
A Table of Notation

Notation Description

λ,w Hyperparameters and parameters

LT ,LV Training and validation objectives

h Number of hyperparameters

m Number of parameters

p Number of hypernetwork parameters

n Number of training data

v Number of validation data

r(λ) Best-response function
∂r/∂λ Best-response Jacobian

ε Perturbation vector

σ Perturbation scale

p(ε|σ) Gaussian distribution with mean 0 and covariance diag(σ)

φ STN’s parameters

rφ Parametric best-response function with STN’s parameterization

H Entropy term

τ Entropy weight

θ ∆-STN’s parameters

rθ Parametric best-response Jacobian with ∆-STN’s parameterization

Jyw Weight-output Jacobian

H Hessian

G Gauss-Newton Hessian

κ Condition number

⊗ Kronecker product

α Learning rate

y Network’s prediction

f Network function

�,�row Element-wise multiplication and row-wise multiplication

Ttrain, Tvalid Training and validation update intervals

X, t Training data and target vector

w∗ Optimal parameters

s Fixed non-linear transformation on hyperparameters

Table 2: A summary of notations used in this paper.

14

B Training Algorithm for Self-Tuning Networks (STNs)

In this section, we present the training algorithm for Self-Tuning Networks. The full algorithm is
shown in Alg. 2.

Algorithm 2: Training Algorithm for Self-Tuning Networks (STNs) [38]

Initialize: Best-response parameters φ = {φ0,Φ}; hyperparameters λ; learning rates {αi}3i=1;
training and validation update intervals Ttrain and Tvalid; entropy weight τ .

while not converged do
for t = 1, ..., Ttrain do

ε ∼ p(ε|σ)
φ← φ− α1∇φ(LT (λ + ε, rφ(λ + ε)))

for t = 1, ..., Tvalid do
ε ∼ p(ε|σ)
λ← λ− α2∇λ(LV (λ + ε, rφ(λ + ε)))
σ ← σ − α3∇σ(LV (λ + ε, rφ(λ + ε))− τH[p(ε|σ)])

C Proofs

C.1 Observation 1

Observation 1. The Gauss-Newton Hessian with respect to the hypernetwork is given by:

Gφ = E
[
λ̂λ̂> ⊗ J>ywHyJyw

]
, (C.1)

where λ̂ = λ̄ + ε̄ are the sampled hyperparameters and ε̄ is the perturbation vector appended with
additional homogeneous coordinate with value 0.

Proof. The hypernetwork-output Jacobian is as follows:

Jyφ = λ̂> ⊗ Jyw (C.2)

Then, the Gauss-Newton Hessian with respect to the hypernetwork is:

Gφ = E
[
J>yφHyJyφ

]
(C.3)

= E[(λ̂⊗ J>yw)(1⊗Hy)(λ̂> ⊗ Jyw)] (C.4)

= E[λ̂λ̂> ⊗ J>ywHyJyw], (C.5)

where 1 is a 1× 1 matrix with entry 1.

C.2 Observation 2

Observation 2. Let κ(A) denote the condition number of a square positive definite matrix A.
Given square positive definite matrices A and B, the condition number of A ⊗ B is given by
κ(A⊗B) = κ(A)κ(B).

Proof. Let A and B be square positive definite matrices. Then, we get:

κ(A⊗B) = ‖A⊗B‖
∥∥A−1 ⊗B−1

∥∥ (C.6)

= ‖A‖ ‖B‖
∥∥A−1∥∥∥∥B−1∥∥ (C.7)

= κ(A)κ(B) (C.8)

15

C.3 Theorem 3

Theorem 3. Suppose LT is quadratic with ∂2LT/∂w2 � 0 and let p(ε|σ) be a diagonal Gaussian
distribution with mean 0 and variance σ2I. Fixing λ0 ∈ Rh and w0 ∈ Rm, the solution to the
objective in Eqn. 3.10 is the best-response Jacobian.

Proof.

