βi > 0 for all i. Therefore, by nondegeneracy of v,761

pj > 0 for all j at optimality. Let pj = eqj and βi = e−γi . The above problem is equivalent to762

min
∑

j

eqj +
∑

i

Biγi

s.t. qj + γi ≥ log vij , ∀ i, j,

γ ≥ 0.

(23)

Let bij ≥ 0 be the dual variable associated with constraint qj + γi ≥ log vij . The Lagrangian is763

L(q, γ, b) :=
∑

j

eqj +
∑

i

Biγi −
∑

i,j

bij (qj + γi − log vij)

=
∑

j

(

eqj −

(

∑

i

bij

)

qj

)

+
∑

i

(Bi −
∑

j

bij)γi +
∑

i,j

(log vij)bij .

Clearly, when
∑

j bij ≤ Bi for all i, γ ≥ 0, L(q, γ, b) is minimized at qj = log
∑

i bij and γ = 0.764

When
∑

j bij > Bi for some i, L → −∞ as γi → ∞. Therefore, when
∑

j bij ≤ Bi for all i, we765

have766

g(b) =
∑

j





∑

i,j

bij −

(

∑

i

bij

)

log
∑

i

bij



+
∑

i,j

(log vij)bij .

Therefore, the dual is767

max g(b) s.t. b ≥ 0,
∑

j

bij ≤ Bi, ∀ i.

Adding slack variables δ = (δ1 . . . , δn) and writing it in minimization form yield (4).768

Remark When some vij = 0 (but v is still nondegenerate), by the above derivation, the first769

summation in (4) should be replaced by
∑

(i,j)∈E , where E = {(i, j) : vij > 0}. The dual remains770

the same otherwise.771

C.2 Proof of Lemma 2772

Similar to the proof of Lemma 11, this can be seen via the uniqueness of the optimal solution (p∗, β∗)773

of (22), that is, from uniqueness of β∗ to that of p∗j = maxi vijβ
∗
i .774

Let (b∗, δ∗) be an optimal solution to (4). Note that strong duality holds for (23) and (4), since there775

exit simple strictly feasible solutions. By the derivation in Appendix C.1, it holds that q∗j = log
∑

i b
∗
ij776

gives an optimal solution to (23) (the first-order optimality condition). Therefore,777

p∗j = eq
∗

j =
∑

i

b∗ij .

Next we establish the upper and lower bounds on p∗. By the derivation in Appendix C.1 and Lagrange778

duality, for any optimal solution b∗ to (4), it holds that p∗j :=
∑

i b
∗
ij and β∗

j = minj∈Ji

p∗

j

vij
give the779

(unique) optimal solution to (22). Clearly, β∗ ≤ 1 and therefore780

p∗j = max
i

vijβ
∗
i ≤ max

i
vij = p̄j .

By [21, Lemma 5], the dual of (22) is (c.f. the original EG primal 1)781

max
u, x, s

∑

i

Bi log ui − si

s.t. ui ≤ v⊤i xi + si, ∀ i,
∑

i

xij ≤ 1, ∀ j,

x, s ≥ 0.

(24)

Clearly, strong duality holds for (22) and (24). Furthermore, notice the following.782
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• β∗
i = Bi

u∗

i
at optimality, where u∗

i is the amount of utility of buyer i. This is by the stationarity783

condition in the KKT optimality conditions.784

• u∗
i ≤ ‖vi‖1+Bi, where the right hand side is the amount of utility of all items and the entire785

budget. This can also be seen as follows. When si > Bi, decreasing si strictly increases the786

objective of (24). Therefore, the optimal s∗ must satisfy s∗i ≤ Bi. It then follows from the787

constraint ui ≤ v⊤i xi + si.788

Therefore,789

p∗j ≥ max
i

vijβ
∗
i ≥ max

i

vijBi

‖vi‖1 +Bi
=

¯
pj .

