
A Proof of Proposition 1

Suppose we have a set of numbers ak, k ∈ [M ], ak 6= 0,∀k and M is odd. We show the following
identity

sign
(

M∑
k=1

sign(ak)
)

= sign(median({ak}Mk=1)) (13)

To begin with, define bk, k ∈ [M ] to be a sequence of ak sorted in ascending order. Then we have

median({ak}Mk=1) = median({bk}Mk=1) = b(M+1)/2 (14)

and the following

sign
(

M∑
k=1

sign(ak)
)

=sign
(

M∑
k=1

sign(bk)
)

=sign

 sign(b(M+1)/2) +
(M+1)/2−1∑

k=1
sign(bk) +

M∑
k=(M+1)/2+1

sign(bk)

 .

(15)

Recall that bk is non-decreasing as it is a sorted sequence of ak with ascending order. If b(M+1)/2 > 0,
we have bk > 0,∀k > (M + 1)/2 and thus

M∑
k=(M+1)/2+1

sign(bk) =
M∑

k=(M+1)/2+1

1 = (M − 1)/2. (16)

Since
∑M
k=(M+1)/2+1 sign(bk) ≥

∑M
k=(M+1)/2+1−1 = −(M − 1)/2, we have

sign(b(M+1)/2) +
(M+1)/2−1∑

k=1
sign(bk) +

M∑
k=(M+1)/2+1

sign(bk) ≥ ( sign(bk)) = 1 (17)

which means when median(ak) > 0,

sign
(

M∑
k=1

sign(ak)
)

= 1 (18)

Following the same procedures as above, one can also get when median(ak) < 0,

sign
(

M∑
k=1

sign(ak)
)

= −1 (19)

Thus,

sign
(

M∑
k=1

sign(ak)
)

= sign (median(ak)) (20)

when median(ak) 6= 0.

Applying the result above to each coordinate of the gradient vectors finishes the proof. �

B Proof of Theorem 1

Let us define:

median({gt}) , median({gt,i}Mi=1). (21)
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and

median({∇ft}) , median({∇fi(xt)}Mi=1). (22)

By A3, we have the following standard descent lemma in nonconvex optimization.

f(xt+1) ≤ f(xt) + 〈∇f(xt), xt+1 − xt〉+ L

2 ‖xt+1 − xt‖2 (23)

Substituting the update rule into (23), we have the following series of inequalities

f(xt+1) ≤ f(xt)− δ〈∇f(xt), sign(median({gt}))〉+ L

2 δ
2d

= f(xt)− δ〈E[median({gt})], sign(median({gt}))〉

+ δ〈E[median({gt})]−∇f(xt), sign(median({gt}))〉+ L

2 δ
2d

≤ f(xt)− δ‖E[median({gt})]‖1 + δ‖E[median({gt})]−∇f(xt)‖1

+ 2δ
d∑
j=1
|E[median({gt})j ]|I[sign(median({gt})j) 6= sign(E[median({gt})j ])]

+ L

2 δ
2d (24)

where median({gt})j is jth coodrinate of median({gt}), and I[·] denotes the indicator function.

Taking expectation over all the randomness, we get

δE[‖E[median({gt})]‖1
≤ E[f(xt)]− E[f(xt+1)] + δE[‖E[median({gt})]]−∇f(xt)‖1]

+ 2δE

 d∑
j=1
|E[median({gt})j ]|P [sign(median({gt})j) 6= sign(E[median({gt})j ])]


+ L

2 δ
2d (25)

Before we proceed, we analyze the error probability of sign

P [sign(median({gt})j) 6= sign(E[median({gt})j ])] (26)

This follows a similar analysis as in SIGNSGD paper.

By reparameterization, we can have

median({gt})j = E[median({gt})j ] + ζt,j

with E[ζt,j ] = 0.

By Markov inequality and Jensen’s inequality, we have

P [sign(median({gt})j) 6= sign(E[median({gt})j ])]
≤ P [|ζt,j | ≥ E[median({gt})j ]]

≤ E[|ζt,j |]
E[median({gt})j ]

≤

√
E[ζ2

t,j ]

E[median({gt})j ]
= σm

E[median({gt})j ]
(27)

where we assumed E[ζ2
t,j ] ≤ σ2

m.

Substitute (27) into (25), we get

δE[‖E[median({gt})]‖1]

≤ E[f(xt)]− E[f(xt+1)] + δE[‖E[median({gt})]]−∇f(xt)‖1] + 2δdσm + L

2 δ
2d. (28)
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Now we use standard approach to analyze convergence rate. Summing over t from 1 to T and divide
both sides by Tδ, we get

1
T

T∑
t=1

E[‖E[median({gt})]‖1]

≤ Df

Tδ
+ 1
T

T∑
t=1

E[‖E[median({gt})]]−∇f(xt)‖1] + 2dσm + L

2 δd (29)

where here we defined Df , E[f(x1)] minx f(x)

Now set δ =
√
Df√
LdT

, we get

1
T

T∑
t=1

E[‖E[median({gt})]‖1]

≤ 3
2

√
dLDf√
T

+ 1
T

T∑
t=1

E[‖E[median({gt})]]−∇f(xt)‖1] + 2dσm (30)

Going one step further, and use the triangular inqaulity, we can easily bound the `1 norm of the
gradient as the following

1
T

T∑
t=1

E[‖∇f(xt)‖1] ≤ 3
2

√
dLDf√
T

+ 2 1
T

T∑
t=1

E[‖E[median({gt})]]−∇f(xt)‖1] + 2dσm (31)

C Proof of Theorem 2

By the gradient Lipschitz continuity and the update rule, we have

f(xt+1)

≤f(xt)− δ〈∇f(xt),median({gt})〉+ L

2 δ
2‖median({gt})‖2

≤f(xt)− δ〈∇f(xt),median({gt})〉
+ Lδ2(‖median({gt})− E[median({gt})|xt]‖2 + ‖E[median({gt})|xt]‖2)

