
A Topological Filter for Learning with Label Noise
– Supplementary Material –

In this supplemental material, we first provide proofs of all the major theorems and lemmas in the
main paper. Then we discuss the choice of hyper-parameters, mainly the ζ-filtering parameter ζ. We
also discuss other relevant hyper-parameters. Finally, we provide additional results from the data
domain different than images.

A Proofs of Purity and Abundancy of TopoFilter

We provide proofs of all theorems and lemmas in the main paper. For completeness, we restate all
the definitions, theorems and lemmas. Theorem 1 provides guarantees for the purity of the selected
data. Theorem 2 shows the abundancy, i.e., our algorithm collects sufficient amount clean data.

Background and Setting

For the convenience of the reader, we restate our notation here. Assume that the data points and
labels lie in X × Y , where the features X ⊂ Rd and labels Y := [C] := {1, 2, 3, · · · , C}. Assume
the (data, true label) pairs follow some distribution F ∼ X × Y . Let f(x) :=

∑
i∈[C] F(x, i) be the

density at x. Due to label noise, label y = i is flipped to ỹ = j with probability τij and is assumed to
be independent of x.

Let X ⊂ X be the finite set of features in the data sample, and let G(X, k) be the mutual k-nearest
neighbor graph on X using the Euclidean metric on X , whose edge set E = {(x1,x2) ∈ X2 | x1 ∈
KNN(x2) or x2 ∈ KNN(x1)}. Also, ∀i ∈ [C], let Gi(X, k) be the induced subgraph of G(X, k)
consisting only of vertices x ∈ X with label ỹ(x) = i.

Let ηi(x) = P (y = i | x) and η̃i(x) = P (ỹ = i | x) be the clean and noisy posterior probability of
labels given a feature x, respectively. For simplicity, we focus on the binary label case for now. Then
for i ∈ {0, 1}, these two probabilities are related by η̃i(x) = (1− τ01 − τ10)ηi(x) + τ1−i,i. Define
the super level set L(t) = {x | max(η1(x), η0(x)) ≥ t}. For binary case, we have a partition of the
space:

A+
i =

{
x : η̃i(x) > max( 1

2 ,
1+τi,1−i−τ1−i,i

2 ))
}
=
{
x : ηi(x) > max( 1

2 ,
1/2−max(τ10,τ01)

2(1−τ10−τ01) )
}
,

A−i =
{
x : η̃i(x) < min( 1

2 ,
1+τi,1−i−τ1−i,i

2 ))
}
=
{
x : ηi(x) < min( 1

2 ,
1/2−max(τ10,τ01)

2(1−τ10−τ01) )
}
,

Ab = X \ (A+
i ∪A

−
i ).

We also restate the definition of purity here. Consider an algorithm A that takes as input a random
sample of size n, Sn = {(xi, ỹ(xi))}ni=1, and let X := {xi}ni=1 ⊂ X . Algorithm A then outputs
∪i∈{0,1}C(i), where C(i) ⊆ Xi := {x : ỹ(x) = i} is the claimed “clean” set for label i.

Definition 1 (Purity). We define two kinds of purity of A on Sn. One captures the worst-case
behavior of the algorithm, while the other captures the average-case behavior.

1. Minimum Purity `Sn,A := min
i∈{0,1}

min
x∈C(i)

P (y = i | ỹ = i,x) = min
i∈{0,1}

min
x∈C(i)

τii
ηi(x)
η̃i(x) .
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2. Average Purity `′Sn,A :=
∑

i∈{0,1}

1
|C(i)|

∑
x∈C(i) τii

ηi(x)
η̃i(x) .

Assumption.

• A1: f(x) (the density on the feature space) has compact support.

• A2: ∀i ∈ {0, 1}, ηi(x) is continuous.

• A3: ∀i ∈ {0, 1}, A+
i is a connected set.

• A4: τ10, τ01 ∈
[
0, 1

2

)
Denote by A0 the naive algorithm which takes input Sn and simply outputs C(i) = Xi for i = 0, 1,
i.e., does no processing and treats corrupted labels as clean. The purity of A0 is the “default” purity
of the data set. Denote our algorithm with parameter ζ by Aζ . Let ζ ′ = 1

2

(
ζ + 1+|τ10−τ01|

2

)
, and e

be the natural constant.

Theorem 1 (Purity Guarantee). ∀δ > 0, ∀ζ > 1+|τ10−τ01|
2 and ∀q > 1, there exist

N(δ, ζ, q) > 0, c1(ζ) > 0 , constant c2 ∈
(
0, e−1

e

)
, and an increasing function g1(ζ) ∈[

[2ζ+1+|τ10−τ01|−4 max(τ10,τ01)] min(τ11,τ00)
[2ζ+1+|τ10−τ01|](1−τ10−τ01) , 1

]
and function g2(ζ) > 0, such that ∀n ≥ N and

∀k ∈ [c1(ζ) log
q n, c2n]:

1. P
[
(`Sn,Aζ − `Sn,A0) > g1(ζ)

]
≥ 1− δ, and

2. P
[
(`′Sn,Aζ − `

′
Sn,A0

) > g2(ζ)
]
≥ 1− δ.

To proceed, we first state a lemma from [1] that we use. This lemma shows that certain lower (upper)
bounds on the true density in a ball imply lower (upper) bounds on the empirical density of a ball.
We mention that we will also use certain proof techniques from [2] that are help to analyze clustering
using KNN.

