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Abstract

The ability to base current computations on memories from the past is critical
for many cognitive tasks such as story understanding. Hebbian-type synaptic
plasticity is believed to underlie the retention of memories over medium and long
time scales in the brain. However, it is unclear how such plasticity processes are
integrated with computations in cortical networks. Here, we propose Hebbian
Memory Networks (H-Mems), a simple neural network model that is built around
a core hetero-associative network subject to Hebbian plasticity. We show that
the network can be optimized to utilize the Hebbian plasticity processes for its
computations. H-Mems can one-shot memorize associations between stimulus
pairs and use these associations for decisions later on. Furthermore, they can
solve demanding question-answering tasks on synthetic stories. Our study shows
that neural network models are able to enrich their computations with memories
through simple Hebbian plasticity processes.

1 Introduction

Virtually any task faced by humans has a temporal component and therefore demands some form of
memory. Consequently, a variety of memory systems and mechanisms have been shown to exist in
the brain of humans and other animals [1]. These memory systems operate on a multitude of time
scales, from seconds to years. Yet, it is still not well understood how memory is implemented in the
brain and how cortical neuronal networks utilize these systems for computation. Most computational
models of memory focus on working memory. However, many everyday tasks necessitate a more
associative type of memory that acts on a longer time scale. Imagine for example a person reading
a book. The person encounters names of people and has to associate these names with specific
characteristics and events. As the person continues to read through the book, she has to remember
many such associations to build an internal model of the story. This is a veritable computational
problem and yet humans are able to solve it seemingly without effort.

Due to its very limited capacity and its short-term nature, working memory cannot satisfy the needs for
such tasks. It is widely believed that longer-term storage capabilities are based on Hebbian synaptic
plasticity [2]. While it has been shown that Hebbian plasticity can implement auto-associative
and hetero-associative memory [3]–[5], it was rarely demonstrated that it can be utilized by neural
networks for demanding tasks [6], [7]. There exists abundant evidence that memory is not an
automatic process. Rather, cortical networks — in particular networks in prefrontal cortex — are
believed to control the storage and retrieval of associations in memory [8]. In this article, we propose a
simple network architecture inspired by this idea: the Hebbian Memory Network (H-Mem). The core
of H-Mem is a simple hetero-associative network where synapses are subject to Hebbian plasticity.
The content to be stored there, and retrieved from there, is defined and prepared by a number of
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small sub-networks around that memory. We then train these networks to make optimal use of the
Hebbian plasticity in the associative network. We show that this simple architecture is sufficient to
solve rather complex tasks that require substantial amounts of memory. We first show that H-Mem
can memorize in a single shot associations between stimulus pairs and later use these associations for
decisions. Second, we demonstrate that this biologically plausible architecture can solve all of the
bAbI tasks [9]. This suite of question answering tasks on synthetic stories was introduced to probe the
story-understanding capabilities of deep neural networks. We find that our model outperforms long
short-term memory (LSTM, [10]) networks on such tasks and performs comparable to or better than
memory-augmented neural networks recently proposed in the machine learning literature [11]–[13].

2 Related work

Several models have been proposed for the implementation of working memory capabilities in neural
networks. They have been divided into three categories: classical persistent activity, activity silent,
and dynamic coding [14]. While models based on persistent activity do not engage any synaptic
plasticity mechanism [15], activity-silent models and some dynamic coding models exploit short-term
synaptic plasticity or neuronal adaptation [16]–[18]. The use of Hebbian plasticity for working
memory has been proposed recently [19].

Associative memory can be implemented in neural networks in two flavors. In a hetero-associative
memory, a pattern k is associated with another pattern v. The classical model for hetero-associative
memory is the Willshaw network [3], which implements this association simply in the connection
matrix between two layers of neurons. The Hopfield network is the classical example of an auto-
associative network. Here, patterns are associated with themselves in a recurrent neural network [4].
While storage capacity has been thoroughly studied in such models, they have rarely been used for
demanding computations.

