
∆-STN: Efficient Bilevel Optimization for Neural
Networks using Structured Response Jacobians

Juhan Bae
University of Toronto

Vector Institute
jbae@cs.toronto.edu

Roger Grosse
University of Toronto

Vector Institute
rgrosse@cs.toronto.edu

Abstract

Hyperparameter optimization of neural networks can be elegantly formulated as
a bilevel optimization problem. While research on bilevel optimization of neural
networks has been dominated by implicit differentiation and unrolling, hypernet-
works such as Self-Tuning Networks (STNs) have recently gained traction due to
their ability to amortize the optimization of the inner objective. In this paper, we
diagnose several subtle pathologies in the training of STNs. Based on these obser-
vations, we propose the ∆-STN, an improved hypernetwork architecture which
stabilizes training and optimizes hyperparameters much more efficiently than STNs.
The key idea is to focus on accurately approximating the best-response Jacobian
rather than the full best-response function; we achieve this by reparameterizing
the hypernetwork and linearizing the network around the current parameters. We
demonstrate empirically that our ∆-STN can tune regularization hyperparameters
(e.g. weight decay, dropout, number of cutout holes) with higher accuracy, faster
convergence, and improved stability compared to existing approaches.

1 Introduction

Tuning regularization hyperparameters such as weight decay, dropout [55], and data augmentation
is indispensable for state-of-the-art performance in a challenging dataset such as ImageNet [8, 52,
7]. An automatic approach to adapting these hyperparameters would improve performance and
simplify the engineering process. Although black box methods for tuning hyperparameters such as
grid search, random search [2], and Bayesian optimization [53, 54] work well in low-dimensional
hyperparameter spaces, they are computationally expensive, require many runs of training, and
require that hyperparameter values be fixed throughout training.

Hyperparameter optimization can be elegantly formulated as a bilevel optimization problem [5, 15].
Let w ∈ Rm denote parameters (e.g. weights and biases) and λ ∈ Rh denote hyperparameters
(e.g. weight decay). Let LV and LT denote validation and training objectives, respectively. We aim
to find the optimal hyperparameters λ∗ that minimize the validation objective at the end of training.
Mathematically, the bilevel objective can be formulated as follows1:

λ∗ = arg min
λ∈Rh

LV (λ,w∗) subject to w∗ = arg min
w∈Rm

LT (λ,w) (1.1)

In machine learning, most work on bilevel optimization has focused on implicit differentiation [28,
48] and unrolling [39, 14]. A more recent approach, which we build on in this work, explicitly
approximates the best-response (rational reaction) function r(λ) = arg minw LT (λ,w) with a
hypernetwork [49, 19] and jointly optimizes the hyperparameters and the hypernetwork [35]. The

1The uniqueness of arg min is assumed throughout this paper.
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hypernetwork approach is advantageous because training the hypernetwork amortizes the inner-
loop optimization work required by both implicit differentiation and unrolling. Since best-response
functions are challenging to represent due to their high dimensionality, Self-Tuning Networks
(STNs) [38] construct a structured hypernetwork to each layer of the neural network, thereby allowing
the efficient and scalable approximation of the best-response function.

In this work, we introduce the ∆-STN, a novel architecture for bilevel optimization that fixes several
subtle pathologies in training STNs. We first improve the conditioning of the Gauss-Newton Hessian
and fix undesirable bilevel optimization dynamics by reparameterizing the hypernetwork, thereby
enhancing the stability and convergence in training. Based on the proposed parameterization, we
further introduce a modified training scheme that reduces variance in parameter updates and eliminates
any bias induced by perturbing the hypernetwork.

Next, we linearize the best-response hypernetwork to yield an affine approximation of the best-
response function. In particular, we linearize the dependency between the network’s parameters and
predictions so that the training algorithm is encouraged to accurately approximate the Jacobian of the
best-response function. Empirically, we evaluate the performance of ∆-STNs on linear models, image
classification tasks, and language modelling tasks, and show our method consistently outperform the
baselines, achieving better generalization performance in less time.