Lemma 0 (Lemma 7 in (Kamalika et al., 2010)). Assume k ≥ d log n and fix some δ > 0. Then
there exists a constant c0 such that with probability 1− δ, every ball B ⊂ Rd satisfies the following
conditions:

P (B) ≥ 2C0 log (2/δ) logn
n =⇒ Pn(B) > 0

P (B) ≥ k
n + 2C0 log 2/δ

n

√
kd log n =⇒ Pn(B) > k

n

P (B) ≤ k
n −

2C0 log 2/δ
n

√
kd log n =⇒ Pn(B) < k

n

Here fn(B) = |Xn∩B|
n is the empirical mass of B, while f(B) =

∫
x∈B f(x)dx is its true mass.

For more detail about this Lemma, please refer to [1]. Using Lemma 0, we can show that by picking
certain k and n, all data point from region L(ζ) connected in the symmetric KNN graph.

Define for i ∈ {0, 1}, Xi(t) = L(t) ∩Xi.

Lemma 1 (Connectivity). ∀δ > 0, ∀t ∈ [0, 1), there exist constants N(δ, t) > 0, and c1(t) > 0
such that ∀n ≥ N(δ, t), ∀i ∈ {0, 1} , ∀q > 1, and ∀k > c1(t) log

q (n), Xi(t) is connected in
Gi(X, k) with probability at least 1− δ.

Proof. We first develop some notation. Let Vd be the volume of the unit d-dimensional ball. Let
µs(r) = Vdr

d min
i∈{0,1}

min
x∈L(t)∩A+

i

[pii(x) + p1−i,i(x)] and µl(r) = Vd(2r)
d max
i∈{0,1}

max
x∈L(t)∩A+

i

f(x).
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Fix any δ > 0. We will prove the lemma by showing that there exist C0 > 0, N(δ, t) > 0 and

r ∈
(
0,
(

logq n
n

)1/d
]

, q > 1 such that ∀n ≥ N(δ, t)

µs(r) ≥ 2C0 log 4/δ logn
n , and

µl(r) ≤ k
n −

2C0 log 4/δ
n

√
kd log n, and

k > max
(
d log n, 4dC2

0 log2 (4/δ) log n+ 2µl(r)
rd

)
.

As a consequence, we will conclude that with probability at least 1− δ, we have Xi(t) is connected
in Gi(X, k).

Since f(x) has compact support, L(t) =
{
x | max

i∈{0,1}
ηi(x) ≥ t

}
is a closed subset of the domain.

Then L(t) is compact. For ∀r ∈
(
0,
(

logq n
n

)1/d
]

, we have L(t) ⊂
m⋃
j=1

Bj(r). From now, we fix

some r ∈
(
0,
(

logq n
n

)1/d
]

.

For a data point x, its KNN radius is the distance to its kth nearest neighbor. Define R∗ to be the
minimum KNN radius for any x ∈ Xi(t), and further define two events E1 and E2 as:

E1 = {∃x ∈ X ∩Bj(r), ỹ = i,∀j ∈ [m]}

E2 = {R∗ > 2r}

Then for the statement E = {Xi(t) is connected} we have E1 ∩ E2 ⊂ E and thus f(E) ≥
f(E1 ∩E2) = 1− f(Ec1 ∪Ec2) ≥ 1− f(Ec1)− f(Ec2). This is true because for every B(r) we will
see at least one type i point. But for every B(2r) we will have fewer than k points, which implies that
all these points will be the nearest neighbor of each other in B(2r). For a 2r diameter of B(2r), we
can juxtapose two B(r) with the diameter pass both of their center. Within each of these two B(r),
we will see at least one type-i point(See Fig 1). Thus E1 ∩ E2 implies

⋃m
j=1Bj(r) is connected ,

which then implies E.

Figure 1: Demonstration for E1 ∩E2 → E. Green points are type i points. Every points in the large
ball are KNN to each other, since the maximum KNN radius is larger than 2r.

Suppose there are d-dimensional balls Bs and Bl whose measure are µs and µl separately. We can
pick proper n and k such that conditions in Lemma 0 will be satisfied :

P (Bs) ≥ 2C0 log 4/δ logn
n =⇒ Pn(Bs) > 0

P (Bl) ≤ k
n −

2C0 log 4/δ
n

√
kd log n =⇒ Pn(Bl) <

k
n

To see this, we could first pick large n, such that the first inequality is fulfilled. Then we increase k
(the RHS of inequality 2 is increasing with respect to k for fixed n and for k > 4C2

0 log2 (4/δ)d logn
2 )

such that the second inequality is fulfilled. The desired k should be:
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k >

2C0 log (4/δ)
√
d log n) +

√
4C2

0 log2 (4/δ)d log n+ 2nµl

2

2

We observe that k > 4dC2
0 log (4/δ)

2
log n+ 2nµl(r) satisfies the above inequality.

We note that 2nµl(r) = 2nVdr
d max
i∈{0,1}

max
x∈L(t)∩A+

i

f(x), and because r <
(

logq n
n

)1/d

, this is

smaller than 2Vd max
i∈{0,1}

max
x∈L(t)∩A+

i

f(x) logq n. As a result, if we set k > 4dC2
0 log2 (4/δ) log n+

2Vd max
i∈{0,1}

max
x∈L(t)∩A+

i

f(x) logq n, ∀q > 1, then this value of k satisfies the inequality for all r.