Consider a quadratic function LT : Rh × Rm → R defined as:

LT (λ,w) =
1

2

(
w> λ>

)(A B
B> C

)(
w
λ

)
+ d>w + e>λ + c, (C.9)

where A ∈ Rm×m,B ∈ Rm×h,C ∈ Rh×h,d ∈ Rm, e ∈ Rh, and c ∈ R. By assumption, A is a
positive definite matrix. Fixing λ0 ∈ Rh, the optimal weight is given by:

w∗ = −A−1(Bλ0 + d) (C.10)
and the best-response function is:

r(λ) = −A−1(Bλ + d) (C.11)
Consequently, the best-response Jacobian is as follows:

∂r

∂λ
(λ0) = −A−1B ∈ Rm×h (C.12)

Given w0 ∈ Rm, formulating the objective as in Eqn 3.10, we have:
Eε∼p(ε|σ) [LT (λ0 + ε,w0 + Θε)] (C.13)

= Eε∼p(ε|σ)

[
1

2
(w0 + Θε)>A(w0 + Θε) + (w0 + Θε)>B(λ0 + ε) (C.14)

+
1

2
(λ0 + ε)>C(λ0 + ε) + d>(w0 + Θε) + e>(λ0 + ε) + c

]
(C.15)

= Eε∼p(ε|σ)

[
1 + 2 + 3 + 4

]
, (C.16)

where each component is:

1 =
1

2
(ε>Θ>AΘε + 2ε>Θ>Aw0 + w>0 Aw0) (C.17)

2 = w>0 Bλ0 + w>0 Bε + ε>Θ>Bλ0 + ε>Θ>Bε (C.18)

3 =
1

2
(λ>0 Cλ0 + 2ε>Cλ0 + ε>Cε) (C.19)

4 = d>w0 + d>Θε + e>λ0 + e>ε + c (C.20)

We simplify these expressions by using linearity of expectation and using the fact that E[ε>ε] = σ2:

Eε∼p(ε|σ)

[
1
]

=
1

2
(Tr[Θ>AΘ]σ2 + w>0 Aw0) (C.21)

Eε∼p(ε|σ)

[
2
]

= w>0 Bλ0 + Tr[Θ>B]σ2 (C.22)

Eε∼p(ε|σ)

[
3
]

=
1

2
(λ>0 Cλ0 + Tr[C]σ2) (C.23)

Eε∼p(ε|σ)

[
4
]

= d>w0 + e>λ0 + c (C.24)

Then, the gradient with respect to Θ is:
∂

∂Θ

(
Eε∼p(ε|σ) [LT (λ0 + ε,w0 + Θε)]

)
= Bσ2 + AΘσ2 (C.25)

Setting the above equation equal to 0, the optimal solution Θ∗ is the following:

Θ∗ = −A−1B =
∂r

∂λ
(λ0), (C.26)

which matches the best-response Jacobian.

16

C.4 Lemma 4

Lemma 4. Let λ0 ∈ Rh and choose w0 ∈ Rm to be the solution to Eqn. 3.9. Suppose LT ∈ C2 in
a neighborhood of (λ0,w0) and the Hessian ∂LT/∂w(λ0,w0) is positive definite. Then, for some
neighborhood U of λ0, there exists a unique continuously differentiable function r : U → Rm such
that r(λ0) = w0 and ∂LT/∂w(λ, r(λ)) = 0 for all λ ∈ U . Moreover, the best-response Jacobian on
U is as follows:

∂r

∂λ
(λ) = −

[
∂2LT
∂w2

(λ, r(λ))

]−1(
∂2LT
∂w∂λ

(λ, r(λ))

)
(C.27)

Proof. Let λ0 ∈ Rh and w0 ∈ Rm be the solution to Eqn. 3.9. Suppose LT is C2 in a neighborhood
of (λ0,w0). By first-order optimality condition, we have:

∂LT
∂w

(λ0,w0) = 0 (C.28)

Since the Hessian is positive definite, it is invertible, and there exists a unique continuously differen-
tiable function r : U → Rm for some neighborhood U of λ0 such that r(λ0) = w0 and:

∂LT
∂w

(λ, r(λ)) = 0 (C.29)

for all λ ∈ U by implicit function theorem. Also, we have:

0 =
d

dλ

(
∂LT
∂w

(λ, r(λ))

)
(C.30)

=

(
∂2LT
∂w2

(λ, r(λ))
∂r

∂λ
(λ) +

∂2LT
∂w∂λ

(λ, r(λ))

)>
(C.31)

for all λ ∈ U . Re-arranging Eqn. C.31, we get:

∂r

∂λ
(λ) = −

[
∂2LT
∂w2

(λ, r(λ))

]−1(
∂2LT
∂λ∂w

(λ, r(λ))

)
(C.32)

D Justification for Linearizing the Best-Response Hypernetwork

Consider the inner-level objective:

r(λ) = arg min
w∈Rm

Eε∼p(ε|σ) [LT (λ + ε,w)] (D.1)

Let w0 = r(λ0) be the current weights and assume it is the optimal solution. Further assuming we
can exchange the integral and the gradient operator, by first-order optimality condition, we get:

∂

∂w
Eε∼p(ε|σ) [LT (λ0 + ε,w0)] = Eε∼p(ε|σ)

[
∂LT
∂w

(λ0 + ε,w0)

]
= 0 (D.2)

Differentiating with respect to λ, we have:

d

dλ
Eε∼p(ε|σ)

[
∂LT
∂w

(λ + ε, r(λ))

]
= Eε∼p(ε|σ)

[
d

dλ

(
∂LT
∂w

(λ + ε, r(λ))

)]
= 0 (D.3)

Then:

Eε∼p(ε|σ)

[
∂2LT
∂w∂λ

(λ0 + ε,w0) +
∂2LT
∂w2

(λ0 + ε,w0)
∂r

∂λ
(λ0)

]
= 0 (D.4)

17

For simplicity, we denote:

B(λ0,w0, ε) =
∂2LT
∂w∂λ

(λ0 + ε,w0) ∈ Rm×h (D.5)

A(λ0,w0, ε) =
∂2LT
∂w2

(λ0 + ε,w0) ∈ Rm×m (D.6)

Θ =
∂r

∂λ
(λ0) ∈ Rm×h (D.7)

Thus, Θ is the best-response Jacobian, and it is given by:

Θ = −E[A]−1E[B] (D.8)

We can represent the solution as a minimization problem:

Θ∗ = arg min
Θ∈Rm×h

Eε∼p(ε|σ)

[
1

2
tr[AΘΘ>] + tr[B>Θ]

]
(D.9)

The first term in Eqn. D.4 can be represented as:

Eε∼p(ε|σ) [B(λ0,w0, ε)] = Eε∼p(ε|σ)

[
∂2LT
∂w∂λ

(λ0 + ε,w0)

]
(D.10)

= Eε̃∼p(ε̃|I)

[
∂2L̃T
∂w∂ε̃

(ε̃,w0)Σ−1/2

]
(D.11)

= Eε̃∼p(ε̃|I)

(∂L̃T
∂w

(ε̃,w0)

)>
ε̃>Σ−1/2

 (D.12)

= Eε∼p(ε|σ)

[(
∂LT
∂w

(λ0 + ε,w0)

)>
ε>Σ−1

]
, (D.13)

where ε = Σ1/2ε̃ and LT (λ0 + Σ1/2ε̃,w) = L̃T (ε̃,w). The third line (Eqn. D.12) uses Stein’s
identity. Multipying Σ in Eqn. D.4, we have:

Eε∼p(ε|σ) [B(λ0,w0, ε)Σ + A(λ0,w0, ε)ΘΣ] = 0 (D.14)

with the optimization problem:

Θ∗ = arg min
Θ∈Rm×h

Eε∼p(ε|σ)

[
1

2
tr[AΘΣΘ>] + tr[B>ΘΣ]

]
(D.15)

The second term in Eqn D.15 is:

Eε∼p(ε|σ)

