
Appendix: Supplementary material

A Detailed Derivation of Formula 4

We state the PAC-Bayes theorem (Section 4) which bounds the generalization error of any posterior
distribution Q on parameters ⇥ that can be reached using the training set given a prior distribution P
on parameters that should be chosen in advance and before observing the training set. Let Q and P
be k-dimensional Gaussian distributions (Jiang et al., 2020), the KL-term can be simply written as

KL(N(µQ,⌃Q)||N(µP ,⌃P)) =

Z
[ln(Q(x))� ln(P (x))]Q(x)dx

=

Z
[
1

2
ln

det⌃P

det⌃Q
� 1

2
(x� µQ)

T⌃�1
Q (x� µQ) +

1

2
(x� µP)

T⌃�1
P (x� µP)]Q(x)dx

=
1

2
ln

det⌃P

det⌃Q
� 1

2
tr{E[(x� µQ)(x� µQ)

T]⌃�1
Q }+ 1

2
tr{E[(x� µP)

T⌃�1
P (x� µP)]}

=
1

2
ln

det⌃P

det⌃Q
� 1

2
tr(Ik) +

1

2
(µQ � µP)

T⌃�1
P (µQ � µP) +

1

2
tr(⌃�1

P ⌃Q)

=
1

2

h
tr(⌃�1

P ⌃Q) + (µQ � µP)
>⌃�1

P (µQ � µP)� k + ln
det⌃P

det⌃Q

i

where tr(·) and det(·) are the trace and the determinant of a matrix, respectively.

B Posterior Covariance Matrix

Given the weight matrix wl 2 RNl�1⇥Nl with i-th column wli as a random vector, the posterior covari-
ance matrix ⌃Qwl

is defined in a standard way as ⌃Qwl
= E[vec(wl)vec(wl)T] 2 RNlNl�1⇥NlNl�1 ,

where vec(·) is the vectorisation of a matrix. The (i, j)-th block is [⌃Qwl
]
i,j

= E[wliwT
lj] 2

RNl�1⇥Nl�1 . For computational simplicity, we use the arithmetic mean instead of the expected value,
so that the weight correlation ⇢(wl) can be used to represent [⌃Qwl

]i,j = ⇢(wl)�2
l INl�1 .

Therefore we have ⌃Qwl
= ⌃⇢(wl)⌦�2

l INl�1 , where ⌦ is the Kronecker product, and the correlation
matrix ⌃⇢(wl) 2 RNl⇥Nl can be written as

⌃⇢(wl) =

"
1 ⇢(wl) ⇢(wl)

⇢(wl) 1 ⇢(wl)
⇢(wl) ⇢(wl) 1

#

Nl

.

For simplicity, we use the same average ⇢(wl) for layer l. Thus, ⌃Qwl
is a Nl�1Nl ⇥ Nl�1Nl

matrix with some elements being ⇢(wl). For example, letting Nl�1 be 2 and Nl be 3, we have

⌃Qwl
= ⌃⇢(wl) ⌦ �2

l I2 =

2

6666666666666666666664

�2
l 0 ⇢(wl)�2

l 0 ⇢(wl)�2
l 0

0 �2
l 0 ⇢(wl)�2

l 0 ⇢(wl)�2
l

⇢(wl)�2
l 0 �2

l 0 ⇢(wl)�2
l 0

0 ⇢(wl)�2
l 0 �2

l 0 ⇢(wl)�2
l

⇢(wl)�2
l 0 ⇢(wl)�2

l 0 �2
l 0

0 ⇢(wl)�2
l 0 ⇢(wl)�2

l 0 �2
l

3

7777777777777777777775

.

As the computation of true posterior is a notoriously hard problem (due to high-dimensional data,
highly nonlinear network, etc), the assumption of Gaussian distribution is commonly used in the

12

literature to make reasoning more tractable. Nevertheless, we have contributed theoretically to better
capture the true posterior by (1) relaxing an i.i.d. assumption made in [Dziugaite and Roy (2017);
Jiang et al. (2020)] and (2) taking WC into account. We recognize that our hypothetical covariance
only considers the linear correlation between weights of neurons (filters). There is a gap between
our hypothetical covariance and true covariance. But we also remark that, an estimation of the “true”
posterior from data is also problematic, (e.g., use sharpness-like methods (Keskar et al., 2016) to
get samplings parameters and estimate the covariance), may easily lead to further question on the
accuracy of estimation and intractable derivation in theory. All in all, this is an open question and
needs further research.

C Proof of Lemma 4.3

We start by stating the PAC-Bayes generalisation bound and introduce WC into the posterior distri-
bution Q of the KL term KL(Q||P). Then, we prove that KL(Q||P)l =

||✓F
l �✓0

l ||
2
Fr

2�2
l

+ g(wl), and
KL(Q||P) =

P
KL(Q||P)l when �1 = �2 = · · · = �L = �.

