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A Additional numerical experiments

A.1 Two classes

In this section, we provide additional numerical experiments to compare CURE in (7) with other
clustering methods on the same real dataset as Section 4. We focus on six methods: (i) discriminative
K-means (DisKmeans) in Ye et al. (2008); (ii) a discriminative clustering formulation described
in Bach and Harchaoui (2008); Flammarion et al. (2017); (iii) Model-based clustering (Mclust) in
Fraley and Raftery (1999); (iv) Projection Pursuit (PP) in Peña and Prieto (2001); (v) Adaptive
LDA-guided K-means Clustering in Ding and Li (2007); and (vi) Minimum Density Hyperplane
(MDH) in Pavlidis et al. (2016).

As suggested by Ye et al. (2008), the regularization parameter λ therein has a significant impact on
the performance of DisKmeans. To resolve this issue, they provide an automatic tuning framework.
Here we provide a comparison between CURE and DisKmeans. For the DisKmeans, we consider
pre-chosen λ ∈ {0, 1, 10, 100} as well as λ from the automatic tuning procedure suggested by Ye
et al. (2008), initialized from 1. Due to high computational cost of DisKmeans with automatic tuning
(which includes eigendecomposition of (N1 +N2)× (N1 +N2) matrix in each iteration), we conduct
the experiment on smaller dataset: we fix N1 = 1000 and choose N2 from {1000, 500, 333, 250}.
As is shown in Table 1, CURE has lower misclassification rate under all settings. It is also worth
mentioning that the automatic tuning procedure sends λ→∞, in which case DisKmeans is equivalent
to classical K-means.

Table 1: Misclassification rate of CURE and disciminative K-means.

Method
N1 : N2 1 : 1 2 : 1 3 : 1 4 : 1

CURE / 5.2± 0.3% 6.7± 0.6% 9.1± 0.9% 11.2± 1.2%
λ = 0 49.9% 49.5% 49.5% 47.7%

Discriminative λ = 1 48.8% 46.6% 49.4% 48.3%
K-means λ = 10 46.5% 44.2% 47.4% 41.8%

Ye et al. (2008) λ = 100 6.6% 49.4% 46.5% 27.2%
automatic tuning 43.3% 49.4% 47.5% 45.8%

For experiments comparing CURE with other five methods, we still adopt the usual setting of sample
size: we fix N1 = 6000 and choose N2 from {6000, 3000, 2000, 1500}. Model-based clustering
(Mclust) in Fraley and Raftery (1999), Projection Pursuit (PP) in Peña and Prieto (2001) and Minimum
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Density Hyperplane (MDH) in Pavlidis et al. (2016) are implemented using open-source R packages
with default settings. In addition:

1. The discriminative clustering method appeared in Bach and Harchaoui (2008); Flammarion et al.
(2017) stems from the optimization problem

min
v∈Rd,y∈{±1}d

‖y −Xv‖22 , (1)

whereX is the centered data matrix. We adopt the alternating minimization scheme: given v, the
optimal y is obtained by sgn(Xv) (or by running K-means onXv, which has similar empirical
performance) while given y, the optimal v is obtained from solving a least squares problem. In the
first step, v is initialized from a uniform distribution over the unit sphere. The iterative algorithm
is terminated when y, the predicted label, no longer changes.

2. Following the instructions in Ding and Li (2007), we implement the adaptive LDA-guided K-means
clustering algorithm (Algorithm 1 therein) by alternating between linear discriminant analysis and
K-means until convergence.

Table 2 shows the misclassification rate and the standard deviation of CURE and the other five
methods over 50 independent trials. It is clear that CURE is more accurate and stable than these five
methods under all settings.

Table 2: Misclassification rate of CURE and Method (1).