C.3 Proof of Theorem 7790

Similar to [8, Lemma 7], we first establish the following “generalized Lipschitz condition” for ϕ,791

which is key to the claimed last-iterate convergence.792

Lemma 14 For all (b, δ), (b′, δ′) ∈ B, it holds that793

ϕ(b′) ≤ ϕ(b) + 〈∇ϕ(b), b′ − b〉+D(b′, δ′‖b, δ). (25)
794

Proof. Recall that pj(b) =
∑

i bij , ∂
∂bij

ϕ(b) = log
pj(b)
vij

. For (a, δa), (b, δb) ∈ B, we have795

ϕ(b)− ϕ(a)− 〈∇ϕ(a), b− a〉

= −
∑

i,j

(1 + log vij)(bij − aij) +
∑

j

pj(b) log pj(b)−
∑

j

pj(a) log pj(a)

−
∑

i,j

(bij − aij) log
pj(a)

vij

= −
∑

i,j

(bij − aij) +
∑

j

pj(b) log
pj(b)

pj(a)

=
∑

i

(δbi − δai ) +
∑

j

pj(b) log
pj(b)

pj(a)
. (26)

Note that convexity and smoothness of x 7→ x log x
y (y > 0) implies796

δbi − δai ≤ δbi log
δbi
δai

. (27)

Meanwhile, as in the proof of [8, Lemma 7], by convexity of q(x, y) = x log x
y , it holds that797

∑

j

pj(b) log
pj(b)

pj(a)
≤
∑

i,j

bij log
bij
aij

. (28)

By (27) and (28), the right hand side of (26) can be bounded by D(b, δb‖a, δa). Therefore, (25) holds.798

�799

Next, we prove the inequality on the right. Clearly, (b0, δ0) ∈ B. By [8, Theorem 3] (with objective800

f = ϕ, constraint set C = B and stepsize γ), we have801

ϕ(bt)− ϕ(b∗) ≤
D(b∗, δ∗‖b0, δ0)

t
.

Similar to the proof of [8, Lemma 13], we can bound the Bregman divergence on the right hand side802

as follows, where bij = δi =
Bi

m+1 .803

D(b∗, δ∗‖b0, δ0) =
∑

i,j

b∗ij log
b∗ij
Bi

+
∑

i

δ∗i log
δ∗i
Bi

+
∑

i,j

b∗ij log(m+ 1) +
∑

i

δ∗i log(m+ 1)

≤
∑

i,j

b∗ij log(m+ 1) +
∑

i

δ∗i log(m+ 1)

≤ ‖B‖1 log(m+ 1),
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where the first inequality is because
b∗ij
Bi
≤ 1. Combining the above yields the desired inequality.1804

Finally, we show the inequality on the left. By optimality of (b∗, δ∗), we have805

〈∇ϕ(b∗), b− b∗〉 ≥ 0, ∀ (b, δ) ∈ B.

Recall that pj(b) =
∑

i bij . By (26), we have806

D(pt‖p∗) = −
∑

i,j

(btij − b∗ij) +
∑

j

pj(b
t) log

pj(b
t)

pj(b∗)
≤ ϕ(bt)− ϕ∗.

�807

C.4 Details from MD (5) to PR (6)808

Note that (5) is buyer-wise separable: for each i, we have (where ∂
∂bij

ϕb(b) = log
pj(b)
vij

and809

Bi = Bi ·∆m+1)810

(bt+1
i , δt+1

i ) = argmin
(bi,δi)∈Bi

∑

j

(

log
pj(b

t)

vij
− log btij

)

bij − (log δti)δi +
∑

j

bij log bij + δi log δi

= argmin
(bi,δi)∈Bi

−
∑

j

(log btij)bij − (log δti)δi +
∑

j

bij log bij + δi log δi. (29)

By Lemma 6, for all i, j,811

bt+1
ij = Bi ·

vijb
t
ij

pj(bt)
∑

ℓ
viℓbtiℓ
pℓ(bt)

+ δti

, δt+1
j = Bi ·

δti
∑

ℓ
viℓbtiℓ
pℓ(bt)

+ δti

. (30)

Let ptj = pj(b
t). Then, (30) can be written in terms of the allocations xt

ij = btij/p
t
j (which sum up to812

1 over buyers i for any item j) and leftover δti , thus giving (6).813

C.5 Convergence of prices814

Let ηt = maxj
|pt

j−p∗

j |

p∗

j
be the relative price error, which can clearly be bounded by ‖pt−p∗‖1

¯
pmin

, where815

¯
pmin = minj

¯
pj > 0 is given in Lemma 2. By Theorem 7 and strong convexity of KL divergence816

(w.r.t. ‖ · ‖1), for bt and pt = p(bt) generated by either PG or PR,817

1

2
‖pt − p∗‖21 ≤ D(pt‖p∗) ≤ ϕ(bt)− ϕ∗. (31)

Therefore, for PG, the quantities ηt, ‖pt − p∗‖ and D(pt‖p∗) all converge linearly to 0. For PR, they818

converge at O(1/T ).819

We can further bound ϕ(bt)− ϕ∗ by the duality gap. Specifically, given bt, pt = p(bt), let820

bti = min

{

min
j

ptj
vij

, 1

}

.