Taking expectation, we have

E[f(xt+1)]− E[f(xt)]
≤− δExt

[〈∇f(xt),E{gt}[median({gt})|xt]〉]
+ Lδ2E[‖median({gt})− E[median({gt})|xt]‖2 + ‖E[median({gt})|xt]‖2]

=− δExt

[
1
2
(
‖∇f(xt)‖2 + ‖E{gt}[median({gt})|xt]‖2 − ‖∇f(xt)− E{gt}[median({gt})|xt]‖2

)]
+ Lδ2E[‖median({gt})− E[median({gt})|xt]‖2 + ‖E[median({gt})|xt]‖2]

=− δ

2E
[
‖∇f(xt)‖2 + ‖E[median({gt})|xt]‖2 − ‖∇f(xt)− E[median({gt})|xt]‖2

]
+ Lδ2E[‖median({gt})− E[median({gt})|xt]‖2 + ‖E[median({gt})|xt]‖2]

=− δ

2E[‖∇f(xt)‖2]− (δ2 − Lδ
2)E[‖E[median({gt})|xt]‖2] + δ

2E[‖∇f(xt)− E[median({gt})|xt]‖2]

+ Lδ2E[‖median({gt})− E[median({gt})|xt]‖2] (32)

where Ext
[·] is expectation over randomness of xt and E{gt}[·|xt] is expectation over randomness of

{gt} given xt.
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Setting δ = min( 1√
Td
, 1

2L ), telescope sum and divide both sides by Tδ/2 , we have

1
T

T∑
t=1

E[‖∇f(xt)‖2]

≤2
√
d√
T

(E[f(x1)]− E[f(xT+1)]) + 1
T

T∑
t=1

E[‖∇f(xt)− E[median({gt})|xt]‖2] + 2L
√
d√
T
σ2
m

(33)

Substituting E[f(x1)]− E[f(xT+1)] ≤ Df into the above inequality completes the proof. �

D Proof of Theorem 3

In this section, we show that our analysis is tight, in the sense that the constant gap

1
T

T∑
t=1

E[‖E[median({gt})]]−∇f(xt)‖1] (34)

does exist in practice.

Consider the following problem

min
x∈R

f(x) , 1
3

3∑
i=1

1
2(x− ai)2 (35)

with a1 < a2 < a3. In particular, fi(x) = 1
2 (x − ai)2, so each local node has only one data

point. Since the entire problem is deterministic, and the local gradient is also deterministic (i.e., no
subsampling is available), we will drop the expectation below.

It is readily seen that the median of gradient is always x − a2. Therefore running SIGNSGD on
the above problem is equivalent to running SIGNSGD to minimize 1

3
∑3
i=1

1
2 (x− a2)2. From the

Theorem 1 in Bernstein et al. [4], the SIGNSGD will converge to x = a2 as T goes to ∞ and
δ = O( 1√

T
)).

On the other hand, at the point x = a2, the median of gradients median({gt}) is 0 but the gradient
of f(x) is given by

∇f(a2) = 1
3

3∑
i=1

(x− ai) = 1
3((a2 − a3) + (a2 − a1)) (36)

Recall that for this problem, we also have for any xt,
‖E[median({gt})]−∇f(xt)‖1
= ‖median({gt})−∇f(xt)‖1

=

∣∣∣∣∣xt − a2 −
1
3

3∑
i=1

(xt − ai)

∣∣∣∣∣ =
∣∣∣∣13(2a2 − a1 − a3)

∣∣∣∣ . (37)

Comparing (36) and (37), we conclude that at a given point x = a2 (for which the SIGNSGD will
converge to), we have

‖∇f(x)‖1 = 1
T

T∑
t=1

E[‖E[median({gt})]]−∇f(xt)‖1] =
∣∣∣∣13(2a2 − a1 − a3)

∣∣∣∣ . (38)

Substituting a1 = 0, a2 = 1, a3 = 5 (which satisfies a1 < a2 < a3 assumed the beginning) into (38)
finishes the proof for SIGNSGD.

The proof for MEDIANSGD uses the same construction as the proof of Theorem 3, i.e. we consider
the problem

min
x∈R

f(x) , 1
3

3∑
i=1

1
2(x− ai)2 (39)
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with a1 < a2 < a3. Then from the update rule of MEDIANSGD, it reduces to running gradient
descent to minimize 1

2 (x − a2)2. From classical results on convergence of gradient descent, the
algorithm will converge to x = a2 with any stepsize δ < 2/L.

At the point x = a2, the median of gradients is zero but∇f(x) is

∇f(a2) = 1
3

3∑
i=1

(x− ai) = 1
3((a2 − a3) + (a2 − a1)). (40)

In addition, for any xt, the gap between median and mean of gradients satisfy

‖E[median({gt})]−∇f(xt)‖2

=

∣∣∣∣∣xt − a2 −
1
3

3∑
i=1

(xt − ai)

∣∣∣∣∣
2

=
∣∣∣∣13(2a2 − a1 − a3)

∣∣∣∣2 (41)

Combining all above, we have for x = a2, we get

‖∇f(x)‖2 = 1
T

T∑
t=1

E[‖E[median({gt})]]−∇f(xt)‖2] =
∣∣∣∣13(2a2 − a1 − a3)

∣∣∣∣2 . (42)

Setting a1 = 0, a2 = 1, a3 = 5 we get | 13 (2a2 − a1 − a3)|2 = 1 and the proof is finished.

E Proof of Theorem 4

E.1 Proof for (a)

Assume we have a set of numbers u1, .., u2n+1. Given a symmetric and unimodal noise distribution
with mean 0 and variance 1, denote its pdf to be h0(z) and its cdf to be H0(z). Draw 2n+ 1 samples
from the distribution ξ1, ..., ξ2n+1.

Given a constant b, define random variable ûi = ui + bξi. Define ũ , median({ûi}2n+1
i=1 ) and its

pdf and cdf to be h(z) and H(z), respectively. Define ū , 1
2n+1

∑2n+1
i=1 ui.