Method
N1 : N2 1 : 1 2 : 1 3 : 1 4 : 1

CURE 5.2± 0.2% 7.1± 0.4% 9.3± 0.7% 11.3± 1.1%
Method (1) 31.1± 13.8% 32.9± 13.3% 34.7± 12.7% 36.8± 11.2%

Mclust 48.7± 1.3% 39.1± 4.8% 34.1± 8.0% 28.2± 7.8%
Projection Pursuit 36.9± 9.8% 37.4± 9.6% 39.7± 6.9% 40.6± 7.3%

LDA-guided K-means 45.9% 49.0% 45.6% 44.3%
MDH 48.6% 43.1% 38.3% 35.2%

A.2 Multiple classes

To illustrate how the general CURE in Section 2.3 works, we consider the clustering problem with
the first 4 classes in Fashion-MNIST (T-shirt/top, Trouser, Pullover, Dress), each of which has 6000
training samples and 1000 testing samples. Our training process only uses features of training samples
and does not touch any labels.

We let the number of classes K be 4, the embedding space Y be RK , the target distribution ν be
1
K

∑K
j=1 δej , the discrepancy measure D be the Wasserstein-1 distance, and define the classification

rule g(y) = argminj∈[K] ‖y − ej‖2. We compare two classes F of feature mappings: linear
functions and fully-connected neural networks with one hidden layer that has 100 nodes. Initial
values All of the weight parameters are initialized using i.i.d. samples from N(0, 0.052).

Let fθ be a feature transform in F , parametrized by θ. Denote by {xi}ni=1 the samples, where
n = 4× 6000 = 24000. The loss function is

L(θ) = W1

(
1

n

n∑
i=1

δfθ(xi), ν

)
= min
P∈[0,1]n×K , 1>nP=1>K/K, P1K=1n/n

n∑
i=1

K∑
j=1

pij |fθ(xi)− ej |.

It is natural to optimize with respect to P and θ in an alternating manner. We apply random sampling
techniques to speedup computation. In the t-th iteration,

1. Draw B = 200 samples {xti}Bi=1 uniform at random (with replacement) from the dataset;
2. Use the Python function ot.sinkhorn2 in library POT (Flamary and Courty, 2017) with reg =

0.1 to obtain the solution Pt to an entropy-regularized version of

min
P∈[0,1]B×K , 1>BP=1>K/K, P1K=1B/B

B∑
i=1

K∑
j=1

pij |fθt(xti)− ej |;
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Figure 1: 4-class Fashion-MNIST: Testing errors of linear functions and neural networks, with error
bar quantifying one standard deviation.

3. Update model parameters by θt+1 = θt − η∂Lt(θt), where ∂ is the sub-differential operator,
η = 10−3 and

Lt(θ) =

K∑
j=1

p̂ij |fθ(xti)− ej |, ∀θ.

An epoch refers to n/B = 12 consecutive iterations. The learning curves in Figure 1 shows the
advantage of neural network and demonstrates the flexibility of CURE with nonlinear function
classes.

B Proof sketch of Theorem 1

B.1 Step 1: properties of the test function f

We now investigate the function f defined in (8) and relate it to h(x) = (x2 − 1)2/4. As Lemma
1 suggests, |f ′|, |f ′′| and |f ′′′| are all bounded by constants determined by a and b; |f ′ − h′| and
|f ′′ − h′′| are bounded by polynomials that are independent of a and b. See Appendix D for a proof.
Lemma 1. When a is sufficiently large and b ≥ 2a, f has the following properties:

1. f ′ is continuous with F1 , supx∈R |f ′(x)| ≤ 2a2b and |f ′(x)− h′(x)| ≤ 7|x|31{|x|≥a};

2. f ′′ is continuous with F2 , supx∈R |f ′′(x)| ≤ 3a2 and |f ′′(x)− h′′(x)| ≤ 9x21{|x|≥a};

3. f ′′′ exists in R \ {±a,±b} with F3 , supx∈R\{±a,±b} |f ′′′(x)| ≤ 6a.