The idea to utilize rapidly changing ("fast") weights in artificial neural networks for memory was
already used in [20], [21] and was adopted recently [6], [7]. In [6], Hebbian plasticity was used to
bind input representations to labels for supervised learning. In general, investigations on how to
integrate memory into deep learning led to a family of models collectively referred to as memory-
augmented neural networks [9], [11], [12], [22]–[25]. The memory module in these models is very
much a differentiable version of a digital memory. In contrast, H-Mem is based on an associative
memory implemented by Hebbian plasticity. The neural network then does not learn to used the
memory module, it rather learns to make use of Hebbian synaptic plasticity. A model that is based
on outer-product attention was recently proposed in [26]. Their model utilizes outer products to
construct a set of hetero-associative memories representing relationships between items stored in an
item memory. Entity Networks [13] have been shown to perform well on the bAbI tasks. Due to
heavy use of weight sharing, they are however less attractive as a model for memory utilization in
the brain. The bAbI tasks were also tackled using tensor product representations instead of memory
control [27]. Metalearned Neural Memory uses a deep neural network as a memory module, in which
each layer is updated with a perceptron learning rule using meta-learned targets [28]. Training of
networks with synaptic plasticity has been explored in [29], but there the idea was to optimize the
parameters of the plasticity rule and not to optimize the control of the plasticity by other neural
networks.

3 Results

3.1 Hebbian Memory Networks

It is widely believed that the brain uses Hebbian synaptic plasticity to store memories over longer
time scales. We used the simplest possible implementation of this idea in our model, that is, a
hetero-associative memory module which is controlled by simple networks that store and recall
information, see Fig. 1 and Methods for detailed equations. Consider a set X of possible inputs to
the network. Inputs from X are presented to the network in a sequential manner. We denote the
input at time step t as xt ∈ X . Each input xt is either representing some fact that might be useful to
store, or a query to which the network should respond with an output that can be interpreted as an
action or an answer. Inputs can be arbitrary objects, we will consider below images and sentences as
examples. Inputs are embedded in d-dimensional space Rd using an input encoder, resulting in the
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Figure 1: H-Mem schema. Inputs xt are mapped to a continuous space by an input encoder IE
(bottom). Depending on whether the input is a fact or a query, either the store-branch (left) or
the recall-branch (right) is entered. Store-branch: Two single-layer neural networks with input
et. Network with weight matrix W s

key outputs a key-vector ks
t (ReLU nonlinearity denoted as σ).

Network with weight matrix W s
val outputs a value-vector vs

t . Associations between key-vector and
value-vector are stored in the memory matrix W assoc (middle) through Hebbian plasticity. Recall-
branch: A single layer neural network with weight matrix W q

key gets as input the input embedding
et and the previously recalled value vector (in the simpler feed-forward model, the latter input is
missing). It outputs a key-vector kq

t,n which is used to query the memory matrix for the associated
value va

t,n. In the recurrent model, several memory queries can be performed. After N such queries,
the final value-vector va

t,N is passed through the output layer to produce the final answer ât.

embedding vector et. For images, we used a convolutional neural network (CNN) for this embedding,
for sentences, we used a simple linear embedding. If the input is a fact, the store-branch is entered
(left branch in Fig. 1), which potentially stores some information about et in the memory module. In
the case of a query, the recall-branch is entered (right branch in Fig. 1), which can recall information
based on et from the memory module.

In the store-branch, the input-embedding et is the input to two single layer neural networks (with
ReLU nonlinearities). We call the output activities of this networks the key-vector ks

t ∈ Rm and
the value-vector vs

t ∈ Rm respectively. These activity vectors are applied to the memory module,
which is a single-layer hetero-associative neural network with matrix W assoc ∈ Rm×m. We then use
a Hebbian plasticity rule for establishing the association between key-vector ks

t and value-vector vs
t :

∆W assoc
kl = γ+(wmax −W assoc

kl )vst,kk
s
t,l − γ−W assoc

kl kst,l
2, (1)

where γ+ > 0, γ− > 0, and wmax are constants. The first term (wmax − W assoc
kl ) implements

a soft upper bound wmax on the weights. The Hebbian term vst,kk
s
t,l strengthens connections be-

tween co-active components in the key- and value-vectors. Finally, the last term generally weakens
connections from the currently active key-vector components. Since the Hebbian component strength-
ens connections to active value-vector components, this emphasizes the current association and
de-emphasizes old ones. This update is simlar to Oja’s rule [30], but note that the quadratic term acts
on the pre-synaptic neuron. In summary, the store branch generates a key- and a value-representation
which are associated through Hebbian synaptic plasticity.