2 Background

2.1 Bilevel Optimization with Gradient Descent

A bilevel problem (see Colson et al. [5] for an overview) consists of two sub-problems, where one
problem is nested within another. The outer-level problem (leader) must be solved subject to the
optimal value of the inner-level problem (follower). A general formulation of the bilevel problem is
as follows:

min
x∈Rh

f(x,y∗) subject to y∗ = arg min
y∈Rm

g(x,y), (2.1)

where f, g : Rh × Rm → R denote outer- and inner-level objectives (e.g. LV and LT ), and x ∈ Rh
and y ∈ Rm denote outer- and inner-level variables (e.g. λ and w). Many problems can be cast as
bilevel objectives in machine learning, including hyperparameter optimization, generative adversarial
networks (GANs) [18, 24], meta-learning [15], and neural architecture search [63, 34, 6].

A naïve application of simultaneous gradient descent on training and validation objectives will fail due
to the hierarchy induced by the bilevel structure [13, 59]. A more principled approach in solving the
bilevel problem is to incorporate the best-response function. Substituting the best-response function
in the validation objective converts the bilevel problem to a single-level problem:

min
λ∈Rh

LV (λ, r(λ)) (2.2)

We refer readers to Fiez et al. [13] on a more detailed analysis of the best-response (rational reaction)
function. The Jacobian of the best-response function is as follows:

∂r

∂λ
(λ) = −

(
∂2LT
∂w2

(λ, r(λ))

)−1
∂2LT
∂w∂λ

(λ, r(λ)) (2.3)

The gradient of the validation objective is composed of direct and response gradients. While the
direct gradient captures the direct dependence on the hyperparameters in the validation objective, the
response gradient captures how the optimal parameter responds to the change in the hyperparameters:

dLV
dλ

(λ, r(λ)) =
∂LV
∂λ

(λ,w)︸ ︷︷ ︸
Direct Gradient

+

(
∂r

∂λ
(λ)

)>
∂LV
∂w

(λ, r(λ))︸ ︷︷ ︸
Response Gradient

(2.4)

For most hyperparameter optimization problems, the regularization penalty is not imposed in the
validation objective, so the direct gradient is 0. Therefore, either computing or approximating the
best-response Jacobian (–) is essential for computing the gradient of the outer objective.
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Figure 1: (Left) The loss surface of the training objective. The best-response hypernetwork rφ locally
approximates the best-response function at the current configuration (?). (Right) The loss surface of the
validation objective. The local best-response hypernetwork embedded in the validation objective allows to
capture the response gradient in Eqn. 2.4.

2.2 Best-Response Hypernetwork

Lorraine and Duvenaud [35] locally model the best-response function with a hypernetwork. Let
φ ∈ Rp be the best-response (hypernetwork) parameters and p(ε|σ) be a zero-mean diagonal
Gaussian distribution with a fixed perturbation scale σ ∈ Rh+. The objective for the hypernetwork is
as follows:

min
φ∈Rp

Eε∼p(ε|σ) [LT (λ + ε, rφ(λ + ε))] , (2.5)

where rφ is the best-response hypernetwork. Intuitively, the hyperparameters are perturbed so that
the hypernetwork can locally learn the best-response curve, as shown in figure 1. Self-Tuning
Networks (STNs) [38] extend this approach by constructing a structured hypernetwork for each layer
in neural networks in order to scale well with the number of hyperparameters. They parameterize the
best-response function as:

rφ(λ) = Φλ + φ0, (2.6)

where φ0 ∈ Rm and Φ ∈ Rm×h, and further impose a structure on weights of the neural net-
work, as detailed in section 3.4. The STN performs alternating gradient descents on hypernetwork,
hyperparameters and perturbation scale, where the validation objective is formulated as:

min
λ∈Rh,σ∈Rh

+

Eε∼p(ε|σ) [LV (λ + ε, rφ(λ + ε))]− τH [p(ε|σ)] (2.7)

Here, H[·] is an entropy term weighted by τ ∈ R+ to prevent the perturbation scale from getting too
small. Note that the above objective is similar to that of variational inference, where the first term
is analogous to the negative log-likelihood. When τ ranges from 0 to 1, the objective interpolates
between variational inference and variational optimization [56]. The full algorithm for the STN is
described in Alg. 2 (appendix B).