B.2 Step 2: landscape analysis of the population loss

To kick off the landscape analysis we investigate the population version of L̂1, namely

L1 (α,β) = EX∼ρf(α+ β>X) +
1

2
(α+ β>µ0)2. (2)

One of the main obstacles is the complicated piecewise definition of f , which prevent us from
obtaining closed form formulae. We bypass this problem by relating the population loss with f to
that with the quartic function h. See Appendix E for a proof.
Theorem 1 (Landscape of the population loss). Consider Model 1 and assume that b ≥ 2a. There
exist positive constants A, ε, δ and η determined by M , EZ4, ‖µ‖2, λmax(Σ) and λmin(Σ) but
independent of d and n, such that when a > A,

1. The only two global minima of L1 are ±γ?, where γ? = (−cβh>µ0, cβ
h) for some c ∈ (1/2, 2)

and

βh =

(
1 + 1/ ‖µ‖2Σ−1

‖µ‖4Σ−1 + 6 ‖µ‖2Σ−1 +MZ

)1/2

Σ−1µ;
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2. ‖∇L1(γ)‖2 ≥ ε if dist(γ, {±γ?} ∪ S) ≥ δ, where S = {0} ∪ {(−β>µ0,β) : µ>β =
0, β>Σβ = 1/MZ};

3. ∇2L1(γ) � ηI if dist(γ, {±γ?}) ≤ δ, and u>∇2L1(γ)u ≤ −η if dist(γ, S) ≤ δ with u =
(0,Σ−1µ/‖Σ−1µ‖2).

Theorem 1 precisely characterizes the landscape of L1. In particular, all of its critical points make
up the set {±γ?} ∪ S, where ±γ? are global minima and S consists of strict saddles. The local
geometry around critical points is also desirable.

B.3 Step 3: landscape analysis of the empirical loss

Based on geometric properties of the population loss L1, we establish similar results for the empirical
loss L̂1 through concentration analysis. See Appendix F for a proof.
Theorem 2 (Landscape of the empirical loss). Consider Model 1 and assume that b ≥ 2a ≥ 4. Let
γ? and S be defined as in Theorem 1. There exist positive constants A,C0, C1, C2,M1, ε, δ and η
determined byM ,MZ , ‖µ‖2, λmax(Σ) and λmin(Σ) but independent of d and n, such that when a ≥
A and n ≥ C0d, the followings hold with probability exceeding 1−C1(d/n)C2d−C1 exp(−C2n

1/3):

1. ‖∇L̂1(γ)‖2 ≥ ε if dist(γ, {±γ?} ∪ S) ≥ δ;

2. u>∇2L̂1(γ)u ≤ −η if dist(γ, S) ≤ δ, with u = (0,Σ−1µ/‖Σ−1µ‖2);

3. ‖∇L̂1(γ1) − ∇L̂1(γ2)‖2 ≤ M1‖γ1 − γ2‖2 and ‖∇2L̂1(γ1) − ∇2L̂1(γ2)‖2 ≤ M1[1 ∨
(d log(n/d)/

√
n)]‖γ1 − γ2‖2 hold for all γ1,γ2 ∈ R× Rd.

Theorem 2 shows that a sample of size n & d suffices for the empirical loss to inherit nice geometric
properties from its population counterpart. The corollary below illustrates that as long as we can
find an approximate second-order stationary point, then the statistical estimation error can be well
controlled by the gradient. We defer the proof of this to Appendix G.
Corollary 1. Under the settings in Theorem 2, there exist constantsC,C ′1, C

′
2 such that the followings

happen with probability exceeding 1 − C ′1(d/n)C
′
2d − C ′1 exp(−C ′2n1/3): for any γ ∈ R × Rd

satisfying ‖∇L̂1(γ)‖2 ≤ ε and λmin[∇2L̂1(γ)] > −η,

min
s=±1

‖sγ − γ?‖2 ≤ C
(∥∥∇L̂1 (γ)

∥∥
2

+

√
d

n
log
(n
d

))
.

As a result, when the event above happens, any local minimizer γ̃ of L̂1 satisfies

min
s=±1

‖sγ̃ − γ?‖2 ≤ C
√
d

n
log
(n
d

)
.

B.4 Step 4: convergence guarantees for perturbed gradient descent

The landscape analysis above shows that all local minimizers of L̂1 are statistically optimal (up to
logarithmic factors), and all saddle points are non-degenerate. Then it boils down to finding any γ
whose gradient size is sufficiently small and Hessian has no significantly negative eigenvalue. Thanks
to the Lipschitz smoothness of ∇L̂1 and ∇2L̂1, this can be efficiently achieved by the perturbed
gradient descent algorithm (see Algorithm 1) proposed by Jin et al. (2017). Small perturbation is
occasionally added to the iterates, helping escape from saddle points efficiently and thus converge
towards local minimizers. Theorem 3 provides algorithmic guarantees for CURE on top of that. We
defer the proof to Appendix H.