[
tr[B>ΘΣ]

]
= Eε∼p(ε|σ)

[
tr[ΣB>Θ]

]
(D.16)

= Eε∼p(ε|σ)

[
tr
[
ΣΣ−1ε

∂LT
∂w

(λ0 + ε,w0)Θ

]]
(D.17)

= Eε∼p(ε|σ)

[
tr
[
∂LT
∂w

(λ0 + ε,w0)Θε

]]
(D.18)

= Eε∼p(ε|σ)

[
tr
[
∂LT
∂w

(λ0 + ε,w0)∆w

]]
(D.19)

= Eε∼p(ε|σ)

[
tr
[
∂LT
∂y

(λ0 + ε,w0)∆y

]]
, (D.20)

18

where ∆w = Θε and ∆y = Jyw∆w. On the other hand, the first term is:

Eε∼p(ε|σ) [tr[A(λ0,w0, ε)ΘΣΘ>]] (D.21)

= Eε∼p(ε|σ)

[
tr
[
∂2LT
∂w2

(λ0 + ε,w0)ΘΣΘ>
]]

(D.22)

≈ Eε∼p(ε|σ)

[
tr
[
∂2LT
∂w2

(λ0 + ε,w0)Θεε>Θ>
]]

(D.23)

= Eε∼p(ε|σ)

[
tr
[
∂2LT
∂w2

(λ0 + ε,w0)∆w∆w>
]]

(D.24)

= Eε∼p(ε|σ)

[
tr
[
∆w>

∂2LT
∂w2

(λ0 + ε,w0)∆w

]]
(D.25)

≈ Eε∼p(ε|σ)

[
tr
[
∆w>J>yw

∂2LT
∂y2

(λ0 + ε,w0)Jyw∆w

]]
(D.26)

= Eε∼p(ε|σ)

[
tr
[
∆y>

∂2LT
∂y2

(λ0 + ε,w0)∆y

]]
(D.27)

The third line (Eqn. D.23) assumes that ∂2LT/∂w2(λ0 + ε,w0) and ε are independent, and Eqn. D.26
is a Gauss-Newton approximation. Therefore, first and second terms correspond to the first- and
second-order Taylor approximations to the loss. For ∆-STNs, we linearized the predictions with
respect to the loss. This can be explained by the fact that the loss functions such as mean squared
error and cross entropy are locally quadratic and closely matches the second order approximation.

E Structured Hypernetwork Representation for Convolutional Layers

In this section, we describe a structured best-response approximation for convolutional layers.
Considering i-th layer of a convolutional neural network, let Ci denote number of filters and Ki

denote size of the kernel. Let W(i,c) ∈ RCi−1×Ki×Ki and b(i,c) ∈ R denote weights and bias at c-th
convolutional kernel, where c ∈ {1, ..., Ci}. We propose to approximate the layer-wise best-response
function as follows:

W
(i,c)
θ (λ,λ0) = W

(i,c)
general +

(
(λ− λ0)>u(i,c)

)
�W(i,c)

response

b
(i,c)
θ (λ,λ0) = b

(i,c)
general +

(
(λ− λ0)>v(i,c)

)
� b(i,c)

response,
(E.1)

where u(i,c),v(i,c) ∈ Rh. Observe that these formulas are linear in λ similar to the approximation
for fully-connected layers and analogous to that of the original STN. This architecture is also memory
efficient and tractable to compute, and allows parallelism. The approximation requires 2|W(i,c)|+ h
and 2|b(i,c)| + h parameters to represent the weight and bias, and two additional element-wise
multiplications in the forward pass. Summing over all channels, the total number of parameters is
2p+ 2hCi for each layer, where p is the number parameters for the ordinary CNN layer. Thus, the
∆-STN incurs little memory overhead compared to training an ordinary CNN.