Denote the pdf and cdf of ûi to be hi(z, b) and Hi(z, b). Since ûi = ui + bξi is a scaled and
shifted version of ξi, given ξi has pdf h0(z) and cdf H0(z), we know hi(z, b) = 1

bh0( z−ui

b ) and
Hi(z, b) = H0( z−ui

b ) from basic probability theory. In addition, from symmetricity of h0(z), we
also have 1−H0(z) = H0(−z).

Define pdf of ũ to be h(z, b), from order statistic, we know

h(z, b) =
2n+1∑
i=1

hi(z, b)
∑
S∈Si

∏
j∈S

Hj(z, b)
∏

k∈[2n+1]\{i,S}

(1−Hk(z, b)) (43)

where Si is the set of all n-combinations of items from the set [2n+ 1] \ i.
To simplify notation, we write the pdf into a more compact form

h(z, b) =
∑

i,{J,K}∈S′
i

hi(z, b)
∏
j∈J

Hj(z, b)
∏
k∈K

(1−Hk(z, b)) (44)

where the set S ′i is the set of all possible {J,K} with J being a combination of n items from
[2n+ 1] \ i and K = [2n+ 1] \ {J, i} and i ∈ [2n+ 1] is omitted.
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Then the expectation of median can be calculated as

E[ũ]

=
∫ ∞
−∞

z
∑

i,{J,K}∈S′
i

hi(z, b)
∏
j∈J

Hj(z, b)
∏
k∈K

(1−Hk(z, b))dz

=
∑

i,{J,K}∈S′
i

∫ +∞

−∞
(bz + ui)

1
b
h0(z)

∏
j∈J

H0(z + ui − uj

b
)
∏
k∈K

(1−H0(z + ui − uk

b
))bdz

=
∑

i,{J,K}∈S′
i

∫ +∞

−∞
(bz + ui)h0(z)

∏
j∈J

(
H0(z) + ui − uj

b
h0(z) + (ui − uj)2

2b2 h′0(z′j)
)∏

k∈K

(
1−H0(z)− ui − uk

b
h0(z)− (ui − uj)2

2b2 h′0(z′k)
)
dz

where the second inequality is due to a changed of variable from z to z−ui

b , the last inequality is due
to Taylor expansion and z′j ∈ [zj , zj + ui−uj

σ ], z′k ∈ [zk, zk + ui−uk

σ ].
Now we consider terms with different order w.r.t b after expanding the Taylor expansion.

First, we start with the terms that is multiplied by b, the summation of coefficients in front of these
terms equals

∑
i,{J,K}∈S′

i

∫ +∞

−∞
zh0(z)

∏
j∈J

H0(z)n
∏
k∈K

(1−H0(z))ndz = 0

due to symmetricity of f over 0.

Then we consider the terms that are not multiplied by b, the summation of their coefficients equals

∑
i,{J,K}∈S′

i

(ui − uj)(
∫ +∞

−∞
zh0(z)

∏
j∈J

H0(z)n−1
∏
k∈K

(1−H0(z))nh0(z)dz)

−
∑

i,{J,K}∈S′
i

(ui − uj)(
∫ +∞

−∞
zh0(z)

∏
j∈J

H0(z)n
∏
k∈K

(1−H0(z))n−1h0(z)dz)

+
∑

i,{J,K}∈S′
i

ui(
∫ +∞

−∞
h0(z)H0(z)n(1−H0(z))ndz)

=0 + 0 +
2n+1∑
i=1

ui

(
2n
n

)∫ +∞

−∞
H0(z)n(1−H0(z))ndH0(z)

due to the cancelling in the summation (i.e.
∑
i,{J,K}∈S′

i
(ui − uj) = 0).
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Further, we have

2n+1∑
i=1

ui

(
2n
n

)∫ +∞

−∞
H0(z)n(1−H0(z))ndH0(z)

(a)=
2n+1∑
i=1

ui

(
2n
n

)∫ 1

0
yn(1− y)ndy

=
2n+1∑
i=1

ui

(
2n
n

)
1

n+ 1

∫ 1

0
(1− y)ndyn+1

=
2n+1∑
i=1

ui

(
2n
n

)
1

n+ 1

(
−
∫ 1

0
yn+1d(1− y)n

)
(b)=

2n+1∑
i=1

ui

(
2n
n

)
n

n+ 1

∫ 1

0
yn+1(1− y)n−1dy

= · · ·

=
2n+1∑
i=1

ui

(
2n
n

)
n(n− 1) · · · 1

(n+ 1)(n+ 2) · · · 2n

∫ 1

0
y2ndy

=
2n∑
i=1

ui

(
2n
n

)
n!n!

(2n+ 1)! = 1
2n+ 1

2n+1∑
i=1

ui

where (a) is due to a change of variable from H0(z) to y and the omitted steps are just repeating steps
from (a) to (b).

In the last step, we consider the rest of the terms (terms multiplied by 1/b or higher order w.r.t. 1/b).
Since h0, h

′
0 are bounded, for any non-negative integer p, q, k, there exists a constant c > 0 such that:∣∣∣∣∫ +∞

−∞
zh0(z)(H0(z)ph0(z)qh′0(z′)k)dz

∣∣∣∣ ≤ ∫ +∞

−∞
|z||h0(z)||(H0(z)ph0(z)qh′0(z′)k)|dz

≤ c
∫ +∞

−∞
|z|h0(z)dz

= c(
∫ +1

−1
|z|h0(z)dz +

∫ +∞

1
|z|h0(z)dz +

∫ −1

−∞
|z|h0(z)dz)

≤ c(
∫ +1

−1
h0(z)dz +

∫ +∞

1
z2h0(z)dz +

∫ −1

−∞
z2h0(z)dz)

≤ c(
∫ +1

−1
h0(z)dz +

∫ +∞

−∞
z2h0(z)dz)

≤ c(
∫ +1

−1
h0(z)dz + 1)

≤ c [Here’s another constant still denoted as c]

And also∣∣∣∣∫ +∞

−∞
h0(z)(H0(z)ph0(z)qh′0(z′)k)dz

∣∣∣∣ ≤ ∫ +∞

−∞
h0(z)|H0(z)ph0(z)qh′0(z′)k|dz ≤ c′

∫ +∞

−∞
h0(z)dz = c′

for some constant c′.

