
Supplementary Material: Strongly Incremental
Constituency Parsing with Graph Neural Networks

Kaiyu Yang
Princeton University

kaiyuy@cs.princeton.edu

Jia Deng
Princeton University

jiadeng@cs.princeton.edu

1 Proofs about Oracle Actions

Given a constituency tree without unary chains, we prove the existence of oracle actions (Theorem 1)
by proving the correctness of an algorithm (Algorithm 1) for computing oracle actions. Further, we
prove that the oracle action sequence is unique. Before diving into the theorems and proofs, we first
define the relevant terms:

Definition 1 (Constituency tree). Given a sentence s = [w0, w1, . . . , wn−1] of length n, we define a
constituency tree for s as a rooted tree with arbitrary branching factors. It has n leaves labeled with
tokens w0, w1, . . . wn−1 from left to the right, whereas its internal nodes are labeled with syntactic
categories. The root node must be an internal node. In the degenerated case of n = 0, we define a
special constant empty_tree to be the constituency tree for s = [].

Definition 2 (Unary chain). Let T be a constituency tree. We say T contains unary chains if there
exist two internal nodes x and y such that y is the only child of x. Conversely, if such x and y do not
exist, we say T does not contain unary chains.

Then we present Algorithm 1 for computing oracle actions. Given a constituency tree T without
unary chains, it recursively finds and undoes the last action until T becomes empty_tree. The
algorithm has a time complexity of O(n log n), where n is the sentence length. It calls last_action n
times, and each call needs O(log n) for locating the last leaf of the tree.

Now we are ready to state and prove Theorem 1 and Theorem 2 in the main paper.

Theorem 1 (Existence of oracle actions). Let T be a constituency tree for a sentence of length
n. If T does not contain unary chains, there exists a sequence of actions a0, a1, . . . , an−1 such
that empty_tree(a0)(a1) . . . (an−1) = T . And this sequence of actions can be computed via
Algorithm 1.

Proof. We prove the correctness of Algorithm 1 by induction on the sentence length n.

When n = 0, we have T = empty_tree (Definition 1), and oracle_action_sequence(T) returns an
empty action sequence []. The conclusion holds straightforwardly.

When n > 0, it is sufficient to prove T ′ is a valid constituency tree without unary chains for a
sentence of length n− 1. We proceed by enumerating all possible execution traces in last_action.
The function contains two conditional statements and therfore 2 × 3 = 6 execute traces. We use
“Case i-j” to denote the execution trace taking the ith branch in the first conditional statement and the
jth branch in the second conditional statement.

• Case 1-1—last_leaf has siblings, and last_subtree is the root node.
We have last_subtree = last_leaf (the first conditional statement). So last_leaf is the root node
while being a leaf, which contradicts with the assumption that T is a constituency tree (Definition 1).

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

Algorithm 1: Computing the oracle actions for a constituency tree without unary chains
1 def oracle_action_sequence(T):
2 if T == empty_tree:
3 return []
4 else:
5 an−1 = last_action(T)
6 T ′ = Undo the last action an−1 on T
7 return oracle_action_sequence(T ′) + [a]
8
9 def last_action(T):

10 last_leaf = The last (rightmost) leaf in T
11 if last_leaf has siblings:
12 parent_label = None
13 last_subtree = last_leaf
14 else:
15 parent_label = The label of last_leaf ’s parent
16 last_subtree = last_leaf ’s parent
17
18 if last_subtree is the root node:
19 return attach(0, parent_label)
20 elif last_subtree has exactly one sibling and its sibling is an internal node:
21 new_label = The label of last_subtree’s parent
22 target_node = The index of last_subtree’s sibling
23 return juxtapose(target_node, parent_label, new_label)
24 else:
25 target_node = The index of last_subtree’s parent
26 return attach(target_node, parent_label)

. . .

last_subtree
last_leaf

new_label

target_node

target_node

. . .

𝑇" 𝑇

juxtapose

Figure A: Case 1-2. The last action is a juxtapose.