As a result, if we take k > max

(
d log n, 4dC2

0 log2 (4/δ) log n+ 2d+1Vd max
x∈L(t)∩A+

i

f(x) logq n

)
∀q > 1, then replacing δ by δ/2 in Lemma 0, P [E1] and P [E2] are both at least 1 − δ/2.Thus
f(E) > 1 − f(Ec1) − f(Ec2) > 1 − P [Pn(Bs) ≤ 0] − P

[
Pn(Bl) ≥ k

n

]
≥ 1 − δ, completing the

proof.

We also restate notations that needed by Lemma 2 here. Remember that ζ ′ = 1
2

(
ζ + 1+|τ10−τ01|

2

)
.

Define Xc
i (ζ
′) := L(ζ ′)c∩Xi. Define r(i)

0 = min
∥∥∥x(i)

1 − x
(i)
2

∥∥∥ for x(i)
1 ∈ Xi(ζ) and x(i)

2 ∈ Xc
i (ζ
′).

Let Vd to be the volume of d-dimensional unit ball. Let p(i)
ζ := min

x∈L(ζ)∩A+
i

f(x)Vd(r
(i)
0 )d and

p
(i)
ζ′ := min

x∈L(ζ′)c∩A+c
i

f(x)Vd(r
(i)
0 )d. Since f(x) has compact support, A+c

i is closed and

L(ζ ′)c ⊂ A+c
i , then p(i)

ζ > 0 and p(i)
ζ′ > 0.

Let K(p ‖ q) be the KL divergence between distribution p and q.

Lemma 2 (Isolation). ∀δ > 0, ∀ζ > 1+|τ10−τ01|
2 , there exists constant c2 ∈

(
0, e−1

e

)
, N(δ, ζ) > 0

such that ∀n ≥ N(δ, ζ), ∀k < c2(ζ)

[
min
i∈{0,1}

min
(
p

(i)
ζ , p

(i)
ζ′

)
(n− 1)

]
+ 1 and ∀i ∈ {0, 1}:

P (@edge = (u, v) ∈ Gi(X, k) : u ∈ Xi(ζ), v ∈ Xc
i (ζ
′)) ≥ 1− δ.

Proof. Let E be the event {@edge = (u, v) ∈ Gi(X, k) : u ∈ Xi(ζ), v ∈ Xc
i (ζ
′)}. Let R(x) be the

nearest neighbor radius of point x, which is the distance from x to its kth nearest neighbor. Then let
R∗ζ = max

i∈{0,1}
max

x∈Xi(ζ)
R(x) and R∗ζ′ = max

i∈{0,1}
max

x∈Xc
i (ζ
′)
R(x) separately. Let r0 = min

i∈{0,1}
r

(i)
0 . Let

pζ = min
i∈{0,1}

p
(i)
ζ and pζ′ = min

i∈{0,1}
p

(i)
ζ′ . Let Mζ ∼ Bin(n − 1, pζ) and Mζ′ ∼ Bin(n − 1, pζ′).

Then:
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P (E) ≥ P
(
{R∗ζ ≤ r0} ∩ {{R∗ζ′ ≤ r0}

)
≥ 1− P (R∗ζ > r0)− P (R∗ζ′ > r0) (1)

≥ 1− P

 ⋃
x∈Xi(ζ)

{R(x) > r0}

− P
 ⋃

x∈Xc
i (ζ
′)

{R(x) > r0}

 (2)

≥ 1− nζµ[L(ζ)]P (Mζ ≤ k − 1)− nζ′µ[L(ζ ′)c]P (Mζ′ ≤ k − 1) (3)

≥ 1− nζµ[L(ζ)] exp
{
−(n− 1)K

(
k − 1

n− 1

∥∥∥∥ pζ)}− nζ′µ[L(ζ ′)c] exp{−(n− 1)K

(
k − 1

n− 1

∥∥∥∥ pζ′)}
(4)

≥ 1− nζµ[L(ζ)] exp
{
−(n− 1)

[
(e− 1)pζ

e
− k − 1

n− 1

]}
− nζ′µ[L(ζ ′)c] exp

{
−(n− 1)

[
(e− 1)pζ′

e
− k − 1

n− 1

]}
(5)

≥ 1− 2max(nζµ[L(ζ)], nζ′µ[L(ζ
′)c]) exp

{
−(n− 1)

[
(e− 1)min(pζ , pζ′)

e
− k − 1

n− 1

]}
(6)

For inequality (3), we use Chernoff lower tail inequality again, which require k−1
n−1 < min(pζ , pζ′).

Inequality (4) holds because K( k−1
n−1 ‖ pζ) = k−1

n−1 ln
(

k−1
pζ(n−1)

)
+ n−k

n−1 ln
(

n−k
(1−pζ)(n−1)

)
≥

k−1
n−1 ln

(
k−1

pζ(n−1)

)
+ pζ − k−1

n−1 ≥ −
pζ
e + pζ − k−1

n−1 ≥
(e−1)pζ

e − k−1
n−1 . This is also true for

K( k−1
n−1 ‖ pζ′). The first inequality comes from the fact that ln(x) ≥ (x − 1)/x. And the second

inequality comes from the fact that −pζe is the minimizer of k−1
n−1 ln

(
k−1

pζ(n−1)

)
with respect to k−1

n−1 .