Then the coefficient of rest of the terms are bounded by constant, and the order of them are at least
O( 1

b ). Therefore |E[median({ûi}2n+1
i=1 )− 1

2n+1
∑2n+1
i=1 ui]| = O( 1

b ) which proves (6).
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Now we compute the order of the variance of median(ûi) in terms of b
Var(median(ûi))

=E[median(ûi)2]− E[median(ûi)]2

≤E[median(ûi)2]

=
∑

i,{J,K}∈S′
i

∫ +∞

−∞
z2hi(z)

∏
j∈J

Hj(z)
∏
k∈K

(1−Hk(z))dz

=
∑

i,{J,K}∈Si

∫ +∞

−∞
(bz + ui)2h0(z)

∏
j∈J

H0(z + ui − uj

b
)
∏
k∈K

(1−H0(z + ui − uk

b
))dz

=
∑

i,{J,K}∈Si

∫ +∞

−∞
(bz + ui)2h0(z)×

∏
j∈J

(
H0(z) + ui − uj

b
h0(z) + (ui − uj)2

2b2 h′0(z′j)
)∏

k∈K

(
1−H0(z)− ui − uk

b
h0(z)− (ui − uj)2

b2 h′0(z′k)
)
dz

where z′j ∈ [zj , zj + ui−uj

b ], z′k ∈ [zk, zk + ui−uk

b ]. Similar to the analysis in computing order of
gap between median and mean, we consider terms after expanding the multiple formula. Note that
we similarly have:∣∣∣∣∫ +∞

−∞
z2h0(z)(H0(z)ph0(z)qh′0(z′)k)dz

∣∣∣∣ ≤ ∫ +∞

−∞
z2h0(z)|(H0(z)ph0(z)qh′0(z′)k)|dz

≤ c
∫ +∞

−∞
z2h0(z)dz

= c

Therefore, after expansion and integration, the coefficients of any order of b are also bounded by
constant. Since the order of the terms w.r.t b are less than 2, we can conclude that the variance of
Median(ûi) is of order O(b2) which proves (7).

E.2 Proof for (b)

This key idea of the proof in part is similar to that for part (a). We use Taylor expansion to expand
different terms in pdf of sample median and identify the coefficient in front terms with different order
w.r.t. b. The difference is that instead of doing second order Taylor expansion on H0, we also need
to do it for h0, thus requiring h′′0 to be uniformly bounded and absolutely integrable. In addition,
not every higher order term is multiplied by h0(z), thus more efforts are required for bounding the
integration of higher order terms.

First, by a change of variable (change z to z−ū
b ), (43) can be written as

h(ū+ bz, b) =
2n+1∑
i=1

1
b
h0( ū− ui

b
+ z)

∑
S∈Si

∏
j∈S

H0( ū− uj
b

+ z)
∏

k∈[2n+1]\{i,S}

H0(− ū− uk
b
− z)

(45)

Using the Taylor expansion on f , we further have

h0( ū− ui
b

+ z) = h0(z) + h′0(z)( ū− ui
b

) + h′′0(z1)
2 ( ū− ui

b
)2 (46)

with z1 ∈ (z, ū−ui

b + z) or z1 ∈ ( ū−ui

b + z, z). Similarly, we have

H0( ū− uj
b

+ z) = H0(z) + h0(z)( ū− uj
b

) + h′0(z2)
2 ( ū− uj

b
)2 (47)

and

H0(− ū− uk
b
− z) = H0(−z)− h0(−z)(uk − ū

b
)− h′0(−z3)

2 (uk − ū
b

)2 (48)
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where z2 ∈ (z, ū−uj

b + z) or z2 ∈ ( ū−uj

b + z, z), z3 ∈ (z, uk−ū
b + z) or z3 ∈ (uk−ū

b + z, z).

Substituting (46), (47), and (48) into (45), following similar argument as one can notice following
facts.

1. Summation of all terms multiplied by 1/b is

1
b

2n+1∑
i=1

h0(z)
∑
S∈Si

∏
j∈S

H0(z)
∏

k∈[n]\{i,S}

H0(−z) (49)

2. All the terms multiplied by 1/b2 cancels with each other after summation due to the definition of
ū. I.e.

2n+1∑
i=1

1
b
h′0(z)( ū− ui

b
)
∑
S∈Si

H0(z)nH0(−z)n = 0 (50)

2n+1∑
i=1

1
b
h0(z)

∑
S∈Si

∑
j∈S

h0(z)( ū− uj
b

)H0(z)n−1H0(−z)n = 0 (51)

2n+1∑
i=1

1
b
h0(z)

∑
S∈Si

H0(z)n
∑

k∈[n]\{i,S}

h0(−z)( ū− uk
b

)H0(−z)n−1 = 0 (52)

3. Excluding the terms above, the rest of the terms are upper bounded by the order of O(1/b3).

Thus by another change of variable (change z to z
b ), we have

h(ū+ z, b) = 1
b
g(z
b

) + 1
b
v(z
b

) (53)

where

g(z) =
2n+1∑
i=1

h0(z)
∑
S∈Si

∏
j∈S

H0(z)
∏

k∈[n]\{i,S}

H0(−z) (54)

which is the pdf of sample median of 2n+ 1 iid draws from h0 and it is symmetric around 0 .