We now consider a query input. In this case, the recall-branch is followed. We consider two versions
of the model. In the simple feed-forward model, et is transformed by a single-layer neural network
to a key-vector kq

t ∈ Rm and applied to the memory module. The activation of the key-vector
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Figure 2: Single-shot associations with H-Mems. A) H-mem network with a CNN as input encoder
(left) and network input (bottom right). Three image pairs are presented sequentially as facts. During
delays between images, random gray-scale images are shown (up to 40 time-steps delay; delay of one
time step is shown). Image pairs (x1, x3, and x6) show a handwritten digit (from the MNIST data
set) together with an object or an animal (from the CIFAR-10 data set). After all of those images
have been presented to the network, it receives a query image (x7). The network is required to output
the label of the handwritten digit that appeared together with an image of the same class as the query
image. To solve this task the network has to one-shot memorize associations between a handwritten
digit and an object or an animal that appear together in an image (and use these associations to give
the correct answer). B) Comparison of the performance of H-Mem with an LSTM network in this
association task. Shown is the test accuracy for various between-image delays. The accuracy of the
LSTM model drastically drops at between-image delays of 20 while the H-Mem model’s accuracy
stays on a constant high level.

neurons in the memory module activates the value neurons, giving rise to the recalled value-vector
va
t = W assockq

t . The model output ât is then given by another neural layer followed by a softmax.
In the second version of the model, we consider a recurrent recall-branch. In this case, N recalls
can be initiated before the output is given. More precisely, at recall-step n, the computation of the
key-vector kq

t,n is based not only on the input embedding et, but also on the value-vector of the
previous recall va

t,n−1 (see the "recall-branch" in Fig. 1; for the first recall, the zero-vector is used for
the value-vector). After N such recalls, we compute the output ât of the network based on va

t,N .

In order to test whether the control networks can make use of the Hebbian plasticity in the memory
module, we trained the network end-to-end with gradient descent on a variety of tasks (see below),
where the correct response to queries was provided as the target network output. The weight matrices
of the network W s

key, W s
val, W

q
key, and Wout (see Fig. 1) were optimized. Note that the association

matrix W assoc of the memory module was not optimized. This matrix is a dynamic variable just
like neuron activations and is updated according to Eq. (1) after the key- and value-vector have been
computed in the store-branch (see Methods).

3.2 Flexible associations through Hebbian plasticity

To test the ability of the model to one-shot memorize associations and to use these associations later
when needed, we conducted experiments on a task that requires to form associations between entities
that appear together in a sequence of images.
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Daniel travelled to the garden.
Sandra went back to the bedroom.
John travelled to the bedroom.
Sandra grabbed the apple there.
Daniel travelled to the kitchen.
Sandra left the apple.

Statements:

Query:

Where is the apple?        bedroomAnswer:

Figure 3: Sample story from task 2 of the bAbI data set and the evolution of the validation
error of H-Mem for this task. A) Example story from task 2 of the bAbI data set. It contains
a set of statements, a question, and the corresponding answer. One difficulty of the task is that
several statements and their relative temporal order have to be considered to answer the question. B)
Evolution of the validation error over 100 epochs of the feed-forward (blue) and recurrent (green)
H-Mem model for task 2 of the bAbI data set. Since multiple supporting statements have to be chained
to answer the questions in this task, the feed-forward model fails to solve it. The recurrent model,
performing N = 3 memory queries, easily solves this task (results are shown for our models with LE
in the 10k training examples setting). Further examples of bAbI tasks along with the validation error
of our H-Mem models on these tasks are shown in Fig. S1 of the Supplementary.

In each instance of this task, we randomly chose three classes out of the 10 classes of the CIFAR-10
data set and randomly associated a unique digit (between 0 and 9) to each. For example, we associated
the digit 5 with the class "dogs", the digit 8 with the class "horses", and the digit 1 with the class
"cars" (see Fig. 2A, bottom). We then generated images that showed a randomly drawn instance
of the CIFAR-10 class on the right and a randomly drawn example of the associated digit from the
MNIST data set on the left. After these images have been presented to the network, it received an
additional query image. The query image showed another randomly drawn sample from one of the
previously shown CIFAR-10 classes, but no handwritten digit. The network was required to output
the digit that was temporarily associated with the query image class. Note that the classes, associated
digits, and specific class images were freshly drawn for each example. Hence, the network had to
store the association in its memory during inference. To increase the difficulty of the task, we added
a delay of up to 40 time steps after each image, during which the network received (up to 40) random
gray-scale images (see Fig. 2A, bottom).