Now let c2 < (e− 1)/e, and k ≤ c2
[

min
i∈{0,1}

min
(
p

(i)
ζ , p

(i)
ζ′

)
(n− 1)

]
+ 1 as in the statement of the

lemma. Then we have that (e−1) min(pζ ,pζ′ )

e − k−1
n−1 ≥

(
e−1
e − c2

)
min(pζ , pζ′) is independent of n.

Then as n→∞, exp
{
−(n− 1)

[
(e−1) min(pζ ,pζ′ )

e − k−1
n−1

]}
→ 0, and thus P [E]→ 1.

Lemma 2 tells us, if k is properly set, Xi(ζ) and Xc
i (ζ
′) are separated. So the remaining cases for

points in region L(ζ ′)c are case where all its neighbors are located in L(ζ ′)c and case where part
of its neighbors are in L(ζ ′)\L(ζ). Next lemma will show, if we filter out points that don’t have
enough desired number of neighbors, we will guarantee there are no points in L(ζ ′)c remaining in⋃
i∈{0,1}

C(i).

Lemma 3 (ζ-filtering). ∀δ > 0 and ζ ∈
(

1+|τ10−τ01|
2 , 1

)
, there exists N(δ, ζ) > 0 and c3(ζ) > 0,

such that ∀n ≥ N , k > c3(ζ) log (2n/δ) and ∀i ∈ {0, 1} then:

P
(
C(i)(ζ) ∩ L(ζ ′)c = ∅

)
≥ 1− δ.

Proof. Let {x(z)}kz=1 be the set of k nearest neighbors of x, and consider an x such that for all
1 ≤ z ≤ k, x(z) ∈ Gi(X, k) ∩ L(ζ ′)c. Let N (i)(x) be the number of type 1 (ỹ = 1) nearest
neighbors of such an x. We know N (i)(x) =

∑k
z=1 Bernoulli(η̃(x(z))). Since η̃(x(z)) ≤ p∗ := ζ ′

for all 1 ≤ z ≤ k, we observe that N (i)(x) is stochastically dominated by M := Binomial(k, p∗).

By Lemma 2, ∀δ > 0, ∀x ∈ L(ζ ′)c, for all 1 ≤ z ≤ k, x(z) /∈ L(ζ) with probability at least 1− δ/2.
For convenience, we denote the event that Lemma 2 holds as EI . Therefore, with probability at least
1− δ/2, N (i)(x) is well-defined ∀x ∈ L(ζ ′)c.

5



P
(
C(i)(ζ) ∩ L(ζ ′)c = ∅ | EI

)
= 1− P

(
C(i) ∩ L(ζ ′)c 6= ∅ | EI

)
(7)

= 1− P

 ⋃
x∈C(i)∩L(ζ′)c

{
N (i)(x) > dζke

} , (8)

where ζ is the threshold used in the algorithm to filter outliers in the largest connected component.
Let n(i)

ζ′ := #Xc
i (ζ
′). Continuing, we have

1− P

 ⋃
x∈C(i)(ζ′)∩L(ζ′)c

{
N (i)(x) > dζke

} ≥ 1− n(i)
ζ′ P

(
N (i)(x) > dζke

)
(9)

≥ 1− n(i)
ζ′ P (M > dζke) (10)

≥ 1− n(i)
ζ′ exp {−kK(ζ ‖ ζ ′)} (11)

inequality 11 uses the Chernoff tail bound. Since ζ ′ = 1
2

(
ζ + 1+|τ10−τ01|

2

)
< ζ for all ζ >

1+|τ10−τ01|
2 . Define c4 = K(ζ ‖ ζ ′). After choosing a large enough n(i)

ζ′ , given any δ > 0, we set

k > 1
c4

log
(
2n

(i)
ζ′ /δ

)
, and we have that 1− n(i)

ζ′ exp {−kK(ζ ‖ ζ ′)} > 1− δ/2. Denote the event

P
(
C(i) ∩ L(ζ ′)c = ∅

)
as EF ; we have that,

P
(
C(i) ∩ L(ζ ′)c = ∅

)
= P (EF ∩ EI) = 1− P (EcI)− P (E2

F | EI) = 1− δ/2− δ/2 = 1− δ

Now we are ready to prove Theorem 1. Lemma 1 tells us that as long as we take moderate k, all
points in L(ζ) will be connected in the induced sub-graph. And Lemma 2 and Lemma 3 say that
after removing points whose degree doesn’t coincide its label, we will have no points from L(ζ ′)c

remained in
⋃
i C

(i). Then we use the value of the η̃i(x) at region L(ζ) to prove our main theorem.