Further, observe that when h0(z), h′0(z), and h′′(z) are all absolutely upper bounded and absolutely
integrable, integration of absolute value of each high order term in v(z) can be upper bounded in the
order of O(maxi |ū−ui|2

b2 ). This is because each term in v(z) is at least multiplied by 1/b2 and one
of h0(z), h0(z), h′0(z), h′′0(z1), h′0(z2) and h′0(−z3) (z1, z2, z3 appears through remainder terms of
the Taylor’ theorem). The terms multiplied by h0(z), h0(−z), or h′0(z) absolutely integrates into a
constant. The terms multiplied only by the remainder terms in the integration are more tricky, one
need to rewrite the remainder term into integral form and exchange the order of integration to prove
that the term integrates the order of O(1/b2). We do this process for one term in the following and
the others are omitted. ∫ ∞

−∞

h′′0(z1)
2 ( ū− ui

b
)2H0(z)H0(−z)dx

≤
∫ ∞
−∞

∣∣∣∣h′′0(z1)
2 ( ū− ui

b
)2
∣∣∣∣ ‖H0‖∞‖H0‖∞dx

=‖H0‖∞‖H0‖∞
∫ ∞
−∞

∣∣∣∣∣
∫ x+ ū−ui

b

x

h′′0(t)(t− x)dt

∣∣∣∣∣ dx (55)

where the equality holds because h′′0 (z1)
2 ( ū−ui

b )2 is the remainder term of the Taylor expansion when
approximating z + ū−ui

b at z and we changed the remainder term from the mean-value form to the
integral form.

20



Without loss of generality, we assume ū− ui ≥ 0 (the proof is similar when it is less than 0), then
we get ∫ ∞

−∞

∣∣∣∣∣
∫ x+ ū−ui

b

x

h′′0(t)(t− x)dt

∣∣∣∣∣ dx
≤
∫ ∞
−∞

∫ x+ ū−ui
b

x

|h′′0(t)||(t− x)|dtdx

=
∫ ∞
−∞

∫ t

t− ū−ui
b

|h′′0(t)||(t− x)|dxdt

=1
2( ū− ui

b
)2
∫ ∞
−∞
|h′′0(t)| dt (56)

which is ( ū−ui

b )2 times a constant.

Thus, we have ∫ ∞
−∞

1
b
|v(z

b
)|dz =

∫ ∞
−∞

1
b
|v(z)|bdz = O(maxi |ū− ui|2

b2
) (57)

which completes this part. �

F An extended version of of Theorem 4

Before presenting the proof of convergence of SIGNSGD and MEDIANSGD, we need an version of
Theorem 4 with stochastic sampling, we present the theorem and its proof in this section.

Theorem F.1. Assume we have 2n+1 set of numbers A1 = {a1,j}k1
j=1, A2 = {a2,j}k1

j=1, ...A2n+1 =
{a2n+1,j}k2n+1

j=1 with mean of the numbers of each set being u1, .., u2n+1. Given a symmetric and
unimodal noise distribution with mean 0, variance 1. Denote the pdf of the distribution to be
h0(z) and cdf to be H0(z). Suppose h′0(z) is uniformly bounded and absolutely integrable. Draw
2n+ 1 samples ξ1, ..., ξ2n+1 from the distribution h0(z). Define random variable qi to be a number
uniformly randomly drawn from {ai,j}Ki

j=1 and q̂i = qi + bξi, ū ,
∑2n+1
i=1 ui,

(a) We have

E[median({q̂i}2n+1
i=1 )] = ū+O

(
maxi,j,i′,j′|i 6=i′ |ai,j − ai′,j′ |2

b

)
, (58)

Var(median({q̂i}2n+1
i=1 )) = O(b2). (59)

(b) Further assume h′′0(z) is uniformly bounded and absolutely integrable. Denote rb(z) to be the pdf
of the distribution of median({q̂i}2n+1

i=1 ) and SA = A1 ×A2 × ...×A2n+1, we have

rb(ū+ z) = 1
b
g(z
b

)︸ ︷︷ ︸
symmetric part

+ 1
b
v(z
b

)︸ ︷︷ ︸
asymmetric part

(60)

where

g(z) ,
2n+1∑
i=1

h0(z)
∑
S∈Si

∏
j∈S

H0(z)
∏

k∈[n]\{i,S}

H0(−z) (61)

being the pdf of sample median of 2n + 1 samples drawn from the distribution h0(z) which is
symmetric over 0, Si is the set of all n-combinations of items from the set [2n + 1] \ i, and the
asymmetric part satisfies∫ ∞

−∞

1
b
|v(z

b
)|dz = O

(
Es∼U(SA)[maxi |si − s̄|2]

b2

)
+O

(
maxs∈SA (s̄− ū)2

b2

)
(62)

where U(SA) is uniform distribution over elements in SA
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Proof of Theorem F.1: The proof is mostly based on Theorem 4 with some extra efforts dealing
with the sampling noise. We first prove part (a) (58). Since qi is sampled uniformly randomly from
{ai,j}Ki

j=1, we know there are
∏2n+1
i=1 Ki possible realizations for {qi}2n+1

i=1 with equal probability. I
addition, the mean of mean of these realizations is ū. For each realization {qi = q̃i}2n+1

i=1 , we know
from Theorem 4 (a) that

E[median({q̂i}2n+1
i=1 )|{qi = q̃i}2n+1

i=1 ] = 1
2n+ 1

2n+1∑
i=1

q̃i +O

(
maxi,i′ |q̃i − q̃i′ |2

b

)
. (63)

Given the fact that E[median({q̂i}2n+1
i=1 )] = E{qi}2n+1

i=1
[E{ξi}2n+1

j=1
[median({q̂i}2n+1

i=1 )|{qi}2n+1
i=1 ]] and

E[ 1
2n+1

∑2n+1
i=1 qi] = ū, we know

E[median({q̂i}2n+1
i=1 )] = ū+O

(
maxi,i′,j,j′,i6=i′ |ai,i − ai′,j′ |2

b

)
. (64)

which proves (58).