We trained a feed-forward H-Mem network on this task (i.e., the number of memory queries N
was set to 1). The network had a hetero-associative memory with a square association matrix of
order m = 200. It was trained for 100 epochs with a batch size of 32. We used a CNN as input
encoder in this task (Fig. 2A). The input encoder summarizes each input image with a dense feature
vector of size d = 128 (see Supplementary). The error was computed when the network produced its
prediction after the query and gradients were propagated through all time steps of the computation.

In Fig 2B we compare our model to a standard LSTM network, using an increasing delay between
presented images. The LSTM network consisted of one layer of 200 LSTM units with the same
CNN architecture as input encoder. For small between-image delays, the performance of the LSTM
network is comparable to H-Mem’s performance (although H-Mem is slightly better). While the
accuracy of the LSTM network drastically drops at some point, H-Mem’s performance is largely
insensitive to the considered between-image delays.

3.3 Question answering through Hebbian plasticity

Story understanding necessitates rapid and flexible memory on long time scales. A system understands
a story, if it can correctly answer questions after it has been exposed to it. Hence, story understanding
can be probed with question answering (QA) tasks on stories. To test how well H-Mem can utilize
Hebbian plasticity for story understanding, we evaluated the model on the bAbI data set [9]. The data
set contains 20 different types of synthetic QA tasks, designed to test a variety of reasoning abilities
on stories. Each of these QA tasks consist of a sequence of statements followed by a question whose
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answer is typically a single word (in a few task, answers are multiple words). We provided the answer
to the model as supervision during training, and it had to predict it at test time on a separate test set.
Note that statements that provide the answer to a question are given among other statements which
are irrelevant for that question (see Figure 3A for an example). Since the question is given as the last
sentence and we did not indicate to the model which of the statements are relevant, it had to store
many facts and infer from the query which facts to combine from memory in order to answer the
question. The performance of the model was measured using the average error on the test data set
over all tasks and the number of failed tasks (the model had failed to solve a task if the test error was
above 5 % for that task).

Each instance of a task consists of a sequence of T sentences 〈x1, . . . , xT 〉 (with T ≤ 321), where
the last sentence is a question, and an answer a. We represent each word j in a given sentence xt
by a one-hot vector wt,j of length V (where V is the vocabulary size). In contrast to previous work
([11], [13]), we did not limit the number of sentences in a story.

We evaluated three different input embeddings (IE in Fig. 1) for sentences. The first one is the
standard bag-of-words (BoW) representation (see Supplementary). As pointed out in [11], this
representation has the drawback that it cannot capture the order of the words in the sentence, which is
important for some tasks. We therefore used a position encoding (PE) representation that encodes the
position of the words within a sentence (see [11] and Supplementary). As a third option, we found
it helpful to let the model choose for itself which type of sentence encoding to use. We therefore
also evaluated a learned encoding (LE, see Supplementary and [13]). In order to enable our models
to capture the temporal context of sentences, we also used a temporal encoding for sentences as
introduced in [11] (see Supplementary).

We trained an H-Mem network with an embedding dimension d of 80 and a hetero-associative
memory with a square association matrix of order m = 100. We used the recurrent model with the
number of memory queries N set to 3. The networks were trained for 100 epochs on 10 000 examples
per task with a batch size of 128 (see Supplementary for details to the model and the training setup).
Similar to previous work [11], [13], we performed three independent runs with different random
initializations and report the results of the model with the highest validation accuracy in these runs.