A.1 Proof of the Purity Theorem

Proof. By combining Lemmas 1, 2 and 3, we have that ∀δ > 0 and ∀ζ ∈
(

1+|τ10−τ01|
2 , 1

)
,

∃N(δ, ζ) > 0, such that ∀n ≥ N(δ), each of the following event holds with probability at least
1− δ/4:

Connectivity EC = {X ∩ L(ζ) is connected}
Isolation EI = {@edge = (u, v) ∈ Gi(X, k) : u ∈ Xi(ζ), v ∈ Xc

i (ζ
′),∀i ∈ {0, 1}}

Filtering EF = {
⋃

i∈{0,1}
C(i) ∩ L(ζ ′)c = ∅}

First we prove the theorem for the minimum purity `Sn,A, assuming all of the above events. For the
minimum purity, we will assume that ∀i ∈ {0, 1}, minx∈X ηi(x) = 01. In the following,

p−→ will

1In the case when this minimum is not 0 but some value a ∈ (0, 1), the expressions become more unwieldy,
and we derive it in general minimum purity guarantee theorem in this subsection later. Our assertion for average
purity holds regardless of this condition.
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denote convergence in probability, and
f−→ will denote convergence in distribution.

`Sn,Aζ = min
i∈{0,1}

min
x∈C(i)∩L(ζ′)

τii
ηi(x)

η̃i(x)

p−→ min
i∈{0,1}

min
x∈L(ζ′)

τii
ηi(x)

η̃i(x)
(12)

= min
i∈{0,1}

min
x∈L(ζ′)

τii
η̃i(x)− τ1−i,i

(1− τ10 − τ01)η̃i(x)
=

[ζ ′ −max(τ10, τ01)][min(τ11, τ00)]

ζ ′(1− τ10 − τ01)
(13)

`Sn,A0 = min
i∈{0,1}

min
x∈C(i)∩X

τii
ηi(x)

η̃i(x)

p−→ min
i∈{0,1}

min
x∈X

τii
ηi(x)

η̃i(x)
(14)

= min
i∈{0,1}

min
x∈A−

τii
ηi(x)

η̃i(x)
= 0 (15)

To show the convergence in probability in (12), denote gi(x) = τii
ηi(x)
η̃i(x) . Let Fi be the cumulative

distribution function of the scalar random variable gi(x). Also, let g(1,n,i) = min
x∈C(i)∩L(ζ′)

gi(x).

Then using the property of minimum order statistics, for all g in the range of g(x) where x ∈ L(ζ ′),
the cdf of g(1,n,i):

F(1,n,i)(g) := P
[
g(1,n,i) < g

]
= 1− P [g(1,n,i) ≥ g] = 1− [P (gi(x) ≥ g)n] (16)

= 1− [1−Fi(g)]n (17)

Let g∗i = min
x∈L(ζ′)

gi(x), so that we have Fi(g∗) = 0. We have that lim
n→∞

F(1,n,i)(g) = 1{g≥g∗i }(g),

where 1A(x) is the indicator function such that 1A(x) = 1 if x ∈ A and 0 otherwise. Thus by

definition g(1,n,i)
f−→ g∗i . We will now use the fact that if Xn

f−→ c where c is some constant, then
Xn

p−→ c, i.e, convergence in distribution to a constant implies convergence in probability. Then we
have g(1,n,i)

p−→ g∗i ; in other words, min
x∈C(i)∩L(ζ′)

τii
ηi(x)
η̃i(x)

p−→ min
x∈L(ζ′)

τii
ηi(x)
η̃i(x) .

Similarly we can show the convergence in probability in (14). Finally we plug in min
x∈A−

ηi(x) =

min
x∈X

ηi(x) = 0.

Now we analyze the probability that the minimum purity guarantee assertion holds. Let EP ={
`Sn,Aζ − `Sn,A0

> [ζ′−max(τ10,τ01)] min(τ11,τ00)
ζ′(1−τ10−τ01) | EC , EI , EF

}
. By the above convergence in

probability, ∀δ > 0 and ∀ζ > 1+|τ10−τ01|
2 , ∃N > 0 such that ∀n ≥ N , P (EP ) ≥ 1 − δ/4.

Then:

P (EP ∩ EI ∩ EF ∩ EC) = P ({EP } ∩ {EF |EI , EC} ∩ {EI | EC} ∩ {EC})
≥ 1− P ({EcP )})− P ({EcF | EI})− P ({EcI | EC})− P ({EcC})
≥ 1− 4 ∗ (δ/4) = 1− δ,

which means that our minimum purity guarantee holds with probability at least 1− δ.

Now we consider average purity (second assertion in Theorem 1). Let hi(x) = ηi(x)
η̃i(x) =

η̃i(x)−τ1−i,i
(1−τ10−τ01)η̃i(x) . Observe that hi(x) is an increasing function with respect to η̃i(x). For the
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average purity `′Sn,A we have:

`′Sn,Aζ − `
′
Sn,A0

=
[ζ ′ −max(τ10, τ01)]min(τ11, τ00)

ζ ′(1− τ10 − τ01)
(18)

=
∑

i∈{0,1}

1

|C(i)|
∑

x∈C(i)∩L(ζ′)

τii
ηi(x)

η̃i(x)
−

∑
i∈{0,1}

1

|C(i)|
∑

x∈C(i)∩X

τii
ηi(x)

η̃i(x)
(19)

=
∑

i∈{0,1}

τii
|C(i)|

 ∑
x∈C(i)∩L(ζ′)

ηi(x)

η̃i(x)
−

∑
x∈C(i)∩X

ηi(x)

η̃i(x)

 (20)

=
∑

i∈{0,1}

τii


∑

x∈C(i)∩L(ζ′)

hi(x)

|C(i)|
−

∑
x∈C(i)∩X

hi(x)

|C(i)|

 (21)