3 Method

We now describe our main contributions: a centered parameterization of the hypernetwork, a modified
training objective, and a linearization of the best-response hypernetwork. For simplicity, we first
present these contributions in the context of a full linear hypernetwork (which is generally impractical
to represent) and then explain how our contributions can be combined with the compact hypernetwork
structure used in STNs.

3.1 Centered Parameterization of the Best-Response Hypernetwork

Our first contribution is to use a centered parameterization of the hypernetwork. In particular,
observe that if the hyperparameters are transformed as λ̃ = λ + a, for any vector a ∈ Rh, then the
hypernetwork parameters can be transformed as φ̃0 = Φa + φ0 to represent the same mapping in
Eqn. 2.6. Therefore, we can reparameterize the model by adding an offset to the hyperparameters if it
is advantageous for optimization. As it is widely considered beneficial to center inputs and activations
at 0 [30, 22, 44], we propose to adopt the following centered parameterization of the hypernetwork:

rθ(λ,λ0) = Θ(λ− λ0) + w0, (3.1)
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where w0 ∈ Rm and Θ ∈ Rm×h. Intuitively, if λ0 is regarded as the “current hyperparameters”,
then w0 can be seen as the “current weights”, and Θ determines how the weights are adjusted in
response to a perturbation to λ. We provide two justifications why the centered parameterization
is advantageous; the first justification relates to the conditioning of the single-level optimization
problem for φ, while the second involves a phenomenon particular to bilevel optimization.

For the first justification, consider optimizing the hypernetwork parameters φ for a fixed λ̄ ∈ Rh+1,
where λ̄ is defined as a vector formed by appending additional homogeneous coordinate with value
1 to incorporate the offset term. The speed of convergence of gradient descent is closely related
to the condition number of the Hessian Hφ = ∇2

φLT [47]. For neural networks, it is common to
approximate Hφ with the Gauss-Newton Hessian [30, 41], which linearizes the network around w:

Hw ≈ Gw , E
[
J>ywHyJyw

]
, (3.2)

where Jyw = ∂y/∂w is the weight-output Jacobian, Hy = ∇2
yLT is the Hessian of the loss with

respect to the network outputs y, and the expectation is with respect to the training distribution.
Observation 1. The Gauss-Newton Hessian with respect to the hypernetwork is given by:

Gφ = E
[
λ̂λ̂> ⊗ J>ywHyJyw

]
, (3.3)

where λ̂ = λ̄ + ε̄ are the sampled hyperparameters and ε̄ is the perturbation vector appended with
additional homogeneous coordinate with value 0.

See appendix C.1 for the derivation. Heuristically, we can approximate Gφ by pushing the expectation
inside the Kronecker product, a trick that underlies the K-FAC optimizer [42, 62]:

Gφ ≈ E[λ̂λ̂>]⊗ E
[
J>ywHyJyw

]
= E[λ̂λ̂>]⊗Gw, (3.4)

where Gw is the Gauss-Newton Hessian for the network itself. We now note the following well-
known fact about the condition number of the Kronecker product (see appendix C.2 for the proof):
Observation 2. Let κ(A) denote the condition number of a square positive definite matrix A.
Given square positive definite matrices A and B, the condition number of A ⊗ B is given by
κ(A⊗B) = κ(A)κ(B).