Now we prove (59). We have

Var(median({q̂i}2n+1
i=1 ))

=E[(median({q̂i}2n+1
i=1 )− E[median({q̂i}2n+1

i=1 )])2]
=E{qi}2n+1

j=1
[E{ξi}2n+1

j=1
[(median({q̂i}2n+1

i=1 )− E[median({q̂i}2n+1
i=1 )])2|{qi}2n+1

j=1 ]]

≤E{qi}2n+1
j=1

[E{ξi}2n+1
j=1

[2(median({q̂i}2n+1
i=1 )− E{ξi}2n+1

j=1
[median({q̂i}2n+1

i=1 )|{qi}2n+1
j=1 ])2|{qi}2n+1

j=1 ]]

+ E{qi}2n+1
j=1

[E{ξi}2n+1
j=1

[2(E{ξi}2n+1
j=1

[median({q̂i}2n+1
i=1 )|{qi}2n+1

j=1 ]− E[median({q̂i}2n+1
i=1 ])2|{qi}2n+1

j=1 ]]

=2E{qi}2n+1
j=1

[Var(median({q̂i}2n+1
i=1 )|{qi}2n+1

j=1 )]

+ 2E{qi}2n+1
j=1

[(E{ξi}2n+1
j=1

[median({q̂i}2n+1
i=1 )|{qi}2n+1

j=1 ]− E[median({q̂i}2n+1
i=1 ])2]

≤O(b2) +O(1) (65)

where the last inequality is because we can apply (7) to the variance term and for the remaining term
we have (63) and (64).

Now we prove part (b) of the theorem. DenoteAi = {ai}Ki
i=1 and SA = A1×A2× ...×A2n+1. Also,

given a vector s ∈ R2n+1, denote rb(z, s) to be the pdf of median({q̂i}2n+1
i=1 ) with qi = si,∀i ∈

[2n+ 1]. By definition of median({q̂i}2n+1
i=1 ), we know know

rb(z) = 1
|SA|

∑
s∈SA

rb(z, s). (66)

Denote s̄ = 1
2n+1

∑2n+1
i=1 si, from Theorem 4 (b), we know

rb(s̄+ z, s) = 1
b
g(z
b

)︸ ︷︷ ︸
symmetric part

+ 1
b
v(z
b

)︸ ︷︷ ︸
asymmetric part

with

g(z) =
2n+1∑
i=1

h0(z)
∑
S∈Si

∏
j∈S

H0(z)
∏

k∈[n]\{i,S}

H0(−z)

being the pdf of sample median of 2n + 1 samples drawn from the distribution h0(z) which is
symmetric over 0, Si is the set of all n-combinations of items from the set [2n+ 1] \ i, and∫ ∞

−∞

1
b
|v(z

b
)|dz = O

(
maxi |s̄− si|2

b2

)
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By Taylor expansion, we know

rb(ū+ z, s) =1
b
g(z + s̄− ū

b
) + 1

b
v(z + s̄− ū

b
)

=1
b

(
g(z
b

) + g′(z
b

)( s̄− ū
b

) + 1
2g
′′(z1

b
)( s̄− ū

b
)2
)

+ 1
b
v(z + s̄− ū

b
) (67)

with z1 ∈ [min(z, z + s̄− ū),max(z, z + s̄− ū)]
Substituting (67) into (66), we know

rb(ū+ z)

= 1
|SA|

∑
s∈SA

rb(ū+ z, s)

= 1
|SA|

∑
s∈SA

1
b

(
g(z
b

) + g′(z
b

)( s̄− ū
b

) + 1
2g
′′(z1

b
)( s̄− ū

b
)2
)

+ 1
|SA|

∑
s∈SA

1
b
v(z + s̄− ū

b
)

=1
b
g(z
b

) + 1
|SA|

∑
s∈SA

1
b

(
1
2g
′′(z1

b
)( s̄− ū

b
)2
)

+ 1
|SA|

∑
s∈SA

1
b
v(z + s̄− ū

b
) (68)

where we have used the fact that 1
|SA|

∑
s∈SA

s̄ = ū in the last equality.

What remains is to bound the integration of terms other than 1
b g( zb ) in (68).

From Theorem 4 (b), we already know∫ ∞
−∞

1
|SA|

∑
s∈SA

∣∣∣∣1b v(z + s̄− ū
b

)
∣∣∣∣ dz

≤ 1
|SA|

∑
s∈SA

O

(
maxi |si − s̄|2

b2

)

=O
(

1
|SA|

∑
s∈SA

maxi |si − s̄|2

b2

)
(69)

Thus, we only need to bound 1
|SA|

1
2b
∑
s∈SA

∫∞
−∞

∣∣g′′( z1b )( s̄−ūb )2
∣∣ dz. Each term in the summation

can be upper bounded as ( (s̄−ū)2

b2

∫∞
−∞ |g

′′(z)|dz using the same procedure in (55) and (56). Thus,
we have

1
|SA|

∑
s∈SA

∫ ∞
−∞

1
b

(
1
2g
′′(z1

b
)( s̄− ū

b
)2
)
dz = 1

|SA|
∑
s∈SA

O

(
(s̄− ū)2

b2

)
= O

(
Es∈SA

(s̄− ū)2

b2

)
(70)

which proves the theorem. �

G Proof of Theorem 5

Now we are ready to prove Theorem 5.

Use the fact that the noise on median is approximately unimodal and symmetric, one may prove
that SIGNSGD can converge to a stationary point. With symmetric and unimodal noise, the bias in
SIGNSGD can be alternatively viewed as a decrease of effective learning rate, thus slowing down
the optimization instead of leading a constant bias. This proof formalizes this idea by characterizing
the asymmetricity of the noise (O(1/σ2)) and then follows a sharp analysis for SIGNSGD. The key
difference from Theorem 1 is taking care of the bias introduced by the difference between median
and mean.