Note that finite moment of hi(x) comes from the fact that η̃i(x) > τ1−i,i, which implies that
hi(x) = ηi(x)

η̃i(x) < 1
τ1−i,i

. Together with the fact that x has compact support we could show
E[hi(x)] <∞. Using the law of large numbers we have:

lim
n→∞

(`′Sn,Aζ − `
′
Sn,A0

) =
∑

i∈{0,1}

τii [E [hi(x) | x ∈ L(ζ ′)]− E [hi(x)]] (22)

=
∑

i∈{0,1}

τii


∫

x∈L(ζ′)

hi(x)f(x)dx∫
x∈L(ζ′)

f(x)dx
−

∫
x∈X

hi(x)f(x)dx∫
x∈X

f(x)dx

 (23)

=
∑

i∈{0,1}

τii


∫

x∈L(ζ′)

hi(x)f(x)dx

µ[L(ζ ′)]
−
∫

x∈X

hi(x)f(x)dx

 (24)

=
∑

i∈{0,1}

τii
µ[L(ζ ′)]

[µ[L(ζ ′)] + µ[L(ζ ′)c]]

∫
x∈L(ζ′)

hi(x)f(x)dx− µ[L(ζ ′)]
∫

x∈X

hi(x)f(x)dx


(25)

=
∑

i∈{0,1}

τii
µ[L(ζ ′)]

µ[L(ζ ′)c] ∫
x∈L(ζ′)

hi(x)f(x)dx− µ[L(ζ ′)]
∫

x∈L(ζ′)c

hi(x)f(x)dx

 (26)

=
∑

i∈{0,1}

τii
µ[L(ζ ′)]

∫
x∈L(ζ′)c

hi(x)f(x)dx

µ[L(ζ ′)c]
∫

x∈L(ζ′)

hi(x)f(x)dx∫
x∈L(ζ′)c

hi(x)f(x)dx
− µ[L(ζ ′)]

 (27)

≥
∑

i∈{0,1}

τii
µ[L(ζ ′)]

∫
x∈L(ζ′)c

hi(x)f(x)dx

µ[L(ζ ′)c]
∫

x∈L(ζ′)

hi(x)f(x)dx

hi(ζ ′)
∫

x∈L(ζ′)c
f(x)dx

− µ[L(ζ ′)]

 (28)

=
∑

i∈{0,1}

τii
µ[L(ζ ′)]

∫
x∈L(ζ′)c

hi(x)f(x)dx

 ∫
x∈L(ζ′)

hi(x)

hi(ζ ′)
f(x)dx− µ[L(ζ ′)]

 (29)
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Here let Ii(ζ ′) =
∫

x∈L(ζ′)c
hi(x)f(x)dx. Observe that

∫
x∈L(ζ′)

hi(x)

hi(ζ ′)
f(x)dx =

∫
x∈L(ζ)

hi(x)

hi(ζ ′)
f(x)dx+

∫
x∈L(ζ′)\L(ζ)

hi(x)

hi(ζ ′)
f(x)dx (30)

≥
∫

x∈L(ζ)

[
hi(x)

hi(ζ ′)
− 1 + 1

]
f(x)dx+

∫
x∈L(ζ′)\L(ζ)

hi(ζ
′)

hi(ζ ′)
f(x)dx (31)

≥
∫

x∈L(ζ)

[
hi(ζ)− hi(ζ ′)

hi(ζ ′)

]
f(x)dx+ µ[L(ζ ′)] (32)

≥ µ[L(ζ)]
[
hi(ζ)− hi(ζ ′)

hi(ζ ′)

]
+ µ[L(ζ ′)] (33)

A valid choice of ζ implies µ[L(ζ ′)] > 0. Plug Ii(ζ ′) and (31) back into (27) and it end up with

lim
n→∞

(`′Sn,Aζ − `
′
Sn,A0

) ≥
∑

i∈{0,1}

τii
µ[L(ζ)]

µ[L(ζ ′)]

[
hi(ζ)− hi(ζ ′)

hi(ζ ′)

]
Ii(ζ

′) = Cζ > 0 (34)

Remember that hi(ζ) is an increasing function and ζ > ζ ′ = 1
2

(
ζ + 1+|τ10−τ01|

2

)
. Then every term

in (34) is positive and we end up with a positive constant Cζ .

If there doesn’t exists a point x such that ηi(x) = 0, let ai = min
x∈X

ηi(x) and ãi = (1−τ10−τ01)ai+

τ1−i,i, then the following generalized theorem applies for minimum purity.

Theorem (General Minimum Purity Guarantee). ∀δ > 0, ∀ζ > 1+|τ10−τ01|
2 , there exist

N(δ, ζ) > 0, c1(ζ) > 0 , constant c2 ∈
(
0, e−1

e

)
, and an non-decreasing function g1(ζ) ∈[

min
i∈{0,1}

τiiτ1−i,i(ζ
′−ãi)

(1−τ10−τ01)ζ′ãi
, 1

]
, such that ∀n ≥ N(δ, ζ) , ∀q > 1 and ∀k ∈ [c1(ζ) log

q n, c2n]:

P
[
(`Sn,Aζ − `Sn,A0

) > g1(ζ)
]
≥ 1− δ

Remark: Notice here g1(ζ) > 0, since ãi < 1
2 < ζ ′. And for average purity the conclusion remains

the same.