Proof C.1 (Proof of Eq. 6) Let (⌃P)l , (⌃P)l be the covariance matrix for (P)l and (Q)l respec-
tively, ⌃Pw , ⌃Pb be the covariance matrix for weights’ prior distribution and bias’ prior distribution
respectively. Thus we have

KL(Q||P)l =
||✓Fl � ✓0l ||2Fr

2�2
l

+ ln
det(⌃P)l
det(⌃Q)l

=
||✓Fl � ✓0l ||2Fr

2�2
l

+ ln
det(⌃Pw)l · det(⌃Pb)l
det(⌃Qw)l · det(⌃Qb)l

=
||✓Fl � ✓0l ||2Fr

2�2
l

+ ln
det(�2

l INl�1Nl
)

det(⌃⇢(w) ⌦ �2
l INl�1)

=
||✓Fl � ✓0l ||2Fr

2�2
l

+ ln
�
2Nl�1Nl

l

�
2Nl�1Nl

l (1� ⇢(wl))(Nl�1)Nl�1(1 + (Nl � 1)⇢(wl))Nl�1

=
||✓Fl � ✓0l ||2Fr

2�2
l

� (Nl � 1)Nl�1 ln(1� ⇢(wl))�Nl�1 ln(1 + (Nl � 1)⇢(wl))
�
.

Proof C.2 Let �1 = �2 = · · · = �L = �. Then we have

KL(Q||P) =
||✓F � ✓0||2Fr

2�2
+ ln

det⌃P

det⌃Q

=
LX

l=1

||✓Fl � ✓0l ||2Fr
2�2

+ ln
LY

l=1

det(⌃P)l
det(⌃Q)l

=
LX

l=1

⇣ ||✓Fl � ✓0l ||2Fr
2�2

+ ln
det(⌃P)l
det(⌃Q)l

⌘

=
LX

l=1

KL(Q||P)l.

D Details of Regularisation

In Section 5, we propose a parameter gradient that is given by
r✓J̃(✓;X, y) = r✓J(✓;X, y) + ↵rwg(w),

where for the weight matrix wl 2 NNl�1⇥Nl from layer l � 1 to layer l, we have

rwl
g(wl) =

hNl�1(Nl � 1)

1� ⇢(wl)
� Nl�1(Nl � 1)

1 + (Nl � 1)⇢(wl)

i@⇢(wl)

@wl
.

And for the element wl,(i,j) of i-th row and j-th column in wl , we have

@⇢(wl)

@wl,(i,j)
=

1

Nl � 1

NlX

q=1,q 6=j

(
sign(wT

l,(,j)wl,(,q))
h wl,(i,q)

||wl,(,j)||2||wl,(,q)||2
�

wl,(i,j)w
T
l,(,j)wl,(,q)

||wl,(,j)||32||wl,(,q)||2

i)
,

13

where wl,(,j) and wl,(,q) are j-th and q-th column in wl , respectively.

E Details of the experiments, and the results using the CIFAR10 dataset

For all our experiments in Section 6.1, we use the CIFAR10 and CIFAR100 datasets. To train our
networks we used Stochastic Gradient Descent (SGD) with momentum 0.9 to minimise multi-class
cross-entropy loss with 0.01 learning rate and 500 epochs. We mainly study four types of neural
network architectures:1

• Fully Connected Networks (FCNs): FCN1 contains 5000, 2500, 2500 and 1250 hidden units
respectively while FCN2 contains 10000, 1000, 1000 and 1000 hidden units respectively.
Each of these hidden layers is followed by a batch normalization layer and a ReLU activation.
The final output layer has an output dimension of 10 or 100 (i.e., number of classes).

• VGGs: Architectures by Simonyan and Zisserman (2015), that consist of multiple convolu-
tional layers, followed by multiple fully connected layers and a final classifier layer (with
output dimension 10 or 100). We study the VGG networks with 11 and 16 layers.

• DenseNets: Architectures by Huang et al. (2017a) that consist of multiple convolutional
layers, followed by a final classifier layer (with output dimension 10 or 100). We study the
DenseNet with 121 layers.

• ResNets: Architectures used are ResNets V1 (He et al., 2016). All convolutional layers
(except downsampling convolutional layers) have kernel size 3⇥ 3 with stride 1. Downsam-
pling convolutions have stride 2. All the ResNets have five stages (0-4) where each stage
has multiple residual/downsampling blocks. These stages are followed by a max-pooling
layer and a final linear layer. We study the ResNet 18, 34, and 50.

In the experiment, we set a suitable upper bound g(wl)  50000 for ⇢(wl)  1, to avoid that
g(wl) ! +1 when ⇢(wl) ! 1. For the PBC measure, letting �2

l = 1/L, we replace
P

l(Lk✓0l �
✓Fl k2Fr/2 + g(wl)) with

P
l(k✓0l � ✓Fl k2Fr/2 + g(wl)/L). Details are given in the source codes.