F Fixed Nonlinear Function on Hyperparameters

In general, the hyperparameters have restricted domains. For example, the weight decay has to be
a positive real number and the dropout rate has to be in between 0 and 1. Hence, we apply a fixed
non-linear function s : Rh → Rh on the hyperparameters to ensure that hyperparameters are in its
domain and optimize the hyperparameters on an unrestricted domain. Fixing λ0 ∈ Rh, the training
objective for the hypernetwork with a fixed nonlinear transformation on the hyperparameters is as
follows:

min
Θ∈Rm×h

Eε∼p(ε|σ) [LT (s(λ0 + ε), rθ(λ0 + ε,λ0))] (F.1)

We also use such transformation to restrict the hyperparameters to be in its search space.

19

G Example of STN’s Training Objective having Incorrect Fixed Point

Consider a linear regression with L2 regularization where the training objective is defined as:

LT (λ,w) =
1

2n
‖Xw − t‖2 +

λ

2n
‖w‖2 , (G.1)

where X ∈ Rn×m and t ∈ Rn are the input matrix and target vector, respectively. Given λ0 ∈ R,
under the STN’s training objective (Eqn. 2.5), we aim to minimize:

min
w0∈Rm

Eε∼p(ε|σ)
[

1

2n
‖X(w0 + Θε)− t‖2 +

λ0 + ε

2n
‖w0 + Θε‖2

]
(G.2)

Simplifying the above equation, we get:

Eε∼p(ε|σ)

[
1 + 2

]
, (G.3)

where each component is:

Eε∼p(ε,σ)
[

1
]

=
1

2n

(
w>0 X>Xw0 + Θ>X>XΘσ2 + t>t− 2w>0 X>t

)
(G.4)

Eε∼p(ε,σ)
[

2
]

=
1

2n

(
w>0 w0λ0 + 2w>0 Θσ2 + Θ>Θλ0σ

2
)

(G.5)

The gradient with respect to w0 is the following:
∂

∂w0
Eε∼p(ε|σ) [LT (λ0 + ε, rθ(λ0 + ε, λ0))] =

1

n

(
X>Xw0 −X>t + w0λ0 + Θσ2

)
(G.6)

Setting the above equation equal to 0, the optimal solution w∗0 under STN’s training objective is as
follows:

w∗0 = (X>X + λ0I)−1(X>t−Θσ2) (G.7)
and the optimal Θ∗ is:

Θ∗ = −(X>X + λ0I)−1w∗0, (G.8)
Comparing Eqn. G.7 to the optimal weight w∗ of linear regression with L2 regularization,

w∗ = (X>X + λ0I)−1X>t, (G.9)
the optimal solution for w∗0 under STN’s training objective is incorrect, as σ2 > 0. Moreover, the
inaccuracy of w∗0 also affects accuracy of the best-response Jacobian as shown in Eqn. G.8. In
contrast, the proposed objective in Eqn. 3.9 recovers the correct solution for both the weight w∗0 and
best-response Jacobian Θ∗.

H Experiment Details

In this section, we present additional details for each experiment.

H.1 Toy Experiments

For toy experiments, the datasets were randomly split into training and validation set with ratio 80%
and 20%. We fixed the perturbation scale to 1, and used Ttrain = 10 and Tvalid = 1 for all experiments.
We further used 100 iterations of warm-up that does not update the hyperparameters. Note that the
warm-up still perturbs the hyperparameters. The batch size was 10 for datasets with less than 1000
data points, and 100 for others. In training, we normalized the input features and targets to have a
zero mean and unit variance. The training objective for the ridge regression was as follows:

LT (λ,w) =
1

2n
‖Xw − t‖2 +

exp(λ)

2n
‖w‖2 , (H.1)

where n is the number of training data, X ∈ Rn×m is the input matrix and t ∈ Rn is the target. We
initialized the regularization penalty λ to 1 for datasets with less than 1000 data points and 50 for
others. The hyperparameter updates for linear regression with L2 regularization on UCI datasets is
shown in figure 7.

We note that dividing the regularization penalty by the number of training set as in Eqn. H.1 is
non-standard. Because the STN is sensitive to the scale of the hyperparameters, we also experimented
with the objective that does not divide the regularization penalty by the number of training data. As
shown in figure 8, ∆-STNs still outperform STNs in terms of convergence, accuracy, and stability.