A.2 Proof of the Abundancy Theorem

Denote nc = #{
⋃

i∈{0,1}
C(i)(ζ)}, where C(i)(ζ) is data points of type i that finally kept by our

algorithm using parameter ζ. We have:

Theorem 2 (Abundancy). ∀δ > 0, ∀ζ > 1+|τ10−τ01|
2 , ∀ε > 0, there exists c1(ζ) > 0, c2 ∈ (0, e−1

e )
and N(δ, ζ, ε) > 0, such that ∀n ≥ N(δ, ζ, ε), and ∀k ∈ [c1(ζ) log

q n, c2n], with probability at least
1− δ:

nc
n
≥ µ(L(ζ))

Proof. Given Lemma 1, 2 and 3, ∀δ > 0 and ∀ζ > 1+|τ10−τ01|
2 then ∃N(δ, ζ, ε) > 0 such that

∀n > N(δ, ζ, ε), EC , EI and EF hold with probability at least 1− δ/4. We know that L(ζ) ∩X ⊂⋃
i∈{0,1}

C(i) ⊂ L(ζ ′) ∩X. Thus for a set of i.i.d sampled points X, ∃µ∆ ∈ (0, µ(L(ζ ′))− µ(L(ζ))),

nc =
∑
x∈X

bx and bx ∼ Bernoulli(µ(L(ζ)) + µ∆). Observe that nc stochastic dominates random

variable Binomial(n, µ(L(ζ))). So the MLE µ̂(L(ζ)) = nc
n

p−→ µ(L(ζ)) + µ∆ ≥ µ(L(ζ)).
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Let event EA = {nc/n ≥ µ(L(ζ)) | EC , EI , EF }, ∀δ > 0 and ∀ζ > 1+|τ10−τ01|
2 , ∃N(δ, ζ, ε) > 0

such that ∀n ≥ N(δ, ζ, ε), P (EA | EC , EI , EF ) ≥ 1− δ/4. As a result:

P (EA ∩ EC ∩ EI ∩ EF ) = P ({EA} ∩ {EF | EC , EI} ∩ {EI | EC} ∩ {EC})
≥ 1− P (EcA)− P (EcF | EI)− P (EcI | EC)− P (EcC)
= 1− 4 ∗ (δ/4) = 1− δ

In other words, ∀δ > 0 and ζ > 1+|τ10−τ01|
2 , ∃N(δ, ζ, ε) > 0 such that if n > N(δ, ζ, ε) with

probability at least 1− δ, ncn > µ(L(ζ)).

B On the Consistency with the Bayes Optimum

∀i ∈ {0, 1} and for the posterior probability ηi(x), define h∗i (x) = δηi(x)> 1
2
(x). h∗i (x) = 1

indicates that y(x) = i. The Bayes optimal classifier h∗(x) = 1
2h
∗
1(x) +

1
2 [1− h

∗
0(x)].

In the paper, we provide theorems that lower bound the purity (consistency between noisy labels and
true labels) of the final kept data points. However, like many existing works, we can also show the
consistency between the label of final kept points given by our algorithm and the true Bayes optimal
classifier, which is less challenging than guaranteeing the purity after connectivity, isolation and
filtering (Lemmas 1, 2, and 3) are established. The following theorem will show that all labels of data
points preserved by our algorithm will agree with Bayes optimal classifier’s prediction with large
probability.

Theorem 3 (Consistency with h∗(x)). ∀δ > 0, ∀ζ > 1+|τ10−τ01|
2 , there exist constantsN(δ, ζ) > 0,

c1(ζ) > 0 , c2 ∈
(
0, e−1

e

)
, such that ∀n ≥ N(δ, ζ), ∀q > 1 and ∀k ∈ [c1(ζ) log

q n, c2n] and
∀x ∈

⋃
i∈{0,1}

C(i)(ζ):

P [ỹ(x) = h∗(x)] ≥ 1− δ (35)

Proof. By combining Lemma 1, 2 and 3, ∀δ > 0, ∀ζ > 1+|τ10−τ01|
2 and ∀i ∈ {0, 1}, ∃N(δ, ζ) > 0

such that ∀n ≥ N(δ, ζ), with probability at least 1 − δ, we have [L(ζ) ∩ A+
i ∩X] ⊂ C(i)(ζ) ⊂

[L(ζ ′) ∩ A+
i ∩X]. By definition, we know ∀x ∈ A+

i , we have ηi(x) > 1
2 then also h∗i (x) = 1,

which implies that h∗(x) = i. Since ∀x ∈ C(i), ỹ(x) = i, we have shown ỹ(x) = i = h∗(x). Then:

P [ỹ(x) = h∗(x)] = P [ỹ(x) = h∗(x), EC ∩ EI ∩ EF ] + P [ỹ(x) = h∗(x), (EC ∩ EI ∩ EF )c]
(36)

≥ P [ỹ(x) = h∗(x) | EC ∩ EI ∩ EF ]P (EC ∩ EI ∩ EF ) (37)
= P (EC ∩ EI ∩ EF ) ≥ 1− δ (38)

C Discussion of Hyper-parameters in Our Method

C.1 Analysis of Hyper-Parameter ζ

One important hyper-parameter of our method is ζ. In our algorithm, after the largest connected
component of a class is chosen, we further filter it to ensure the purity. In particular, we consider a
datum with label ỹ clean only if at least a fraction of ζ of its k-nearest neighbors have the same label
ỹ. The value of ζ, ranging between 0 and 1, controls how selective we are in collecting clean data.