Then, (pt, βt) is feasible to (22). By weak duality,821

ϕ(bt)− ϕ∗ ≤ ϕ(bt) + g(pt, βt), (32)

where g(p, β) is the (minimization) objective of (22). Combining the above, we have822

ηt ≤

√

2 (ϕ(bt) + g(pt, βt))

¯
pmin

.

Note that the above holds for bt from either PG or PR. Although neat in theory, numerical experiments823

suggest that the above bound can be loose and is not suitable as a termination criteria.824

1In fact, the bound log(mn) in [8, Lemma 13] (which assumes ‖B‖1 = 1) can be easily strengthened to
logm via the above derivation. In other words, it does not depend explicitly on the number of buyers (but
implicitly through ‖B‖1 in general).
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D Leontief utilities825

D.1 Derivation of (7)826

The primal EG (1) under Leontief utilities ui(xi) = minj∈Ji

xij

aij
can be written in both x and u:827

min
u, x
−
∑

i

Bi log ui

s.t. ui ≤
xij

aij
, ∀j ∈ Ji, ∀i ∈ [n],

∑

i

xij ≤ 1, ∀ j ∈ [m],

x ≥ 0, u ≥ 0.

Clearly, it can also be written in terms of ui only as follows:828

min −
∑

i

Bi log ui s.t.
∑

i∈Ij

aijui ≤ 1, ∀ j, u ≥ 0. (33)

Let pj ≥ 0 be the dual variable associated with constraint
∑

i∈Ij
aijui ≤ 1. The Lagrangian is829

L(u, p) = −
∑

i

Bi log ui +
∑

j

pj





∑

i∈Ij

aijui − 1





= −
∑

j

pj +
∑

i

[−Bi log ui + 〈ai, p〉ui] .

Note that minimizing L w.r.t. u can be performed separably for each ui. For any i such that830
∑

j∈Ji
pj > 0, by first-order stationarity condition, the term −Bi log ui + 〈ai, p〉ui is minimized831

at u∗
i (p) =

Bi

〈ai,p〉
with minimum value Bi(1− logBi) + Bi log〈ai, p〉. If

∑

j∈Ji
pj = 0, the term832

approaches −∞ as ui →∞. Therefore, the dual objective is833

g(p) =

{

−
∑

j pj +
∑

i Bi log〈ai, p〉+
∑

i Bi(1− logBi) if p ≥ 0 and
∑

j∈Ji
aijpj > 0

−∞ o.w.

Hence the (Lagrangian) dual problem is maxp g(p). Its minimization form, up to the constant834

−
∑

i Bi(1− logBi), is835

min





∑

j

pj −
∑

i

Bi log〈ai, p〉



 s.t. p ≥ 0. (34)

By Theorem 1, we have the following.836

• An optimal solution to (34) gives equilibrium prices.837

• A market equilibrium (x∗, p∗) satisfies 〈p∗, xi〉 = Bi for all i and
∑

i x
∗
ij = 1 for all j.838

Therefore, we have
∑

j p
∗
j = ‖B‖1.839

Therefore, we can add the constraint
∑

j pj = ‖B‖1 to (34) without affecting any optimal (equilib-840

rium) solution. This leads to (7).841

D.2 Proof of Lemma 3842

let p be any feasible solution to (7). Since
∑

j pj = ‖B‖1, we have 〈ai, p〉 ≤ ‖ai‖∞‖p‖1 =843

‖ai‖∞‖B‖1 for all i. Meanwhile, by Appendix D.1, at equilibrium, p∗ and primal variables u∗
i satisfy844

u∗
i = Bi

〈ai,p∗〉 (by stationarity) and u∗
i ≤ utility of getting one unit of every item = minj∈Ji