Implementation of the algorithm requires specification of hyperparameters a, b, M1, ε and η. Under
the regularity assumptions in Model 1, many structural parameters are well-behaved constants and
that helps choose hyperparameters at least in a conservative way. In theory, we can let b = 2a; a and
M1 be sufficiently large; ε and η be sufficiently small. In our numerical experiments, the algorithm
does not appear to be sensitive to choices of hyperparameters. We do not go into much details to
avoid distractions.
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Algorithm 1 Perturbed gradient descent PerturbedGD(γpgd, `, ρ, εpgd, cpgd, δpgd,∆pgd)

χ ← 3 max{log(d`∆pgd/(cpgdε
2
pgdδpgd)), 4}, ηpgd ← cpgd/`, r ←

√
cpgdεpgd/(χ

2`), gthres ←√
cpgdεpgd/χ

2, fthres ← cpgdε
1.5
pgd/(χ

3√ρ), tthres ← χ`/(c2pgd
√
ρεpgd), tnoise ← −tthres − 1.

Initialize γ0 = γpgd.
For t = 0, 1, . . . do

If ‖∇L̂1(γt)‖2 ≤ gthres and t− tnoise > tthres:
Update tnoise ← t,
Perturb γt ← γt + ξt with ξt ∼ U(B(0, r))

If t− tnoise = tthres and L̂1(γt)− L̂1(γ̃tnoise) > −fthres:
Return γ̃tnoise

Update γt+1 ← γt − ηpgd∇L̂1(γt).

Theorem 3 (Algorithmic guarantees). Consider the settings in Theorem 2 and adopt the constants
M1, ε and η therein. With probability exceeding 1−C1[(d/n)C2d + e−C2n

1/3

+ n−10], Algorithm 1
with parameters γpgd = 0, ` = M1, δpgd = n−11, ρ = M1 max{1, d log(n/d)/

√
n}, εpgd =

min{
√
d log(n/d)/n, `2/ρ, η2/ρ, ε} and ∆pgd = 1/4 terminates within Õ(n/d+ d2/n) iterations

and the output γ̂ satisfies

∥∥∇L̂1(γ̂)
∥∥
2
≤
√
d

n
log
(n
d

)
≤ ε and λmin

(
∇2L̂1(γ̂)

)
≥ −η.

Theorem 3 and Corollary 1 immediately lead to

min
s=±1

‖sγ̂ − γ?‖2 .
∥∥∇L̂1(γ̂)

∥∥
2

+

√
d

n
log
(n
d

)
.

√
d

n
log
(n
d

)
,

which finishes the proof of Theorem 1.

C Preliminaries

Before we start the proof, let us introduce some notations. Recall the definition of the random vector
X = µ0 +µY + Σ1/2Z and the i.i.d. samplesX1, . . . ,Xn ∈ Rd. Let X̄ = (1,X), X̄i = (1,Xi)
and µ̄0 = (1,µ0). For any γ = (α,β) ∈ R× Rd, define

Lλ(γ) = L(γ) + λR(γ) and L̂λ(γ) = L̂(γ) + λR̂(γ),

where

L(γ) = Ef(γ>X̄) = Ef(α+ β>X), L̂(γ) =
1

n

n∑
i=1

f(γ>X̄i) =
1

n

n∑
i=1

f(α+ β>Xi),

R(γ) =
1

2
(α+ β>µ0)2 =

1

2
(γ>µ̄0)2, R̂(γ) =

1

2
(α+ β>n−1

n∑
i=1

Xi)
2 =

1

2
(γ>n−1

n∑
i=1

X̄i)
2.