20

Figure 7: A comparison of STNs and ∆-STNs on linear regression with L2 regularization.

Figure 8: A comparison of STNs and ∆-STNs on linear regression with L2 regularization without dividing the
regularization penalty by the number of training data.

Figure 9: A comparison of hyperparameter updates found by
STNs and ∆-STNs, decoupling effects of reparameterization
and modified objective.

In figure 9, we decoupled the centered pa-
rameterization from all other changes to
the training objective for datasets that ex-
perimented spikes in the hyperparameter
updates. The centering (“Reparam STN”)
described in section 3.1 by itself eliminated
the spike in the hyperparameter updates as
our analysis predicts. The modification of
the training objective (“Reparam STN +
New Obj.”) described in section 3.2 further
helped improving the accuracy of the fixed point as detailed in appendix G.

Similarly, the training objective for dropout experiments was:

LT (λ,w) =
1

2n
‖(R�X)w − t‖2 , (H.2)

where R ∈ Rn×m is a random matrix with Rij ∼ Bern(λ) and � is an element-wise multiplication.
Note that linear regression with input dropout is, in expectation, equivalent to ridge regression with a
particular form of regularization penalty [55]. We initialized the dropout rate to 0.2 for all datasets.
For both experiments, the validation objective was the following:

LV (λ,w) =
1

2v
‖Xvalidw − tvalid‖2 , (H.3)

21

where v is the number of validation data, and Xvalid ∈ Rv×m and tvalid ∈ Rv are the inputs and
targets of the validation data.

We adopted the same experimental settings for linear networks with Jacobian norm regularization.
The model was consisted of 5 hidden layers and each hidden layer had a square matrix with the same
dimension as the input. The training objective was as follows:

LT (λ,w) =
1

2n
‖y(X; w)− t‖2 +

exp(λ)

2n

∥∥∥∥ ∂y∂X
(X; w)

∥∥∥∥2 , (H.4)

where y is the linear network’s prediction. The plots presented in figures 3 and 4 show the updates of
hyperparameters averaged over 5 runs with different random seeds.

H.2 Image Classification

For the baselines (grid search, random search, and Bayesian optimization), the search spaces were
as follows: dropout rates were in [0, 0.85]; the number of Cutout holes was in [0, 4]; Cutout length
was in [0, 24], noises added to contrast, brightness, and saturation were in [0, 1]; noise added to hue
was in [0, 0.5]; the random scale and translation of an image were in [0, 0.5]; the random degree and
shear were in [0, 45]. All other settings (e.g. learning rate schedule, batch size) were the same as
those of ∆-STNs. We used Tune [33] for gird and random searches, and Spearmint [53] for Bayesian
optimization.

For all experiments, we set training and validation update intervals to Ttrain = 5 and Tvalid = 1, and
the perturbation scale was initialized to 1. We further performed a grid search over the entropy weight
from a set {1e−2, 1e−3, 1e−4} on 1 run and repeated the experiments with the selected entropy
weight 5 times. We reported the average over 5 runs.

H.2.1 MNIST

We held out 15% of the training data for validation. We trained a multilayer perceptron using SGD
with a fixed learning rate 0.01 and momentum 0.9, and mini-batches of size 128 for 300 epochs. The
MLP model consisted of 3 hidden layers with 1200 units and ReLU activations. We used 5 warm-up
epochs that did not optimize the hyperparameters. In total of 3 dropout rates that control the inputs
and per-layer activations were tuned. The hyperparameters were optimized using RMSProp with
learning rate 0.01. We used entropy weights τ = 0.001 for both STNs and ∆-STNs, and initialized
all dropout rates to 0.05, where the range for dropout was [0, 0.95]. We show the hyperparameter
schedules found by ∆-STNs on figure 10.