• Case 1-2—last_leaf has siblings; last_subtree is not the root node; last_subtree has exactly one
sibling, and its sibling is an internal node.
We have last_subtree = last_leaf (the first conditional statement). The local configuration of T
looks like Fig. A Right, on its left is T ′ obtained from T by undoing action juxtapose(target_node,
parent_label, new_label). T ′ is still a valid constituency tree without unary chains.

• Case 1-3—last_leaf has siblings; last_subtree is not the root node; last_subtree has either no
sibling, one leaf node as its sibling, or more than one siblings.
We have last_subtree = last_leaf (the first conditional statement). So last_subtree has either one
leaf node or more than one nodes as its siblings. These two cases are shown separately in Fig. B.
In both cases, T ′ is still a valid constituency tree without unary chains.

• Case 2-1—last_leaf has no sibling, and last_subtree is the root node.
We have last_subtree = last_leaf ’s parent (the first conditional statement). As shown in Fig. C, T ′
is empty_tree in this case, which is also a valid constituency tree without unary chains.

• Case 2-2—last_leaf has no sibling; last_subtree is not the root node; last_subtree has exactly one
sibling, and its sibling is an internal node.

2

last_subtree
last_leaf

target_node

𝑇" 𝑇

attach

last_subtree
last_leaf

target_node
attach

.

Figure B: Case 1-3. There are two possible cases depending on the number of siblings of last_subtree.
In both cases, the last action is an attach.

last_subtree

last_leaf

𝑇" 𝑇

attach
empty_tree

Figure C: Case 2-1. T ′ = empty_tree and last_subtree is the root of T . The last action is an attach.

We have last_subtree = last_leaf ’s parent (the first conditional statement). As Fig. D shows, T ′ is
still a valid constituency tree without unary chains.

• Case 2-3—last_leaf has no sibling; last_subtree is not the root node; last_subtree has either no
sibling, one leaf node as its sibling, or more than one siblings.
We have last_subtree = last_leaf ’s parent (the first conditional statement). So last_subtree is
an internal node. Since T does not contain unary chains, any non-root internal node must have
siblings. As a result, last_subtree has either one leaf node or more than one nodes as its sibling.
These two cases are shown separately in Fig. E. In both cases, T ′ is still a valid constituency tree
without unary chains.

We have proved T ′ to be a valid constituency tree for a sentence of length n−1 no matter which execu-
tion trace last_action takes. Applying the induction hypothesis, we know oracle_action_sequence(T ′)
outputs a sequence of actions a0, a1, . . . , an−2 such that empty_tree(a0) . . . (an−2) = T ′. Since
T ′(an−1) = T , we have finally derived empty_tree(a0) . . . (an−1) = T .

Theorem 2 (Uniqueness of oracle actions). Let T be a constituency tree for a sentence of length
n, and T does not contain unary chains. If oracle_action_sequence(T) = a0, a1, . . . , an−1, it is the
only action sequence that satisfies empty_tree(a0)(a1) . . . (an−1) = T .

Proof. We prove by contradiction. Assume there is different action sequence a′0, a
′
1, . . . , a

′
n−1 that

satisfies empty_tree(a′0)(a′1) . . . (a′n−1) = T . We first prove a′n−1 = an−1, in other words, an−1
is the only possible last action. Similar to Theorem 1, we prove by enumerating all execution traces.

• Case 1-1—last_leaf has siblings, and last_subtree is the root node.
Similarly, it contradicts with T being a constituency tree.

• Case 1-2—last_leaf has siblings; last_subtree is not the root node; last_subtree has exactly one
sibling, and its sibling is an internal node.

3

. . .

last_subtree

last_leaf

new_label

target_node

target_node

. . .

𝑇" 𝑇

juxtapose

Figure D: Case 2-2. The last action is an juxtapose.

last_subtree

last_leaf

target_node

𝑇" 𝑇

attach

last_subtree

last_leaf

target_node
attach

.

Figure E: Case 2-3. There are two possible cases depending on the number of siblings of last_subtree.
In both cases, the last action is an attach.