1
aij

=845

1
‖ai‖∞

for all i. Therefore 〈ai, p∗〉 =
Bi

u∗

i
≤ ‖ai‖∞‖B‖1.846
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D.3 Linear convergence of utilities847

Note that the equilibrium utilities u∗ are clearly unique by (33). By the KKT stationary condition,848

u∗
i =

Bi

〈ai, p∗〉
, ∀ i

for equilibrium prices p∗. Therefore, an intuitive construction of ut is as follows. Let pt be the current849

iterate, rti = 〈ai, p〉. First compute ũt
i =

Bi

rti
. Then, to satisfy the primal constraints

∑

i uiaij ≤ 1,850

take851

ut =
ũt

maxj
∑

i uiaij
=

ũt

‖a⊤ũ‖∞
.

Let r∗ = 〈ai, p
∗〉 = Bi

u∗

i
and f∗ = argminp∈P h̃(ap) = h̃(r∗) = h(r∗). Strong convexity of h̃852

implies µ
2 ‖r

t−r∗‖2 ≤ h(rt)−f∗. Furthermore, the mapping rt 7→ ũt 7→ ut is Lipschitz continuous853

on rt ∈ [
¯
r, r̄]. Therefore, ‖ut − u∗‖ converges to 0 linearly as well.854

E Additional details on numerical experiments855

For linear utilities, we generate market data v = (vij) where vij are i.i.d. from standard Gaussian,856

uniform, exponential, or lognormal distribution. For each of the sizes n = 50, 100, 150, 200 (on857

the horizontal axis) and m = 2n, we generate 30 instances with unit budgets Bi = 1 and random858

budgets Bi = 0.5 + B̃i (where B̃i follows the same distribution as vij). See §6 for plots under859

random budgets and below for those under uniform budgets.860

The termination conditions (on the vertical axis) are861

ǫ(pt, p∗) ≤ η, η = 10−2, 10−3,

where p∗ is the optimal Lagrange multipliers of (1) computed by CVXPY+Mosek. Then, for862

n = 100, 200, 300, 400 and n = 2m, we repeat the above with termination conditions863

dgapt/n ≤ η, η = 10−3, 10−4, 10−5, 5× 10−6.

For QL utilities, we repeat the above (same random v, same sizes and termination conditions) using864

budgets Bi = 5(1 + B̃i). This is to make buyers have nonzero bids and leftovers (i.e., 0 < δ∗i < Bi)865

at equilibrium in most scenarios. In this case, p∗ = p(b∗), where b∗ is the optimal solution to (4)866

computed by CVXPY+Mosek. For QL, FW does not perform well in initial trials and is excluded in867

subsequent experiments.868

For the linesearch subroutine LSα,β,Γ in PG (see Appendix A.5), we use parameters α = 1.02,869

β = 0.8 and Γ = 100L‖A‖2 throughout.870

For Leontief utilities, in addition to dgapt/n ≤ η, we also use the termination condition ǫ(ut, u∗) =871

maxj
|ut

j−u∗

j |

u∗

j
≤ η, where u∗ is the optimal solution to EG under Leontief utilities (33) computed by872

CVXPY+Mosek.873

Computing the duality gap For linear utilities, the objective of the original Shmyrev’s convex874

program (19) is875

ϕ(b) = −
∑

i,j

(log vij)bij +
∑

j

pj(b) log pj(b)

where pj(b) =
∑

i bij . Recall the objective of the (EG) dual (20), equivalent to the dual of Shmyrev’s876

(19),877

g(p, β) =
∑

j

pj −
∑

i

Bi log βi.

Given iterate bt, let ptj = pj(b
t) and βt

i = minj
pj

vij
, which is finite since v is nondegenerate and878

pt > 0. The duality gap is computed via879

dgapt = ϕ(bt) + g(pt, βt).

For QL utilities, it is computed similarly, that is, through (32). For Leontief utilities, it is computed880

using the construction in Appendix D.3.881

27



Additional plots In §6, the plots for linear utilities are generated under random Bi. Here we882

present an augmented set of plots under different utilities, unit and random budgets Bi and different883

termination conditions (dgapt/n ≤ η or ǫ(pt, p∗) ≤ η). The legends are in the subplot [Linear884

utilities, dgap/n ≤1e-3].885
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