Hence, applying Observation 2 to Eqn. 3.4, we would like to make the factor E[λ̂λ̂>] well-conditioned
in order to make the overall optimization problem well-conditioned. We apply the well-known
decomposition of the second moments:

E[λ̂λ̂>] = Cov(λ̂) + E[λ̂]E[λ̂]> = Cov(ε) + λ̄λ̄> (3.5)

In the context of our method, the first term is the diagonal matrix diag(σ2), whose entries are
typically small. The second term is a rank-1 matrix whose nonzero eigenvalue is ‖λ‖2. If λ is
high-dimensional or far from 0, the latter will dominate, and the problem will be ill-conditioned due
to the large outlier eigenvalue. Therefore, to keep the problem well-conditioned, we would like to
ensure that ‖λ‖2 is small and one way to do this is to use a centered parameterization that sends
λ 7→ 0, such as Eqn. 3.1. This suggests that centering should improve the conditioning of the inner
objective.

The above analysis justifies why we would expect centering to speed up training of the hypernetwork,
taken as a single-level optimization problem. However, there is also a second undesirable effect of
uncentered representations involving interactions between the inner and outer optimizations. The
result of a single batch gradient descent update to Φ is as follows:

Φ(1) = Φ(0) − α∇Φ(LT (λ(0), rφ(0)(λ(0)))) = Φ(0) − α(∇wLT (λ(0),w(0)))(λ(0))>, (3.6)

where λ(0) denotes the hyperparameters sampled in the first iteration and α denotes the learning rate
of the inner objective. This results in a failure of credit assignment: it induces the (likely mistaken)
belief that adjusting λ in the direction of λ will move the optimal weights in the direction of−∇wLT .
Plugging in Eqn. 3.6, this leads to the following hyperparameter gradient∇λ(LV ):

∇λ(LV (λ, rφ(1)(λ))) = ∇λLV (λ,w(1)) + (Φ(1))>∇wLV (λ,w(1)) (3.7)

= ∇λLV (λ,w(1)) + (Φ(0))>∇wLV (λ,w(1))

− α(∇wLT (λ(0),w(0)))>(∇wLV (λ,w(1)))λ(0) (3.8)
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In Eqn. 3.8, the coefficient in front of λ(0) in the last term is the inner product between the training
and validation gradients. Early in training, we would expect the training and validation gradients to
be well-aligned, so this inner product would be positive. Hence, λ will tend to move in the direction
of λ, i.e. away from 0, simply due to the bilevel optimization dynamics. We found this to be a
very strong effect in some cases, and it resulted in pathological choices of hyperparameters early in
training. Using the centered parameterization appeared to fix the problem, as we show in section 5.1
and appendix H.1.

3.2 Modified Update Rule for Centered Parameterization

We observed in section 3.1 that in the centered parameterization, w0 can be seen as the current
weights, while Θ is the Jacobian of the approximate best response function rθ. This suggests a
modification to the original STN training procedure. While in the original STN, the full hypernetwork
was trained using sampled hyperparameters, we claim that w0 can instead be trained using gradient
descent on the regularized training loss, just like the weights of an ordinary neural network. In this
sense, we separate the training objectives in the following manner:

w∗0 = arg min
w0∈Rm

LT (λ,w0) (3.9)

Θ∗ = arg min
Θ∈Rm×h

Eε∼p(ε|σ) [LT (λ + ε, rθ(λ + ε,λ))] (3.10)

The exclusion of perturbation in Eqn. 3.9 reduces the variance for the updates on w0, yielding faster
convergence. Moreover, it can eliminate any bias to the optimal w∗0 induced by the perturbation.
In appendix G, we show that, even for linear regression with L2 regularization, the optimal weight
w∗0 does not match the correct solution under the STN’s objective, whereas the modified objective
recovers the correct solution. The following theorem shows that, for a general quadratic inner-level
objective, the proposed parameterization converges to the best-response Jacobian.

Theorem 3. Suppose LT is quadratic with ∂2LT/∂w2 � 0 and let p(ε|σ) be a diagonal Gaussian
distribution with mean 0 and variance σ2I. Fixing λ0 ∈ Rh and w0 ∈ Rm, the solution to the
objective in Eqn. 3.10 is the best-response Jacobian.

See appendix C.3 for the proof.