In Fig. A Right, it is apparent that parent_label = None. Also, a′n−1 must be a juxtapose action
since otherwise the gray node will introduce an unary chain in T ′. Therefore, a′n−1 = an−1.

• Case 1-3—last_leaf has siblings; last_subtree is not the root node; last_subtree has either no
sibling, one leaf node as its sibling, or more than one siblings.
In Fig. B, parent_label = None. No matter how many siblings last_subtree has, a′n−1 must be an
attach action. Therefore, a′n−1 = an−1.

The remaining three cases are similar, and we omit the details. Now that we have proved a′n−1 =
an−1, it is straightforward to apply the same reasoning to derive a′n−2 = an−2, a′n−3 = an−3 and all
the way until a′0 = a0. This contradicts with the assumption that a′0, a

′
1, . . . , a

′
n−1 is different from

a0, a1, . . . , an−1. Therefore, we have an unique sequence of oracle actions a0, a1, . . . , an−1.

2 Proofs about Connections with In-order Shift-reduce System

We prove Theorem 3 and Theorem 4 in the main paper; they reveal the connections between our
system with In-order Shift-reduce System (ISR) proposed by Liu and Zhang [LZ17]. Before any
formal derivation, we first illuminate the connections through an example to gain some intuition.

Fig. F shows a juxtapose action when parsing “Arthur is King of the Britons.” in our system, which
can be translated into 4 actions in ISR: reduce, PJ-NP, shift, PJ-PP. In the figure, UAJ denotes

4

S

NP VP

Arthur

King

NP
is

S

NP VP

Arthur
NP PP

King of

NP
is

juxtapose(2, PP, NP)

S

NP VP

Arthur

King

NP
is

S

NP VP

Arthur
NP

King

NP
is

reduce
S

NP VP

Arthur

King

NP
is

S

NP VP

Arthur
NP PP

King of

NP
is

S

NP VP

Arthur
NP

King

of

NP
is

(NP Arthur), (S, is, (VP, King, (NP

(NP Arthur), (S, is, (VP, (NP King)

(NP Arthur), (S, is, (VP, (NP King), (NP

(NP Arthur), (S, is, (VP, (NP King), (NP, of

(NP Arthur), (S, is, (VP, (NP King), (NP, of, (PP

PJ-NP shift PJ-PP

𝒰"#

𝒰$%&

𝒰′

𝜑

𝜉

Figure F: An juxtapose action when parsing “Arthur is King of the Britons.” in our attach-juxtapose
system. It can be translated into 4 actions in In-order Shift-reduce System.

our state space—the set of partial trees without unary chains. Whereas UISR denotes ISR’s state
space—the set of legal stack configurations. We represent a stack from left (stack bottom) to the right
(stack top). “(X” denotes a projected nonterminal X, while an S-expression such as “(NP Arthur)”
denotes a subtree in the stack. U ′ denotes the augmented space of partial trees; each element in U ′
is a constituency tree that may have a node on the rightmost chain marked as special (orange). We
observe a one-to-one correspondence between U ′ and UISR, which is denoted by the mapping ϕ.

We proceed to generalize this example to arbitrary state transitions in our system, which involves
formulating and proving Theorem 3 and Theorem 4 in the main paper. First, we assume a fixed
sentence and define the state spaces of our system and ISR:
Definition 3 (Space of partial trees). Given the sentence [w0, w1, . . . , wn−1], we define the space of
partial trees to be:

U = {t | ∃ 0 ≤ m ≤ n, s.t. t is a constituency tree for [w0, w1, . . . , wm−1]}. (1)

From theorem 1, we know that the state space of our system is a subset of U that does not contain
unary chains:

UAJ = {t | t ∈ U , t does not contain unary chains}. (2)
Definition 4 (Augmented space of partial trees). Given the sentence [w0, w1, . . . , wn−1]. We define
the augmented space of partial trees to be:

U ′ = {(t, i) | t ∈ U , i ∈ Z,−1 ≤ i < L(t)}, (3)

where L(t) denotes the number of internal nodes on the rightmost chain of t. We can define an
injective mapping ξ : UAJ → U

′:
ξ(t) = (t, L(t)− 1). (4)

In ISR, the parser can be trapped in a state that will never lead to a complete tree no matter what
actions it takes, e.g., the states where two tokens are at the bottom of the stack. We call such states
illegal states and prove a lemma characterizing the set of legal states.
Lemma 1 (Legal states in ISR). Let s be a stack configuration in In-order Shift-reduce System, it is a
legal state if and only if you can end up with a single partial tree in the stack by repeatedly executing
reduce.