Let us recall:
median({gt}) , median({(gt,i}Mi=1), (71)

median({∇ft}) , median({∇fi(xt)}Mi=1). (72)
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where

gt,i = ∇fi(xt) + bξt,i + ζt,i (73)

where ξt,i is a d dimensional random vector with each element drawn iid from N(0, 1) and we abuse
the notation ζt,i to denote an zero-mean additive discrete noise caused by sampling on data.

By (23), we have the following series of inequalities

f(xt+1)− f(xt)

≤− δ〈∇f(xt), sign(median({gt}))〉+ L

2 δ
2d

=− δ
d∑

j=1

|∇f(xt)j |(I[sign(median({gt})j) = sign(∇f(xt)j)]− I[sign(median({gt})j) 6= sign(∇f(xt)j)])

+ L

2 δ
2d (74)

where median({gt})j is jth coodrinate of median({gt}), and I[·] denotes the indicator function.

Taking expectation over all the randomness, we get

E[f(xt+1)]− E[f(xt)]

≤− δE

[
d∑

j=1

|∇f(xt)j | (P [sign(median({gt})j) = sign(∇f(xt)j)]− P [sign(median({gt})j) 6= sign(∇f(xt)j)])

]

+ L

2 δ
2d (75)

Now we need a refined analysis on the error probability. In specific, we need an sharp analysis on the
following quantity

P [sign(median({gt})j) = sign(∇f(xt)j)]− P [sign(median({gt})j) 6= sign(∇f(xt)j)]. (76)

Using reparameterization, we can rewrite median({gt}) as

median({gt}) = ∇f(xt) + ξt (77)

where ξt is created by ξt,i’s and ζt,i’s added on the local gradients on different nodes.

Then, w.l.o.g., assume ∇f(xt)j ≥ 0 we have

P [sign(median({gt})j) 6= ∇f(xt)j ]
=P [(ξt)j ≤ −∇f(xt)j ]

=
∫ −∇f(xt)j

−∞
ht,j(z) (78)

where ht,j(z) is the pdf of the jth coordinate of ξt .

Similarly, we have

P [sign(median({gt})j) = ∇f(xt)j ]
=P [(ξt)j > −∇f(xt)j ]

=
∫ ∞
−∇f(xt)j

ht,j(z) (79)

From (9) and (10), we can split ht,j(z) into a symmetric part and a non-symmetric part which can be
written as

ht,j(z) = hst,j(z) + hut,j(z) (80)

where hst,j(z) is symmetric around 0 and hut,j(z) is not.
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Therefore, from (79) and (78), we know that

P [sign(median({gt})j) = sign(∇f(xt)j)]− P [sign(median({gt})j) 6= sign(∇f(xt)j)]

=
∫ ∞
−∇f(xt)j

ht,j(z)−
∫ −∇f(xt)j

−∞
ht,j(z)

=
∫ ∞
−∇f(xt)j

hst,j(z) + hut,j(z)−
∫ −∇f(xt)j

−∞
hst,j(z) + hut,j(z)

=
∫ ∇f(xt)j

−∇f(xt)j

hst,j(z) +
∫ ∞
−∇f(xt)j

hut,j(z)−
∫ −∇f(xt)j

−∞
hut,j(z) (81)

where the last equality is due to symmetricity of hst,j(z), and the assumption that∇f(xt)j is positive.

To simplify the notations, define a new variable zt,j with pdf hst,j , then we have∫ ∇f(xt)j

−∇f(xt)j

hst,j(z) = P [|zt,j | ≤ |∇f(xt)j |] (82)

A similar result can be derived for ∇f(xt)j ≤ 0.

In addition, since the noise on each coordinate of local gradient satisfy Theorem 4, we can apply (10)
to each coordinate of the stochastic gradient vectors. Denote ¯̂gt = 1

2n+1
∑2n+1
i=1 ĝt,i we know that∫ ∞

−∞
|hut,j(z)| = O

(
E{ĝt,i}2n+1

i=1
[maxi |(ĝt,i)j − (¯̂gt)j |2]

b2

)
+O

(
E{ĝt,i}2n+1

i=1
((¯̂gt)j −∇f(xt)j)2

b2

)
(83)

and thus ∫ ∞
−∇f(xt)j

hut,j(z)−
∫ −∇f(xt)j

−∞
hut,j(z)

≤O

(
E{ĝt,i}2n+1

i=1
[maxi |(ĝt,i)j − (¯̂gt)j |2]

b2

)
+O

(
E{ĝt,i}2n+1

i=1
((¯̂gt)j −∇f(xt)j)2

b2

)

=O( 1
b2

). (84)

Remark: We comment that (84) can be small if a large minibatch is used and maxi ‖∇fi(xt) −
∇f(xt)‖ is small even with a constant b. Consider when full batch gradient evaluation is used. In
this case, we know ĝt,i = ∇fi(xt) and the second term on RHS of the first inequality of (84) become

0. The first term becomes O
(

maxi|∇fi(xt)j−∇f(xt)j |2
b2

)
which can be bounded by maxi ‖∇fi(xt)−

∇f(xt)‖. With homogeneous data distribution one usually have maxi ‖∇fi(xt)−∇f(xt)‖ being a
small number. Getting back to the minibatch case where the stochastic gradients are evaluated on
a minibatches, when the number of samples in a batch is large, we have ĝt being close to its mean
∇f(xt) with high probability by the law of large numbers which means the second term on RHS of
(84) is small. Similarly, we have ĝt,i approaching ∇fi(xt) and the first term becomes similar to the
full batch case, which be small on a heterogeneous data distribution.