3.3 Direct Approximation of the Best-Response Jacobian using a Linearized Network

The STN aims to learn a linear hypernetwork that approximates the best-response function in a region
around λ. However, if the perturbation ε is large, it may be difficult to approximate the best-response
function as linear within this region. Part of the problem is that the function represented by the
network behaves nonlinearly with respect to w, such that the linear adjustment represented by Φλ
(in Eqn. 2.6) may have a highly nonlinear effect on the network’s predictions. We claim it is in fact
unnecessary to account for the nonlinear effect of large changes to w, as the hypernetwork is only
used to estimate the best-response Jacobian at λ0, and the Jacobian depends only on the effect of
infinitesimal changes to w.

To remove the nonlinear dependence of the predictions on w, we linearize the network around the
current weights r(λ0) = w0. The first-order Taylor approximation to the network computations is
given by:

y = f(x,w,λ, ξ) ≈ f(x,w0,λ, ξ) + Jyw(w −w0), (3.11)

where f(x,w,λ, ξ) denotes evaluating a network with weights w and hyperparameters λ on input x.
Here, ξ denotes a source of randomness (e.g. dropout mask) and Jyw = ∂y/∂w is the weight-output
Jacobian. This relationship can also be written with the shorthand notation ∆y ≈ Jyw∆w, where ∆
denotes a small perturbation. Therefore, we refer to it as the ∆-approximation, and the corresponding
bilevel optimization method as the ∆-STN. In the context of our method, given the hyperparameters
λ0 ∈ Rh and the perturbation ε ∈ Rh, we structure the prediction as follows:

y′ = f(x, rθ(λ0 + ε,λ0),λ0 + ε, ξ) ≈ f(x, rθ(λ0,λ0),λ0 + ε, ξ) + Jyw∆w (3.12)
= f(x,w0,λ0 + ε, ξ) + JywΘε (3.13)
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Figure 2: A comparison of approximated best-
response Jacobians obtained by STN and ∆-
STN at λ0 (?). The ∆-STN approximates the
best-response Jacobian more accurately by lin-
earizing the best-response hypernetwork.

In figure 2, we show the approximated best-response
Jacobian obtained by STN and ∆-STN, and compare
them with the true best-response Jacobian. The contours
show the loss surface of the training objective at some
λ and we projected best-response Jacobian to (λ,w1)
and (λ,w2) planes for a better comparison. Because
of the nonlinearity around λ0 (?), the STN tries to fit
a more horizontal best-response function to minimize
the error given by the perturbation, degrading the accu-
racy of the Jacobian approximation. On the other hand,
the ∆-STN linearizes the best-response function at λ0,
focusing on accurately capturing the linear effects. In
appendix D, we show that, with some approximations,
the linearization of the perturbed inner objective yields
a correct approximation of the best-response Jacobian.

Evaluating Jyw∆w in Eqn. 3.11 corresponds to evaluating the directional derivative of f in the
direction ∆w and can be efficiently computed using forward mode automatic differentiation (Jacobian-
vector products), a core feature in frameworks such as JAX [4].

3.4 Structured Hypernetwork Representation

So far, the discussion has assumed a general linear hypernetwork for simplicity. However, a full linear
hypernetwork would have dimension h×m, which is impractical to represent if λ is high-dimensional.
Instead, we adopt an efficient parameterization analogous to that of the original STN. Considering the
i-th layer of the neural network, whose weights and bias are W(i) ∈ Rmi×mi+1 and b(i) ∈ Rmi+1 ,
we propose to structure the layer-wise best-response hypernetwork as follows2:

W
(i)
θ (λ,λ0) = W

(i)
general +

(
U(i)(λ− λ0)

)
�row W(i)

response

b
(i)
θ (λ,λ0) = b

(i)
general +

(
V(i)(λ− λ0)

)
� b(i)

response,
(3.14)

where U(i),V(i) ∈ Rmi+1×h, and �row and � denote row-wise and element-wise multiplications.
Observe that these formulas are linear in λ, so they can be seen as a special case of Eqn. 3.1, except
that structure is imposed on Θ. Observe also that this architecture is memory efficient and tractable
to compute, and allows parallelism: it requires mi+1(2mi + h) and mi+1(2 + h) parameters to
represent the weights and bias, respectively, with 2 additional matrix multiplications and element-
wise multiplications in the forward pass. Both quantities are significantly smaller than the full
best-response Jacobian, so the ∆-STN incurs limited memory or computational overhead compared
with simply training a neural network.