Proof. For the “if” part, we fist keep executing reduce until there is only a single partial tree in the
stack. Then we can arrive at a complete tree by executing one PJ-X, several shift to consume all
remaining tokens, and one final reduce. Therefore, the stack s is legal.

For the “only if” part, s is legal. We prove by contradiction, assuming it is impossible to get a single
partial tree by executing multiple reduce. Then we must be stuck somewhere. Referring to the
definition of the reduce action [LZ17], there could be several reasons for being stuck: (1) The stack
has more than one element but no projected nonterminal; (2) the only projected nonterminal is at the
bottom of the stack; (3) there are two consecutive projected nonterminals. For all three cases, the
offending pattern must also exist in the original s, and no action sequence can remove them from s.
Therefore, s must be illegal, which contradicts the assumption.

5

Although there are illegal states in ISR, it is possible to avoid them using heuristics in practice. So
we do not consider them a problem for ISR. In the following derivations, we safely ignore illegal
states and assume ISR’s state space to consist of only legal states:

Definition 5 (Space of legal stack configurations). Given the sentence [w0, w1, . . . , wn−1], we define
UISR as the set of legal stack configurations in In-order Shift-reduce System.

As one of our main theoretical conclusions, ISR’s state space is equivalent to the augmented space of
partial trees; therefore, it is strictly larger than our state space:

Theorem 3 (Connection in state spaces). There is a bijective mapping ϕ : UISR → U
′ between the

legal states in In-order Shift-reduce System and the augmented space of partial trees.

Proof. For a legal stack s ∈ UISR, let L(s) be the number of projected nonterminals in s (introduced
by PJ-X actions in Liu and Zhang [LZ17]). We are abusing the notation a little bit as we have used
L(t) to denote the number of internal nodes on the rightmost chain of a tree t. But as we will show,
they are actually the same. If s is an empty stack, let t = empty_tree. Otherwise, let t be the tree
produced by repeatedly executing reduce until there is only one partial tree remaining in the stack.
This is always possible since s is a legal state (Lemma 1). Then we can define ϕ(s) = (t, L(s)− 1).
We prove ϕ is bijective by constructing its inverse mapping ϕ−1 : U ′ → UIRS.

Given any (t, i) ∈ U ′, t is a partial tree. We define the depth of a node in t as its distance to the root
node. Further, we extend the definition of in-order traversal from binary trees to trees with arbitrary
branching factors: the first subtree→ root node→ the second subtree→ the third subtree→ . . .

We define a mapping γ : U ′ → UIRS. Let γ(t, i) be the stack obtained by starting with an empty
stack and traversing the tree t in-order: At any subtree rooted at node x, (1) if node x is not on the
rightmost chain or depth(x) > i, we push the entire subtree x onto the stack and skip traversing the
nodes in it. (2) If node x is on the rightmost chain and depth(x) ≤ i, we push node x’s label as a
projected nonterminal and keep traversing the nodes in subtree x.

We now prove γ to be the inverse of ϕ, i.e. ϕ ◦ γ(t, i) = (t, i). It is straightforward that the stack
γ(t, i) has i+ 1 projected nonterminals, corresponding to nodes on the rightmost chain with depth
0, 1, . . . , i. So, L(γ(t, i))− 1 = i, and we only have to prove t to be the tree obtained by repeatedly
executing reduce on γ(t, i).

In the trivial case of t = empty_tree, we have L(t) = 0, and i must be −1. γ(t, i) is an empty
stack, and executing reduce on it will give empty_tree, which equals to t.

In the non-trivial case of t 6= empty_tree, we prove by induction on the number of reduce actions
(k) executed on the stack γ(t, i) to get a single tree.