F Details of the Results Using the CIFAR100 Dataset

In Table 4, we compare the generalisation performance of several DNN architectures trained on
the CIFAR-100 dataset. We find that the PBC measure still has a convincing performance and
successfully ranks the networks FCN1, VGG16, VGG19 and ResNet18.

Table 4: Complexity measures for CIFAR-100

Network PFN PSN NoP SoSP PB PBC WC GE

FCN1 2.2e8 2.0e4 3.7e7 8.7e8 5.0e2 1.1e5 0.275 4.251
FCN2 1.0e8 1.4e4 4.2e7 9.8e8 4.9e2 1.2e5 0.278 3.754

VGG11 1.4e12 3.5e6 9.8e6 4.2e8 5.21e3 3.8e4 0.280 2.549
VGG16 6.6e16 4.4e8 1.5e7 6.9e8 3.8e3 3.9e4 0.279 1.387
VGG19 2.0e20 1.5e10 2.0e7 1.0e9 5.22e3 4.5e4 0.277 1.726

ResNet18 1.0e24 4.5e12 1.1e7 8.6e8 5.3e3 1.5e5 0.764 5.756
ResNet34 1.5e39 9.1e18 2.1e7 3.1e9 1.0e4 1.6e5 0.781 5.660
ResNet50 9.1e76 1.0e46 2.4e7 5.2e9 1.1e6 1.1e6 0.278 4.320

DenseNet121 1.4e192 4.2e153 6.9e6 1.6e10 1.9e9 1.9e9 0.389 4.583
Concordant Pairs 23 23 16 23 24 28 26 -
Discordant Pairs 13 13 20 13 12 8 10 -

Kendall’s ⌧ 0.27 0.27 -0.11 0.27 0.33 0.55 0.44 -

1Code available at https://github.com/Alexkael/NeurIPS2020_Weight_Correlation.

14

https://github.com/Alexkael/NeurIPS2020_Weight_Correlation

G Effectiveness of WCD (details on experimental data)

Table 5: The architectures of FCN3, VGG11*, VGG16*, VGG19*
FCN3 FC-52 FC-48 FC-44 FC-40 FC-36 FC-32 FC-28 FC-24 FC-20 FC-16

VGG11* conv3-4 poolmax conv3-4 poolmax conv3-4
conv3-4 poolmax conv3-8

conv3-8 poolmax conv3-8
conv3-8 poolmax FC-12 FC-12 FC-10 soft-max

VGG16* conv3-4
conv3-4 poolmax conv3-4

conv3-4 poolmax
conv3-4
conv3-4
conv3-4

poolmax
conv3-8
conv3-8
conv3-8

poolmax
conv3-8
conv3-8
conv3-8

poolmax FC-12 FC-12 FC-10 soft-max

VGG19* conv3-4
conv3-4 poolmax conv3-4

conv3-4 poolmax

conv3-4
conv3-4
conv3-4
conv3-4

poolmax

conv3-8
conv3-8
conv3-8
conv3-8

poolmax

conv3-8
conv3-8
conv3-8
conv3-8

poolmax FC-12 FC-12 FC-10 soft-max

As Table 5 shows, we used the above four networks to train the Fashion-MNIST, MNIST, CIFAR-10,
SVHN datasets with ReLU activation function, 0.01 learning rate, stochastic gradient descent (SGD),
100 (FCN) or 500 (CNN) epochs, with and without WCD method. To converge to a same-level
training loss, some models may be trained several times. Details are given in online code. FCN3
contains 52, 48, 44, 40, 36, 32, 28, 24, 20 and 16 hidden units respectively while VGG* consists of
multiple convolutional layers with 4, 4, 4, 8, 8 channels in the five stages.

H Effectiveness of WCD (additional experiments on CIFAR-100 and

Caltech-256)

Table 6: Comparison of different models with and without WCD

Network
CIFAR-100 Caltech-256

Loss Error % WC Train Loss Loss Error % WC Train Loss

VGG11* 3.138±0.005 76.3±0.5% 0.379 2.86±0.05 4.807±0.005 90.1±0.5% 0.461 0.795±0.05VGG11* + WCD 3.043±0.005 75.0±0.5% 0.221 4.779±0.005 89.6±0.5% 0.289

VGG16* 3.090±0.005 75.5±0.5% 0.383 2.853±0.005 4.950±0.005 91.1±0.5% 0.487 1.55±0.05VGG16* + WCD 3.082±0.005 76.0±0.5% 0.261 4.746±0.005 88.9±0.5% 0.304

VGG19* 3.058±0.005 75.8±0.5% 0.348 2.83±0.02 4.966±0.005 90.9±0.5% 0.365 1.515±0.005VGG19* + WCD 3.043±0.005 75.7±0.5% 0.218 4.698±0.005 88.6±0.5% 0.203

The errors are pretty high and the results are more random–as the networks are small and datasets are
more complicated–WCD still improves a little generalisation performance in most cases.

15