In Table 1 we compare our model to various other alternative models in the literature: an LSTM
network [9], the Dynamic Neural Turing Machine (D-NTM) [12], the End-to-End Memory Network
(MemN2N) [11], and the Entity Network (EntNet) [13]. We compare the performance of these models
in terms of their mean error, error on individual tasks, and the number of failed tasks (results of the
alternative models were taken from the respective papers). When considering H-Mem with various
input encodings, we found that the position encoding representation gives a clear improvement over
bag-of-words, as demonstrated on tasks 4, 5, 15 and 18, where word ordering is particularly important.
The learned encoding (LE) is clearly the best input embedding for the H-Mem model. With this
input encoding, H-Mem solves 16 of the 20 tasks. H-Mem typically struggles with tasks that demand
additional reasoning on memorized information (tasks 16, 17, and 19). We will show below that this
can be resolved with a memory-dependent memorization strategy. H-Mem with any type of input
encoding outperforms the LSTM network and the D-NTM (the D-NTM is slightly better in the mean
error for BoW encoding). With the learned encoding, it is nearly as good as the MemN2N model
(with just one solved task difference), despite the fact that it uses a very simple biologically plausible
associative memory with Hebbian plasticity. To test how well the model performs on fewer training
examples, we also evaluated its performance on a version of the data set with 1000 training examples
(as done in [9], [11], [13]). While Entitiy Networks solve all tasks when trained with 10k examples,
H-Mem with PE and LE outperforms the EntNet model in the 1k training example setting. This
indicates that the simpler H-Mem model is better suited for smaller data sets (see Table S1 in the
Supplementary for test error rates on all 20 bAbI tasks for 1k training examples).

In Fig. 3B we compare the performance of the feed-forward model to that of the recurrent version on
bAbI task 2. The recurrent model outperforms the feed-forward model in this task. The feed-forward
model fails to solve this task since it can perform only one memory query, while this task requires
chaining of multiple statements, which can be done only by subsequent memory queries. In general,
we observed a variety of tasks that could be solved by our recurrent model but not by the feed-forward
model (see Table S2 in the Supplementary for detailed results).

We hypothesized that the model learns (a) to extract the relevant key-value pairs from facts, stores
that in memory, and (b) to extract essential keys from queries in order to retrieve the informative
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Table 1: Test error rates (in %) on the 20 bAbI QA tasks for models using 10k training examples
(botom: mean test errors for 1k training examples). Keys: BoW = bag-of-words representation; PE =
position encoding representation LE = learned encoding. Results of the MemN2N model (for 10k
training examples) are given for the larger model reported in the Appendix of [11].

Baseline H-Mem

Task LSTM D-NTM MemN2N EntNet BoW PE LE

1: Single Supporting Fact 0.0 4.4 0.0 0.0 0.0 0.0 0.0
2: Two Supporting Facts 81.9 27.5 0.3 0.1 0.2 0.0 0.2
3: Three Supporting Facts 83.1 71.3 2.1 4.1 30.5 24.9 26.9
4: Two Arg. Relations 0.2 0.0 0.0 0.0 37.8 0.0 0.0
5: Three Arg. Relations 1.2 1.7 0.8 0.3 11.6 1.8 1.3
6: Yes/No Questions 51.8 1.5 0.1 0.2 1.2 1.5 1.2
7: Counting 24.9 6.0 2.0 0.0 0.5 6.8 0.8
8: Lists/Sets 34.1 1.7 0.9 0.5 0.7 0.8 0.5
9: Simple Negation 20.2 0.6 0.3 0.1 2.9 6.6 3.3
10: Indefinite Knowledge 30.1 19.8 0.0 0.6 1.4 1.5 1.5
11: Basic Coreference 10.3 0.0 0.0 0.3 0.0 0.0 0.0
12: Conjunction 23.4 6.3 0.0 0.0 0.0 0.0 0.0
13: Compound Coref. 6.1 7.5 0.0 1.3 0.0 0.0 0.0
14: Time Reasoning 81.0 17.5 0.2 0.0 0.0 0.3 1.1
15: Basic Deduction 78.7 0.0 0.0 0.0 10.6 0.0 0.0
16: Basic Induction 51.9 49.7 51.8 0.2 53.6 54.3 54.8
17: Positional Reasoning 50.1 1.3 18.6 0.5 38.7 41.1 28.7
18: Size Reasoning 6.8 0.2 5.3 0.3 44.3 6.8 1.9
19: Path Finding 90.3 39.5 2.3 2.3 74.8 70.0 77.1
20: Agent’s Motivations 2.1 0.0 0.0 0.0 0.0 0.0 0.0

Mean error 36.4 12.8 4.2 0.5 15.4 10.8 10.0
Failed tasks (err. > 5 %) 16 9 3 0 8 7 4

On 1k training data
Mean error 51.3 - 13.9 29.6 31.0 26.4 25.9
Failed tasks (err. > 5 %) 20 - 11 15 15 13 13

values. We performed an analysis to test this idea by computing the cosine similarity of the recall
key (resp. the recalled value) to keys (and values) of previous storing operations in bAbI task 1.
The similarity of keys was 0.996 ± 0.004 for sentences with the same person as the person in the
query (0.020± 0.028 otherwise). For values, the similarity was 0.981± 0.026 for sentences with the
same place as the answer place (0.323± 0.119 otherwise). This indicates that the model learned to
associate persons to places (see Supplementary for details).