When k = 0, γ(t, i) contains a single tree, which must be t itself.

When k > 0, let γ1(t, i) be the stack after executing one reduce on γ(t, i). We assert that γ1(t, i) =
γ(t, i − 1). We can see this by comparing the in-order traversal of (t, i) and (t, i − 1). The only
difference is how we process the subtree rooted at the ith node on the rightmost chain. When traversing
(t, i), we push a projected nonterminal and proceed to nodes in the subtree. When traversing (t, i−1),
we push the entire subtree and skip the nodes in it, which corresponds exactly to executing one
reduce on γ(t, i). Therefore, γ1(t, i) = γ(t, i− 1).

We only need k − 1 reduce actions to get a single tree from the stack γ1(t, i), or equivalently,
γ(t, i− 1). Applying the induction hypothesis, we will get the tree t by repeatedly applying reduce
on γ1(t, i). Therefore, we will also get the same t by repeatedly applying reduce on γ(t, i), i.e.
ϕ ◦ γ(t, i) = (t, i).

Since (t, i) is arbitrary, we have proved γ to be the inverse mapping of ϕ, and ϕ is thus bijective.

Corollary 1 (Connections in state spaces). ϕ−1 ◦ ξ : UAJ → UISR is an injective mapping from our
state space to ISR’s state space.

Proof. It is straightforward given that ξ : UAJ → U
′ is injective (Definition 4) and ϕ : UISR → U

′ is
bijective (Theorem 3).

6

The mapping ϕ−1 ◦ ξ bridges our state space and ISR’s state space. Not only is it injective, but it also
preserves actions—each action in our system can be mapped to a combination of actions in ISR. We
prove this for attach actions (Lemma 2) and juxtapose actions (Lemma 3) separately.

Lemma 2 (Translating attach actions to ISR). Let t1 and t2 be two partial trees without unary
chains, i.e., t1, t2 ∈ Uaj. If attach(i, X) brings t1 to t2, The following action sequence in In-order
Shift-reduce System will bring ϕ−1 ◦ ξ(t1) to ϕ−1 ◦ ξ(t2):

reduce, . . . , reduce︸ ︷︷ ︸
L(t1)−i−1

, shift, PJ-X︸ ︷︷ ︸
if X 6=None

, (5)

where L(t1) is the number of internal nodes on the rightmost chain of t1. X = None means the
optional argument parent_label is not provided; in this case, we exclude PJ-X.

Proof. We know ϕ−1 ◦ ξ(t1) = ϕ−1(t1, L(t1)− 1) (Definition 4). Recall that in Theorem 3 we have
proved that executing one reduce on ϕ−1(t, i) gives us ϕ−1(t, i− 1). Therefore, executing reduce
L(t1)− i− 1 times on ϕ−1(t1, L(t1)− 1) gives us ϕ−1(t1, i). We still have to execute one shift
and one optional PJ-X.

When X = None, we only have to execute a shift. The resulting stack is ϕ−1(t1, i) plus a new
token at the top. We prove that the new stack equals to ϕ−1(t2, L(t2) − 1). Since t2 is a result
of executing attach(i, None) on t1, we know L(t2)− 1 = i from the definition of the attach
action. So, we only have to prove that the new stack equals to ϕ−1(t2, i). We unfold the definition
of ϕ−1 (in the proof of Theorem 3) and compare the in-order traversal of (t2, i) and (t1, i). When
visiting the subtree rooted at target_node i in t2, we have the new token as the rightmost child; it
corresponds to the new token at the top of the stack. Therefore, ϕ−1(t2, i) equals to ϕ−1(t1, i) plus
the new token. We have proved the new stack to be ϕ−1(t2, L(t2) − 1) and therefore it equals to
ϕ−1 ◦ ξ(t2) (Definition 4).

When X 6= None, we have to execute a shift and a PJ-X. The resulting stack is ϕ−1(t1, i) plus a
new token and a projected nonterminal X at the top. Similarly, we want to prove the new stack to
equal to ϕ−1(t2, L(t2)− 1). The reasoning is similar, by comparing the in-order traversal of (t1, i)
and (t2, i). We thus omit the details.