Note that the results stated in Section 3 and B focus on the special case when λ = 1. The proof in the
appendices allows for general choices of λ ≥ 1.
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D Proof of Lemma 1

By direct calculation, one has

f ′(x) =


h′(x), |x| ≤ a
[h′(a) + h′′(a)(|x| − a)− h′′(a)

2(b−a) (|x| − a)2] sgn(x), a < |x| ≤ b
[h′(a) + b−a

2 h′′(a)] sgn(x), |x| > b

,

f ′′(x) =


h′′(x), |x| ≤ a
h′′(a)(1− |x|−ab−a ), a < |x| ≤ b
0, |x| > b.

,

f ′′′(x) =


h′′′(x), |x| < a

−h
′′(a)
b−a sgn(x), a < |x| < b

0, |x| > b

.

When a is sufficiently large and b ≥ 2a, we have F1 , supx∈R |f ′(x)| = h′(a) + b−a
2 h′′(a) ≤ 2a2b,

F2 , supx∈R |f ′′(x)| = h′′(a) ≤ 3a2, and F3 , sup|x|6=a,b |f ′′′(x)| = h′′′(a) ∨ h′′(a)
b−a ≤ 6a.

In addition, one can also check that when a < |x| ≤ b, we have |h′(a)| ≤ |x|3 and |h′′(a)| ≤ 3|x|2,
thus

|f ′(x)− h′(x)| ≤ |f ′(x)|+ |h′(x)| ≤ |h′(a)|+ |h′′(a)(|x| − a)|+ |h′′(a)(|x| − a)2/(2a)|+ |x3 − x|

≤ |x|3 + 3|x|2 +
3

2
|x|2 + |x|3 ≤ 7|x|3

provided that b ≥ 2a ≥ 2. When |x| ≥ b, we have

|f ′(x)− h′(x)| ≤ |f ′(x)|+ |h′(x)| ≤ |h′(a)|+ |(b− a)h′′(a)/2|+ |x3 − x|

≤ |x|3 +
3

2
|x|2 + |x|3 ≤ 4|x|3.

This combined with f ′(x) = h′(x) when |x| ≤ a gives |f ′(x)− h′(x)| ≤ 1{|x|≥a}7|x|3. Similarly
we have |f ′′(x)− h′′(x)| ≤ 1{|x|≥a}9x

2.

E Proof of Theorem 1

It suffices to focus on the special case µ0 = 0 and Σ = Id. We first give a theorem that characterizes
the landscape of an auxiliary population loss, which serves as a nice starting point of the study of the
actual loss functions that we use.
Theorem 4 (Landscape of the auxillary population loss). Consider model (1) with µ0 = 0 and
Σ = Id. Suppose that MZ > 3. Let h(x) = (x2 − 1)2/4 and λ ≥ 1. The stationary points of the
population loss

Lhλ (α,β) = Eh
(
α+ β>X

)
+
λ

2
α2

are {(α,β) : ∇Lhλ(α,β) = 0} = Sh1 ∪ Sh2 , where

1. Sh1 = {(0,±βh)} consists of global minima, with

βh =

(
1 + 1/ ‖µ‖22

‖µ‖42 + 6 ‖µ‖22 +MZ

)1/2

µ;

2. Sh2 = {(0,β) : µ>β = 0, ‖β‖22 = 1/MZ} ∪ {0} consists of saddle points whose Hessians have
negative eigenvalues.

We also have the following quantitative results: there exist positive constants εh, δh and ηh determined
by MZ , ‖µ‖2 and λ such that
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1. ‖∇Lhλ(γ)‖2 ≥ εh if dist(γ, Sh1 ∪ Sh2 ) ≥ δh;

2. ∇2Lhλ(γ) � ηhI if dist(γ, Sh1 ) ≤ 3δh, and u>∇2Lhλ(γ)u ≤ −ηh if dist(γ, Sh2 ) ≤ 3δh where
u = (0,µ/‖µ‖2).

Proof. See Appendix E.1.