To summarize, we found that Hebbian synaptic plasticity is sufficient to solve rather demanding
question-answering tasks on stories. H-Mem can compete with previous deep-learning approaches
on theses tasks that used a more computer-like digital memory module. We further found that several
memory recalls are necessary to solve most tasks in this domain.

3.4 Memory-dependent memorization

In the model considered above, since the computation of key- and value-vectors in the store-branch
depends solely on the current input, new key-value pairs are stored in memory without taking
the memory content into account. Here, we present an extension to the H-Mem model where
the computation of the value-vector during storage is dependent on the memory content. More
specifically, in the store-branch we compute — just like before — a key-vector ks

t and a value-vector
v̂s
t from the input embedding et. Then, however, we read from memory once, using the key-vector

ks
t to obtain the associated value ṽs

t . Vectors v̂s
t and ṽs

t are then concatenated and passed through
a linear layer to produce a vector vs

t . We then use Eq. (1) for establishing the association between
key-vector ks

t and the new value-vector vs
t .
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Table 2: Mean test error rates (in %) on the 20 bAbI QA tasks for models using 10k training examples
(top) and 1k training examples (bottom). H-Mem results are given for the extended model with
memory-dependent memorization and learned encoding (LE). Results of the MemN2N model (for
10k training examples) are given for the larger model reported in the Appendix of [11].

LSTM D-NTM MemN2N EntNet H-Mem

Mean error 36.4 12.8 4.2 0.5 0.6
Failed tasks (err. > 5 %) 16 9 3 0 0

On 1k training data
Mean error 51.3 - 13.9 29.6 22.9
Failed tasks (err. > 5 %) 20 - 11 15 12

We evaluated this extended model on the bAbI tasks. The networks were trained for 250 epochs on
10 000 examples per task with a batch size of 128 and learned encoding (see Supplementary for more
details to the training setup). As above, we performed three independent runs with different random
initializations and report the results of the model with the highest validation accuracy in these runs
(the results are summarized in Table 2, see Table S3 in the Supplementary for results on the individual
tasks).

H-Mem solves all the bAbI tasks with a mean error over all 20 tasks of 0.6 %, outperforming the
results of MemN2N [11]. It also outperforms the LSTM network of [9] by 35.8 % and the D-NTM
[12] by 12.2 % in terms of mean error. H-Mem performs almost as good as the EntNet [13] model
(with just 0.1 % difference in the mean error). We also evaluated our extended model in the 1k
training example setting where it outperforms the EntNet model in both, the number of solved tasks
and the mean error (see Table 2; for results on individual tasks see Table S3 in the Supplementary).

4 Methods

The model was implemented in TensorFlow (the code it available at https://github.com/IGITUGraz/H-
Mem). Our model takes a sequence of inputs 〈x1, . . . , xT 〉. Each input xt at time step t can either be
a fact or a query to which the network should respond with an answer ât.

Input encoder Let 〈x1, . . . , xt〉 be the given input sequence. Each xt is converted into a vector
et ∈ Rd by mapping it to a continuous embedding space using an input encoder (IE). We do not
restrict the type of the input encoder. It has to be chosen for the task at hand. Typical choices include
a CNN, in the case of inputs being images, or a simple linear embedding for sentences.

Depending on whether the input xt represents some fact or a query, the input in the embedding space,
that is et, enters either the store-branch or the recall-branch. The other branch is then completely
inactive in that time step t. We start by describing the store-branch.

Store-branch In the store-branch, we compute a vector ks
t by passing the input-embedding et

through a weight matrix W s
key of size m× d followed by a ReLU nonlinearity:

ks
t = ReLU(W s

keyet), (2)

where ReLU(z) = (ReLU1(z), . . . ,ReLUm(z))ᵀ and ReLUi(z) = max(0, zi). We call ks
t the

key-vector. Similarly, we compute a value-vector vs
t by using another matrix W s

val with the same size
as W s

key:
vs
t = ReLU(W s

valet). (3)

We then use a Hebbian plasticity rule for establishing the association between key-vector ks
t and

value-vector vs
t . The associative memory module is represented by a matrix W assoc,t of size m×m.