To continue, we need to introduce some new definitions. Define

Wt,j = |∇f(xt)j |
bσmid

(85)

where σmid is the variance of the noise with pdf (9), that is

g(z) =
2n+1∑
i=1

h0(z)
∑
S∈Si

∏
j∈S

H0(z)
∏

k∈[n]\{i,S}

H0(−z) (86)
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By adapting Lemma 1 from Bernstein et al. [5] (which is an application of Gauss’s inequality), we
have

P [|zt,j | < |∇f(xt)j |] ≥
{

1/3 Wt,j ≥ 2√
3

Wt,j√
3 otherwise

(87)

Thus, continuing from (75), we have
E[f(xt+1)]− E[f(xt)]

≤− δE

[
d∑

j=1

|∇f(xt)j |(P [sign(median({gt})j) = sign(∇f(xt)j)]− P [sign(median({gt})j) 6= sign(∇f(xt)j)])

]

+ L

2 δ
2d

≤− δE

[
d∑

j=1

|∇f(xt)j |(P [|zt,j | < |∇f(xt)j |])

]

+ δE

[
d∑

j=1

|∇f(xt)j |O
( 1
b2

)]
+ L

2 δ
2d (88)

Define Df , f(x1)−minx f(x), telescope from 1 to T , divide both sides by Tδ, we have

1
T

T∑
t=1

E

 d∑
j=1
|∇f(xt)j |(P [|zt,j | < |∇f(xt)j |])


≤ 1
Tδ

Df + 1
T

T∑
t=1

E

 d∑
j=1
|∇f(xt)j |O

(
1
b2

)+ L

2 δd (89)

where the RHS is decaying with a speed of
√
d√
T

.

Further, substituting (87) and (85) into (89) and multiplying both sides of (89) by 3, we can get

1
T

T∑
t=1

∑
j∈Wt

|∇f(xt)j |+
1

bσmid

∑
j∈[d]\Wt

∇f(xt)2
j


≤ 3 1

Tδ
Df + 3 1

T

T∑
t=1

E

 d∑
j=1
|∇f(xt)j |O

(
1
b2

)+ 3L2 δd (90)

which completes the proof. �

H Proof of Theorem 6

Following the same procedures as the Theorem 2, we can get
E[f(xt+1)]− E[f(xt)]

≤− δ

2E[‖∇f(xt)‖2]− (δ2 − Lδ
2)E[‖E[median({gt})|xt]‖2] + δ

2E[‖∇f(xt)− E[median({gt})|xt]‖2]

+ Lδ2E[‖median({gt})− E[median({gt})|xt]‖2] (91)
which is the same as (32).

Sum over t ∈ [T ] and divide both sides by Tδ/2, assume δ ≤ 1
2L , we get

1
T

T∑
t=1

E[‖∇f(xt)‖2]

≤ 2
Tδ

(E[f(x1)]− E[f(xT+1)]) + + 1
T

T∑
t=1

E[‖∇f(xt)− E[median({gt})|xt]‖2] + 2Ldδσ2
m

(92)
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By (58) in Theorem F.1, we know

E[‖∇f(xt)− E[median({gt})|xt]‖ = O(
√
d

b
) (93)

where
√
d is due to L2 norm. In addition, we have σ2

m = O(b2) by (59) in Theorem F.1. Assume
E[median({gt})j |xt] ≤ Q and set b = T 1/6d1/6 and δ = T−2/3d−2/3, we get

1
T

T∑
t=1

E[‖∇f(xt)‖2]

≤ 2
Tδ

(E[f(x1)]− E[f(xT+1)]) +O

(
d

b2

)
+O

(
δdb2

)
. (94)

Then, upper bounding E[f(x1)]− E[f(xT+1)]) by Df finishes the proof. �

I Details of the Implementation

Our experimentation is mainly implemented using Python 3.6.4 with packages MPI4Py 3.0.0, NumPy
1.14.2 and TensorFlow 1.10.0. We use the Message Passing Interface (MPI) to implement the
distributed system, and use TensorFlow to implement the neural network. The MNIST experiments
are run on up to 20 compute cores of two Intel Haswell E5-2680 CPUs with 64 GB Memory. The
CIFAR-10 experiments are run on up to 5 AWS p3.2xlarge machines.

I.1 Dataset and pre-processing

In the first experiment, we use the MNIST dataset2, which contains a training set of 60,000 samples,
and a test set of 10,000 samples, both are 28x28 grayscale images of the 10 handwritten digits. To
facilitate the neural network training, the original feature vector, which contains the integer pixel
value from 0 to 255, has been scaled to a float vector in the range (0, 1). The integer categorical
label is also converted to the binary class matrix (one hot encoding) for use with the categorical
cross-entropy loss. For the CIFAR-10 dataset, the data are processed in the same way.

I.2 Neural Network and Initialization

For MNIST, a two-layer fully connected neural network with 128 and 10 neurons for each layer is
used in the experiment. The initialization parameters are drawn from a truncated normal distribution
centered on zero, with variance scaled with the number of input units in the weight tensor (fan-in).
For CIFAR-10, we use ResNet-20 (obtained from the implementation of ResNet20 v1 in Keras)
with batch normalization layers removed, parameters are initialized the same way as in Keras. We
removed the batch normalization layers because inconsistency of statistics (mean and variance)
of batch normalization layers on different nodes significantly deteriorates the performance when
heterogeneous data is used. This phenomenon is also observed and explained in [11, 12].

I.3 Parameter Tuning

We use constant stepsize for MNIST and a learning rate schedule for CIFAR-10. For MNIST, the
stepsize is chosen from the set {1, 0.1, 0.01, 0.001} based on training performance. For CIFAR-10,
the initial learning rate is chosen from the set {1, 0.1, 0.01, 0.001}, the stepsize is divided by 2, 10,
20 after 1000, 3000, 5000 iterations, respectively. For CIFAR-10, the standard deviation of the added
noise (b in the algorithm) is set to be different for different weights. Specifically, for weight Wi, we
set b = 0.1 ∗maxj(Qi,j) where Qi,j is the maximum of absolute value of elements in stochastic
gradient w.r.t Wi at node j. This requires transmitting an additional float number per weight but the
cost is negligible given the sizes of the weights. We found the aforementioned adaptive noise adding
scheme makes it easier to tune the noise level.

2Available at http://yann.lecun.com/exdb/mnist/
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