3.5 Training Algorithm

Algorithm 1: Training Algorithm for ∆-STNs

Initialize: hypernetwork θ = {w0,Θ}; hyperparameters λ; learning rates {αi}3i=1; training and
validation update intervals Ttrain, Tvalid, and entropy penalty τ .

while not converged do
for t = 1, ..., Ttrain do

ε ∼ p(ε|σ)
w0 ← w0 − α1∇w0(LT (λ, rθ(λ,λ)))
Θ← Θ−α1∇Θ(LT (λ+ ε, rθ(λ+ ε,λ))) . Linearization with forward-mode autodiff

for t = 1, ..., Tvalid do
ε ∼ p(ε|σ)
λ← λ− α2∇λ(LV (λ + ε, rθ(λ + ε,λ0)))|λ=λ0

σ ← σ − α3∇σ(LV (λ + ε, rθ(λ + ε,λ))− τH[p(ε|σ)])

The full algorithm for ∆-STNs is given in Alg. 1. In comparison to STNs (Alg. 2 in appendix B), we
use a modified training objective and a centered hypernetwork parameterization with linearization.

2We show the structured hypernetwork representation for convolutional layers in appendix E.
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The hyperparameters and perturbation scale are optimized using the same objectives as in STNs
(Eqn. 2.7). Since hyperparameters are often constrained (e.g. dropout rate is in between 0 and 1), we
apply a fixed non-linear transformation to the hyperparameters and optimize the hyperparameters on
an unconstrained domain, as detailed in appendix F.

4 Related Work

Automatic procedures for finding an effective set of hyperparameters have been a prominent subject
in the literature (see Feurer and Hutter [12] for an overview). Early works have focused on model-free
approaches such as grid search and random search [2]. Hyperband [31] and Successive Halving
Algorithm (SHA) [32] extend on random search by using multi-armed bandit techniques [23] to
terminate poor-performing hyperparameter configurations early. These model-free approaches are
straightforward to parallelize and work well in practice. However, they rely on random procedures,
not exploiting the structure of the problem.

Bayesian Optimization (BO) provides a more principled tool to optimize the hyperparameters. Given
the hyperparameters λ and the observations O = {(λi, si)}ni=1, where s is a surrogate loss, BO
models a conditional probability p(s|λ,O) [21, 3, 53, 54]. The observations are constructed in an
iterative manner, where the next set of hyperparameters to train the model is the one that maximizes
an acquisition function C(λ; p(s|λ,O)), which trades off exploitation and exploration. The training
through convergence may be avoided under some assumptions on the learning curve behavior [57, 25].
Nevertheless, BO requires building inductive bias into the conditional probability, is sensitive to the
parameters of the surrogate model, and most importantly, does not scale well with the number of
hyperparameters.

In comparison to black-box optimization, the use of gradient information can provide a drastic
improvement in convergence [46]. There are two major approaches to gradient-based hyperparameter
optimization. The first method uses the implicit function theorem to obtain the best-response Jacobian
∂r/∂λ [28, 1, 48, 36], which requires approximating the Hessian (or Gauss-Newton) inverse. The
second approach approximates the best-response function r by casting the inner objective as a
dynamical system [10, 39, 37, 15, 50] and applying automatic differentiation to compute the best-
response Jacobian. Both approaches are computationally expensive: implicit differentiation requires
approximating the inverse Hessian and unrolled differentiation needs to backpropagate through the
whole gradient steps.