Note that the association weight matrix actually depends on t (this was suppressed in the notation in
Results for simplicity). Here, we indicate the time-step as a superscript of the matrix. Weight changes
are given by:

∆W assoc,t
kl = γ+(wmax −W assoc,t

kl )vst,kk
s
t,l − γ−W

assoc,t
kl kst,l

2, (4)
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where γ+ > 0, γ− > 0, and wmax are constants. The association weight matrix is then updated
according to W assoc,t+1 = W assoc,t + ∆W assoc,t.

Recall-branch We now consider a query input. Here, the recall-branch is followed and the vector
et representing the query in the embedding space and a vector va

t,n−1 are concatenated and passed
through a matrix W q

key of size m×d+m followed by a ReLU nonlinearity to compute the key-vector
kq
t,n (we use t, n to index the key- and value-vectors at the nth memory query in time step t):

kq
t,n = ReLU(W q

key(eᵀt ,v
a
t,n−1

ᵀ)ᵀ), (5)

The initial value-vector, that is va
t,0, is set to the zero-vector. The key-vector kq

t,n at time t is then used
to extract the associated value-vector from memory by taking the matrix-vector product of W assoc,t

and the key-vector kq
t,n: va

t,n = W assoc,tkq
t,n.

Generating the final prediction The queried value after N queries represented by the vector va
t,N

is then passed through a final weight matrix Wout of size V × m and a softmax to produce the
predicted answer:

ât = softmax(Woutv
a
t,N ), (6)

where softmax(z) = (softmax1(z), . . . , softmaxm(z))ᵀ and softmaxi(z) = ezi/
∑

j e
zj . The

weights W s
key, W s

val, W
q
key, and Wout are learned during training by minimizing the cross-entropy

loss between â and the true answer a using the Adam optimizer [31]. The associative memory matrix
W assoc is initialized for each input sequence 〈xt〉 with all its values set to zeros. A schema of the
model is shown in Fig. 1A.

5 Discussion

In this article, we have asked whether neural networks can harness Hebbian synaptic plasticity for
computations that demand memories on longer time scales. We found that a rather simple model
is sufficient to tackle an association task as well as question-answering tasks on synthetic stories.
This shows that Hebbian plasticity is a mechanism that can enrich neural network computations with
longer memories. In particular, we found that H-Mem outperforms LSTM networks in many such
tasks, indicating that the more long-term nature of synaptic plasticity is superior to the activity-based
memory of LSTM networks in the considered situations.

We have optimized our networks with gradient descent, using a variant of the backpropagation
algorithm. This algorithm is not biologically plausible. Hence, our study does not allow us to
directly conclude anything about how such tasks could be learned in biological neural systems. We
hypothesize that evolutionary processes may have evolved circuitry for some very important tasks
and that further plasticity may be used to fine-tune the circuitry. Alternatively, recently proposed
biologically plausible variants to backpropagation may be interesting in this context [32]–[34]. It
remains to be tested however whether these variants are powerful enough to train H-Mem networks.

While we only considered simple rate-based neuron models, we do not see any fundamental reason
why these ideas could not be implemented in spiking neural networks. This would also be an
interesting step in order to implement H-Mem on energy-efficient spike-based neuromorphic hardware.
Once a network its trained, it can make use of completely local synaptic plasticity, a feature that is
implemented in currently available neuromorphic systems [35], [36].

We did deliberately not relate the model to brain anatomy, as the organization of higher-level cognitive
functions is still very much unknown. However, Hebbian plasticity is well-supported by many
experimental findings. In particular the Hippocampus might play a pivotal role for implementing a
memory module as in our model [37].

Memory-augmented neural networks have shown that some type of memory can strongly enrich the
computational capabilities of neural networks. Previously, this was achieved with rather unbiological
types of memory components [11], [22] or with heavy weight sharing [13]. In this article, we
have demonstrated that such enrichment is also possible with Hebbian plasticity, one of the most
fundamental plasticity principles in biological neuronal systems. In conclusion, our study provides a
first link between research on memory-augmented neural networks and biologically plausible models
of cognition.
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