As suggested in Section 2.1 of the main paper, for a binary classification problem, ζ needs to be at
least 1/2 + ε, for ε being an arbitrarily small positive constant. For a multiclass problem, the lower
bound of ζ can be smaller than 1/2. We may also consider taking a higher ζ in the beginning of the
training to ensure the purity, and later relax to a lower ζ so that sufficient clean data are collected.

In practice, we observe that it suffices to take a constant ζ throughout the training. We also observe
that the performance is very robust to the choice of ζ. We show in Fig. 2 that for different datasets
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with different noise patterns/levels, choosing ζ = 0.25, 0.5 and 0.75 will all result in reasonably
good performance. For all experiments reported in the main paper, we simply set ζ = 0.5.
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Figure 2: The effect of ζ on the model performance with different datasets/noise patterns. All the
experimental settings are the same as the main paper.

C.2 Other Hyper-Parameters

As discussed in the main paper, our method is very robust to (1) validation set size/cleanness; (2) kc
in building k-nearest-neighbor graphs to compute the connected components; (3) ko in computing
k-nearest neighbors for ζ-filtering; and (4) feature space dimension (dimension of the corresponding
neural network layer). In Fig. 4 of the main paper, we already provided results on CIFAR-10, 60%
uniform noise. Below we provide similar results on other datasets/noise settings. As is shown,
our method is robust to the size and purity of validation set. Besides, it is not sensitive to the
feature dimensions and the k in computing nearest neighbors. In our experiments, we choose a clean
validation set of size 10k for model selection. We set kc = 4, ko = 32 and feature dimension= 512.
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Figure 3: Hyper-parameter analysis for CIFAR-100, 60% uniform noise: (a) validation set; (b) kc; (c)
ko; (d) Feature dimension. For each figure, we change one of the parameters while keeping the others
fixed (to kc = 4, ko = 32, feature dimension = 512, validation set = clean 10k).
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Figure 4: Hyper-parameter analysis for CIFAR-10, 30% pair-flipping noise: (a) validation set; (b) kc;
(c) ko; (d) Feature dimension. The parameter specifications are the same with those in Fig. 3 above.
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Figure 5: Hyper-parameter analysis for CIFAR-100, 30% pair-flipping noise: (a) validation set; (b)
kc; (c) ko; (d) Feature dimension. The parameter specifications are the same with those in Fig. 3.

C.3 Additional Experiments on the Point Cloud Data Domain

To test the applicability of our method to the data beyond image domains, we also conduct experiments
on the point cloud data. Specifically, we adopt the ModelNet40 [4] dataset, which contains 12,311
CAD models from 40 categories, with 9,843 used for training and 2,468 for testing. In the experiment,
we split 20% from the training set as validation data. The CAD models are organized in triangular
meshes, and we follow the protocol of [3] to convert them into point clouds by uniformly sampling
1,024 points from the mesh and normalizing them within a unit ball. We employ PointNet [3] for
point cloud classification. The results are shown in Table 1. We observe similar advantages of our
method over the baselines on the point cloud dataset.

Table 1: Comparison of test accuracies on ModelNet40 under different noise types and fractions. The
average accuracies and standard deviations over 5 trials are reported.

Method Uniform Flipping Pair Flipping
40% 80% 20% 40%

Standard 74.7 ± 1.2 56.0 ± 2.1 83.4 ± 1.1 77.5 ± 2.1
Forgetting 74.7 ± 1.2 56.8 ± 2.9 83.4 ± 1.1 77.4 ± 2.0
Bootstrap 75.6 ± 2.8 57.1 ± 3.1 84.5 ± 0.5 60.8 ± 4.3
Forward 41.7 ± 5.2 19.8 ± 4.8 52.0 ± 2.0 51.3 ± 5.5
Decoupling 79.2 ± 1.0 54.6 ± 2.8 85.9 ± 0.2 69.2 ± 2.3
MentorNet 74.9 ± 2.6 56.2 ± 1.8 83.8 ± 1.1 69.9 ± 2.6
Co-teaching 82.8 ± 1.1 69.3 ± 3.2 84.5 ± 0.5 77.6 ± 1.9
Co-teaching+ 83.0 ± 1.2 62.2 ± 9.2 85.0 ± 0.9 73.9 ± 4.2
IterNLD 75.3 ± 0.9 55.7 ± 2.3 84.2 ± 1.3 76.9 ± 2.2
RoG 80.0 ± 0.9 43.5 ± 3.2 81.5 ± 1.1 76.2 ± 0.9
PENCIL 81.2 ± 1.1 61.7 ± 2.1 84.8 ± 0.4 78.7 ± 1.4
GCE 83.1 ± 0.5 63.0 ± 5.6 83.4 ± 0.7 68.7 ± 2.6
SL 78.8 ± 0.5 59.3 ± 1.9 81.5 ± 0.8 68.8 ± 1.3
TopoFilter 84.2 ± 0.6 70.4 ± 2.6 86.4 ± 0.4 79.6 ± 1.4
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