Therefore, in ISR, we can arrive at the state ϕ−1 ◦ ξ(t2) from the state ϕ−1 ◦ ξ(t1) by executing
L(t1)− i− 1 reduce actions, one shift action and one optional PJ-X action.

Lemma 3 (Translating juxtapose actions to ISR). Let t1 and t2 be two partial trees without unary
chains, i.e., t1, t2 ∈ Uaj. If juxtapose(i, X, Y) brings t1 to t2, The following action sequence in
In-order Shift-reduce System will bring ϕ−1 ◦ ξ(t1) to ϕ−1 ◦ ξ(t2):

reduce, . . . , reduce︸ ︷︷ ︸
L(t1)−i

, PJ-Y, shift, PJ-X︸ ︷︷ ︸
if X 6=None

. (6)

Proof. Similar to Lemma 2, we first execute L(t1) − i reduce actions on ϕ−1 ◦ ξ(t1) =
ϕ−1(t1, L(t1) − 1) to get ϕ−1(t1, i − 1). We still have to execute one PJ-Y, one shift and
one optional PJ-X.

When X = None, we only have to execute a PJ-Y and a shift. The resulting stack is
ϕ−1(t1, i − 1) plus a projected nonterminal Y and a new token. We prove that the new stack
equals to ϕ−1(t2, L(t2) − 1). Since t2 is a result of executing juxtapose(i, None, Y) on t1,
we know L(t2) − 1 = i from the definition of the juxtapose action. So, we only need the new
stack to equal to ϕ−1(t2, i), which can be proved by comparing the in-order traversal of (t2, i) and
(t1, i− 1): In t2, the subtree rooted at Y has 2 children; the left child corresponds to the ith subtree
on the rightmost chain of t1, whereas the right child is a single leaf. When we reach Y in the in-order
traversal of t2, we first push its left subtree onto the stack. Now the stack equals to ϕ−1(t1, i− 1).
Then, we visit the node Y and its right child, which push the additional projected nonterminal Y and
a new token onto the stack. Therefore, ϕ−1(t2, i) is the new stack.

When X 6= None, we have to execute a PJ-Y, a shift, and a PJ-X. The derivation is similar, so we
omit the details.

7

Theorem 4 (Connection in actions). Let t1 and t2 be two partial trees without unary chains, i.e.,
t1, t2 ∈ Uaj. If a is an attach-juxtapose action that brings t1 to t2, there must exist a sequence of
actions in In-order Shift-reduce System that brings ϕ−1 ◦ ξ(t1) to ϕ−1 ◦ ξ(t2).

Proof. It follows straightforwardly from Lemma 2 and Lemma 3.

Corollary 2 (Connection in action sequences). Let t1 and t2 be two partial trees without unary
chains, i.e., t1, t2 ∈ Uaj. If there exists a sequence of attach-juxtapose actions that brings t1 to t2,
there must exist a sequence of actions in In-order Shift-reduce System that brings ϕ−1 ◦ ξ(t1) to
ϕ−1 ◦ ξ(t2).

Proof. It is straightforward to prove using Theorem 4 and induction on the number of actions for
bringing t1 to t2. Details are omitted.

3 Separating Content and Position Features in GCN Layers

We use the encoder in Kitaev and Klein [KK18]. They showed that separating content and position
features improves parsing performance. Specifically, the input token features to the encoder are the
concatenation of content features (e.g., from BERT [DCLT19] or XLNet [YDY+19]) and position
features from a learnable position embedding matrix P . Kitaev and Klein [KK18] proposed a variant
of self-attention that processes two types of features independently. As a result, the output token
features are also the concatenation of content and position.

We extend this idea to GCN layers. Vanilla GCN layers perform a linear transformation on the input
node feature (i.e. y = Θx + b) before normalizing and aggregating the neighbors1. We assume
the node features to be concatenation of content and position: x = [xc, xp], and perform linear
transformations for them separately: y = [yc, yp] = [Θcx + bc,Θpx + bp]. As a result, the node
features at each GCN layer are also concatenation of content and position. As stated in the main
paper, we merge the two types of features when generating attention weights w for nodes on the
rightmost chain.