H.2.2 FashionMNIST

Similar to the MNIST experiment, we held out 15% of the training data for validation. We trained
Convolutional neural network using SGD with a fixed learning rate 0.01 and momentum 0.9, and
mini-batches of size 128 for 300 epochs. The SimpleCNN model consisted of 2 convolutional layers
with 16 and 32 filters, both with kernel size 5, followed by 2 fully-connected layers with 1568 hidden
units and with ReLU activations on all hidden layers. We tuned 6 hyperparameters: (1) input dropout,
(2) per-layer activation dropouts, and (3) Cutout holes and length. We set 5 warm-up epochs that
did not optimize the hyperparameters and used RMSProp with learning rate 0.01 for optimizing the
hyperparameters. The entropy weight was τ = 0.001 for both STNs and ∆-STNs. We initialized the
dropout rates to 0.05, the number of Cutout holes to 1, and Cutout length to 4. Dropout rates had a
search space of [0, 0.95], the number of Cutout holes had [0, 4], and Cutout length had [0, 24]. The
hyperparameter schedules prescribed by ∆-STNs are shown in figure 10.

H.2.3 CIFAR10

We held out 20% of the training data for validation. AlexNet, VGG16, and ResNet18 were trained
with SGD with initial learning rates of 0.03, 0.01, 0.05 and momentum 0.9, using mini-batches
of size 128. We decayed the learning rate after 60 epochs by a factor of 0.2 and trained the
network for 200 epochs. We tuned 18 and 26 hyperparameters for AlexNet and VGG16: (1) input
dropout, (2) per-layer activation dropouts, (3) scaling noise applied to the input, (4) Cutout holes and
length, (5) amount of noise applied to hue, saturation, brightness, and contrast to the image, and (6)

22

(a) MLP dropout (b) SimpleCNN dropout (c) SimpleCNN Cutout

Figure 10: Hyperparameter schedules prescribed by ∆-STNs for (a) MNIST and (b), (c) FashionMNIST
datasets.

(a) Schedule for dropouts (b) Schedule for data augmentations (c) Schedule for Cutout

Figure 11: Hyperparameter schedules found by ∆-STNs on VGG16 for (a) dropout rates, (b) data augmentation
parameters, and (c) Cutout parameters.

random translation, scale, rotation, and shear applied to input image. Similarly, 19 hyperparameters
were optimized for ResNet18, where we applied dropout after each block and applied the same
augmentation hyperparameters as AlexNet and VGG16.

Table 3: Final validation (test) accuracy of STN
and ∆-STN on image classification tasks.

Network STN ∆-STN
AlexNet 83.96 (83.38) 85.63 (85.19)
VGG16 89.22 (88.66) 90.96 (90.26)

ResNet18 91.51 (90.16) 93.46 (92.55)

The hyperparameters were optimized using RM-
SProp with a fixed learning rate 0.01. For all STN-
type models, we used 5 epochs of warm-up for
the model parameters. We used entropy weights
of τ = 0.001 on AlexNet, and τ = 0.0001 and
τ = 0.001 on VGG16 for ∆-STNs and STNs, re-
spectively. For ResNet18, we used entropy weight of

τ = 0.0001. The number Cutout holes was initialized to 1, the Cutout length was initialized to 4,
and all other hyperparameters were initialized to 0.05. The search spaces for amount of noises added
to contrast, brightness, saturation were [0, 1] and that for noise added hue was [0, 0.5]. The search
spaces for random translation and scale were also [0, 0.5] and those for random rotation and shear
were [0, 45]. The search spaces for all other hyperparameters were the same as those in experiments
for FashionMNIST. We show the hyperparameter schedules obtained by ∆-STNs on figure 11 and
figure 12 for VGG16 and ResNet18 architectures. We also show the validation (training) accuracy
obtained by each architecture in table 3. ∆-STNs showed a consistent improvement in validation
accuracy compared to STNs.

H.3 Language Modeling

Figure 13: Hyperparameter schedules prescribed by
∆-STNs on LSTM experiments.