In contrast to implicit differentiation and unrolling, the hypernetwork approach [35] such as Self-
Tuning Networks (STNs) [38] incurs little computation and memory overhead, as detailed in section
2.2. Moreover, it is straightforward to implement in deep learning frameworks and is able tune discrete
(e.g. number of Cutout holes [9]) and non-differentiable (e.g. dropout rate) hyperparameters. However,
the range of applicability to general bilevel problems is slightly more restricted, as hypernetwork
approach requires a single inner objective and requires that the outer variables parameterize the
training objective (like implicit differentiation but unlike unrolling).

5 Experiments

In this section, a series of experiments was conducted to investigate the following questions: (1) How
does our method perform in comparison to the STN in terms of convergence, accuracy, and stability?
(2) Does our method scale well to modern-size convolutional neural network? (3) Can our method be
extended to other architectures such as recurrent neural networks?

We denote our method with the centered parameterization and the modified training objective as
“centered STN” (sections 3.1, 3.2), and centered STN with linearization as “∆-STN” (section 3.3).

5.1 Toy Problems

We first validated the ∆-STN on linear regression and linear networks, so that the optimal weights
and hyperparameters could be determined exactly. We used regression datasets from the UCI
collection [11]. For all experiments, we fixed the perturbation scale to 1, and set Ttrain = 10 and
Tvalid = 1. We compared our method with STNs and the optimal solution to the bilevel problem. We
present additional results and a more detailed experimental set-up at appendix H.1.
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Figure 3: A comparison of STNs and ∆-STNs on linear regression tasks (the closer to the optimal, the better).
We separately optimize (top) weight decay and (bottom) input dropout rate. For both tasks, ∆-STNs achieve
faster convergence, higher accuracy, and improved stability compared to STNs.

Linear Regression. We separately trained linear regression models with L2 regularization and with
input dropout. The trajectories for each hyperparameter are shown in figure 3. By reparameterizing
the hypernetwork and modifying the training objective, the ∆-STN consistently achieved faster
convergence, higher accuracy, and improved stability compared to the STN.

Figure 4: A comparison of hyperparameter updates
found by STNs, centered STNs, and ∆-STNs on linear
network with Jacobian norm regularization.

Linear Networks. Next, we trained a 5 hid-
den layer linear network with Jacobian norm
regularization. To show the effectiveness of lin-
earization, we present results with and without
linearizing the hypernetwork. In figure 4, the
centered STN converges to the optimal λ more
accurately and efficiently than STNs. The lin-
earization further helped improving the accuracy
and stability of the approximation.

5.2 Image Classification

Figure 5: A comparison of best validation loss obtained
by STNs, centered STNs, and ∆-STNs for (left) MNIST
and (right) FashionMNIST datasets.

To evaluate the scalability of our proposed ar-
chitecture to deep neural networks, we applied
∆-STNs to image classification tasks. We set
Ttrain = 5 and Tvalid = 1 for all experiments and
compared ∆-STNs to random search (RS) [2],
Bayesian optimization (BO) [53, 54], and Self-
Tuning Networks (STNs) [38]. The final perfor-
mances on validation and test losses are summa-
rized in table 1. Our ∆-STN achieved the best
generalization performance for all experiments,
demonstrating the effectiveness of our approach. The details of the experiment settings and addi-
tional results are provided in appendix H.2. Moreover, we show that ∆-STNs are more robust to
hyperparameter initialization and perturbation scale in appendix I.

MNIST & FashionMNIST. We applied ∆-STNs on MNIST [29] and FashionMNIST [61] datasets.
For MNIST, we trained a multilayer perceptron with 3 hidden layers of rectified units [45, 17]. We
tuned 3 dropout rates that control the input and per-layer activations. For FashionMNIST, we trained a
convolutional neural network composed of two convolution layers with 32 and 64 filters, followed by 2
fully-connected layers. In total 6 hyperparameters were optimized: input dropout, per-layer dropouts,
and Cutout holes and length [9]. Both networks were trained for 300 epochs and a comparison was
made between STNs and ∆-STNs in terms of the best validation loss achieved by a given epoch as
shown in figure 5. The ∆-STNs was able to achieve a better generalization with faster convergence.