To study the effect of the separation, we present an ablation experiment. We compare our model with
vanilla GCN layers and with GCN layers that separate content and position. We also scale the feature
dimensions so that both models have approximately the same number of parameters. Results are
summarized in Table A. We run each experiment 5 times and report the mean and its standard error
(SEM). For PTB, we use XLNet as the pre-trained embeddings. Results show that separating content
and position improves performance in all settings, which is consistent with prior work [KK18].

Table A: Ablation study separating content and positions.

GCN layer PTB CTB

EM F1 EM F1

Vanilla GCN [KW17] 58.90 ± 0.23 96.25 ± 0.06 49.54 ± 0.65 93.49 ± 0.27
Separating content and position 59.17 ± 0.33 96.34 ± 0.03 49.72 ± 0.83 93.59 ± 0.26

4 Error Categorization using Berkeley Parser Analyzer

We use Berkeley Parser Analyzer [KHCK12] to categorize the errors of Mrini et al. [MDB+20] and
our model (with XLNet) on PTB. Results are shown in Table B. Two methods have the same relative
ordering of error categories. The 3 most frequent categories are “PP Attachment”, “Single Word
Phrase”, and “Unary”. Compared to Mrini et al., our method has more “PP Attachment” (342 vs.
320) and “UNSET move” (33 vs. 23), but fewer “Clause Attachment” (110 vs. 122) and “XoverX
Unary” (48 vs. 56).

1https://pytorch-geometric.readthedocs.io/en/latest/notes/create_gnn.html

8

https://pytorch-geometric.readthedocs.io/en/latest/notes/create_gnn.html

Table B: Categorization of parsing errors made by Mrini et al. [MDB+20] and our model (with
XLNet). For each category, we show its occurrence and the number of brackets attributed to it.

Error category Mrini et al. [MDB+20] Ours (XLNet)

#Errors #Brackets #Errors #Brackets

PP Attachment 320 746 342 804
Single Word Phrase 267 325 259 324
Unary 237 237 235 235
NP Internal Structure 200 230 202 236
Different label 197 394 197 394
Modifier Attachment 137 251 131 283
Clause Attachment 122 398 110 334
UNSET add 85 85 88 88
UNSET remove 78 78 71 71
Co-ordination 68 138 65 120
XoverX Unary 56 56 48 48
NP Attachment 44 160 39 135
UNSET move 23 62 33 113
VP Attachment 12 37 17 56

References
[DCLT19] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of

deep bidirectional transformers for language understanding. In North American Chapter of the
Association for Computational Linguistics (NAACL), 2019.

[KHCK12] Jonathan K Kummerfeld, David Hall, James R Curran, and Dan Klein. Parser showdown at the
wall street corral: An empirical investigation of error types in parser output. In Conference on
Empirical Methods in Natural Language Processing (EMNLP), pages 1048–1059, 2012.

[KK18] Nikita Kitaev and Dan Klein. Constituency parsing with a self-attentive encoder. In Annual Meeting
of the Association for Computational Linguistics (ACL), 2018.

[KW17] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations (ICLR), 2017.

[LZ17] Jiangming Liu and Yue Zhang. In-order transition-based constituent parsing. Transactions of the
Association for Computational Linguistics, 5:413–424, 2017.

[MDB+20] Khalil Mrini, Franck Dernoncourt, Trung Bui, Walter Chang, and Ndapa Nakashole. Rethinking
self-attention: Towards interpretability in neural parsing. arXiv preprint arXiv:1911.03875, 2020.

[YDY+19] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and Quoc V Le.
Xlnet: Generalized autoregressive pretraining for language understanding. In Conference on Neural
Information Processing Systems (NeurIPS), 2019.

9

	Proofs about Oracle Actions
	Proofs about Connections with In-order Shift-reduce System
	Separating Content and Position Features in GCN Layers
	Error Categorization using Berkeley Parser Analyzer