We adopted the same experiment set-up to
that of MacKay et al. [38]. We trained a 2
layer LSTM with 650 hidden units and 650-
dimensional word embedding on sequences of
length 70, using mini-batches of size 40. We
used SGD with initial learning rate of 30 and
decayed by a factor of 4 when the validation
loss did not improve for 5 epochs. We further
used gradient clipping with parameter 0.25. The
hyperparameters were optimized using Adam with a fixed learning rate of 0.01. We used 10 warm-up

23

(a) Schedule for dropouts (b) Schedule for data augmentations (c) Schedule for Cutout

Figure 12: Hyperparameter schedules found by ∆-STNs on ResNet18 for (a) dropout rates, (b) data augmenta-
tion parameters, and (c) Cutout parameters.

(a) Schedule found by ∆-STNs (b) Schedule found by STNs

Figure 14: A comparison of input dropout schedules found by (a) ∆-STNs and (b) STNs on MLP with different
initialization. ∆-STNs found the hyperparameter schedule more robustly and accurately compared to STNs.

epochs for both STNs and ∆-STNs with a fixed perturbation scale of 1 and terminated the training
when the learning rate for hypernetwork parameters decreased below 0.0003.

In total of 7 hyperparameters were optimized. We tuned variational dropout applied to the inputs,
hidden states between layers, and the output to the model. Embedding dropout that sets an entire row
of the word embedding matrix to 0 was also tuned, eliminating certain words in the embedding matrix.
We also regularized hidden-to-hidden weight matrix using DropConnect [60]. At last, activation
regularization (AR) and temporal activation regularization (TAR) coefficients were tuned. For all RS,
BO, STNs, and ∆-STNs, the search spaces for AR and TAR were [0, 4] and we initialized them to
0.05. Similarly, all dropout rates were initialized to 0.05, and the search space was [0, 0.95] for STNs
and ∆-STNs while it was [0, 0.75] for RS and BO. We present the hyperparameter schedules found
by ∆-STNs in figure 13.

I Additional Results

Method Valid Test

p = 0.5, Fixed 0.059 0.054
p = 0.5 w/ Gaussian Noise 0.057 0.059

p = 0.43 (Final ∆-STN Value) 0.059 0.060
STN 0.058 0.058

∆-STN 0.053 0.054

Table 4: A comparison of validation and test losses on
MLP trained with fixed and perturbed input dropouts,
and MLP trained with STNs and ∆-STNs.

We present additional experiments in this sec-
tion.

I.1 Hyperparameter Schedules

Because the hyperparameters are tuned online,
STNs do not use a fixed set of hyperparameters
throughout the training. Instead, it finds hy-
perparameter schedules that outperforms fixed
hyperparameters [38]. We trained a multilayer
perceptron on MNIST dataset and tuned the in-
put dropout matrix with using STNs and ∆-STNs. The same experimental configurations to those of

24

(a) SimpleCNN (b) AlexNet

Figure 15: The effect of using different perturbation scale on (a) SimpleCNN and (b) AlexNet for STNs and
∆-STNs. ∆-STN is more robust to a wider range of perturbation scale.

Figure 16: The effect of using different training and validation update intervals on ∆-STNs

MNIST experiment (appendix H.2.1) were used, except that we only tuned a single hyperparameter
and fixed the perturbation scale to 1. We compared the hyperparameter schedules found by STNs
and ∆-STNs with different initializations. As shown in figure 14, ∆-STNs found the hyperparameter
schedule more robustly compared to STNs. We further compared best validation loss and correspond-
ing test loss achieved by ∆-STNs and STNs in table 4. The fixed and perturbed dropout rates found
by grid search and given by final ∆-STN value were also compared. Our ∆-STN was able to find the
hyperparameter schedules more accurately and robustly as well.

I.2 Sensitivity Studies

We show the sensitivity of ∆-STNs to meta-parameters. Specifically, we investigated the effect of
using different training and validation update intervals (figure 16), and different fixed perturbation
perturbation scale (figure 15) on SimpleCNN and AlexNet. ∆-STNs showed more robustness to
different perturbation scale.

25