CIFAR-10. Finally, we evaluated ∆-STNs on the CIFAR-10 dataset [27]. We used the AlexNet [26],
VGG16 [51], and ResNet18 [20] architectures. For all architectures, we tuned (1) input dropout, (2)
per-layer dropouts, (3) Cutout holes and length, and (4) amount of noise applied to hue, saturation,
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(a) Time comparison (b) Schedule for dropouts (c) Schedule for data augmentation

Figure 6: (a) A comparison of the best validation loss achieved by random search, Bayesian optimization,
STNs, and ∆-STNs over time for AlexNet. ∆-STNs achieved the lowest validation loss more efficiently than
other methods. (b), (c): Hyperparameter schedules found by ∆-STNs for dropout rates and data augmentation
parameters.

Table 1: Final validation (test) losses / perplexities of each method on the image classification tasks and the
PTB word-level language modeling task.

Dataset Network RS BO STN Centered STN ∆-STN
MNIST MLP 0.043 (0.042) 0.042 (0.043) 0.043 (0.041) 0.041 (0.039) 0.040 (0.038)
FMNIST SimpleCNN 0.206 (0.214) 0.217 (0.215) 0.196 (0.218) 0.191 (0.212) 0.189 (0.209)

CIFAR10
AlexNet 0.631 (0.671) 0.594 (0.598) 0.474 (0.488) 0.431 (0.450) 0.425 (0.446)
VGG16 0.566 (0.595) 0.421 (0.446) 0.330 (0.354) 0.286 (0.321) 0.272 (0.296)
ResNet18 0.264 (0.298) 0.230 (0.267) 0.266 (0.312) 0.222 (0.258) 0.204 (0.238)

PTB LSTM 84.81 (81.46) 72.13 (69.29) 70.67 (67.78) 69.40 (66.67) 68.63 (66.26)

brightness and contrast to the image, (5) random scale, translation, shear, rotation applied to the
image, resulting in total of 18, 26, and 19 hyperparameters. Figure 6 shows the best validation loss
achieved by each method over time and the hyperparameter schedules prescribed by ∆-STNs for
AlexNet. ∆-STNs achieved the best generalization performance compared to other methods, in less
time.

5.3 Language Modelling

To demonstrate that ∆-STNs can be extended to different settings, we applied our method to an
LSTM network on the Penn Tree Bank (PTB) dataset [40], which has been popularly used for RNN
regularization benchmarks because of its small size [16, 43, 60, 38]. We trained a model consisted of
2 LSTM layers and tuned 7 hyperparameters: (1) variational dropout on the input, hidden state, and
output, (2) embedding dropout, (3) Drop-Connect [58], and (4) activation regularization coefficients.
A more detailed explanation on role of each hyperparameter and the experiment set-up can be found in
appendix H.3. The final validation and test perplexities achieved by each method are shown in Table 1.
The ∆-STN outperforms other baselines, achieving the lowest validation and test perplexities.

6 Conclusion

We introduced ∆-Self-Tuning Networks (∆-STNs), an improved hypernetwork architecture that
efficiently optimizes hyperparameters online. We showed that ∆-STNs fix subtle pathologies in
training STNs by (1) reparameterizing the hypernetwork, (2) modifying the training objectives, and
(3) linearzing the best-response hypernetwork. The key insight was to accurately approximate the
best-response Jacobian instead of the full best-response function. Empirically, we demonstrated
that ∆-STNs achieve better generalization in less time, compared to existing approaches to bilevel
optimization. We believe that ∆-STNs offer a more reliable, robust, and accurate deployment of
hyperparameter optimization based on hypernetwork approach, and offer an alternative method to
efficiently solve bilevel optimization problems.
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Broader Impact

Most application of deep learning involves regularization hyperparameters, and hyperparameter
tuning is one stage of a much longer pipeline. Hence, any discussion of societal impacts would
necessarily be speculative. One predictable impact of this work is to lessen the need for massive
computing resources to tune hyperparameters.
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