The following Lemma 2 controls the difference between the landscape of Lλ and Lhλ within a compact
ball.
Lemma 2. LetX be a random vector in Rd+1 with ‖X‖ψ2

≤M , f be defined in (8) with b ≥ 2a ≥
4, h(x) = (x2−1)2/4 for x ∈ R, Lλ(γ) = Ef(γ>X) +λα2/2 and Lhλ(γ) = Eh(γ>X) +λα2/2
for γ ∈ Rd+1. There exist constants C1, C2 > 0 such that for any R > 0,

sup
‖γ‖2≤R

∥∥∇Lλ (γ)−∇Lhλ (γ)
∥∥
2
≤ C2R

3M4 exp

(
− C1a

2

R2M2

)
,

sup
‖γ‖2≤R

∥∥∇2Lλ (γ)−∇2Lhλ (γ)
∥∥
2
≤ C2R

2M4 exp

(
− C1a

2

R2M2

)
.

In addition, when E(XX>) � σ2I holds for some σ > 0, there exists m > 0 determined by M and
σ such that inf‖γ‖2≥3/m ‖∇Lλ(γ)‖2 ≥ m and inf‖γ‖2≥3/m ‖∇Lhλ(γ)‖2 ≥ m.

Proof. See Appendix E.2.

On the one hand, Lemma 2 implies that inf‖γ‖2≥3/m ‖∇Lλ(γ)‖2 ≥ m for some constant m > 0.
Suppose that

εh < m (3)

and define r = 3/εh. Then

‖∇L1(γ)‖2 > εh if ‖γ‖2 ≥ r. (4)

Moreover, we can take a to be sufficiently large such that

sup
‖γ‖2≤r

∥∥∇L1 (γ)−∇Lh1 (γ)
∥∥
2
≤ εh/2. (5)

On the other hand, from Theorem 4 we know that

‖∇Lhλ(γ)‖2 ≥ εh if dist(γ, Sh1 ∪ Sh2 ) ≥ δh. (6)

Taking (4), (5) and (6) collectively gives

‖∇Lλ(γ)‖2 ≥ εh/2 if dist(γ, Sh1 ∪ Sh2 ) ≥ δh. (7)

Hence {γ : ∇Lλ(γ) = 0} ⊆ {γ : dist(γ, Sh1 ∪ Sh2 ) ≤ δh} and it yields a decomposition
{γ : ∇Lλ(γ) = 0} = S1 ∪ S2, where

Sj ⊆ {γ : dist(γ, Shj ) ≤ δh}, ∀j = 1, 2. (8)

Consequently, for j = 1, 2 we have

{γ : dist(γ, Sj) ≤ 2δh} ⊆ {γ : dist(γ, Shj ) ≤ 3δh} ⊆ {γ : ‖γ‖2 ≤ 3δh + max
γ′∈Sh1 ∪Sh2

‖γ′‖2}.

(9)

Now we work on the first proposition in Theorem 1 by characterizing S1.
Lemma 3. Consider the model in (1) with µ0 = 0 and Σ = Id. Suppose that f ∈ C2(R) is even,
limx→+∞ xf ′(x) = +∞ and f ′′(0) < 0. Define

Lλ(α,β) = Ef(α+ β>X) +
λ

2
α2, ∀α ∈ R, β ∈ Rd.
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1. There exists some c > 0 determined by ‖µ‖2, the function f , and the distribution of Z, such that
(0,±cµ) are critical points of Lλ;

2. In addition, if f ′′ is piecewise differentible and |f ′′′(x)| ≤ F3 < ∞ almost everywhere, we can
find c0 > 0 determined by ‖µ‖2, f ′′(0), F3 and M such that c > c0.

Proof. See Appendix E.3.

Lemma 3 asserts the existence of two critical points ±γ? = (0,±cβh) of L1, for some c bounded
from below by a constant c0 > 0. If

δh < c0‖βh‖2/4, (10)

then the property of Sh2 forces

dist(±γ?, Sh2 ) ≥ ‖γ?‖2 = c‖βh‖2 ≥ c0‖βh‖2 > 4δh > 3δh. (11)

It is easily seen from (9) with j = 2 that dist(±γ?, S2) > 2δh and±γ? /∈ S2. Then {γ : ∇L1(γ) =
0} = S1 ∪ S2 forces

{γ?,−γ?} ⊆ S1. (12)
Let us investigate the curvature near S1. Lemma 2 and (9) with j = 1 allow us to take a to be
sufficiently large such that

sup
dist(γ,S1)≤2δh

∥∥∇2Lλ (γ)−∇2Lhλ (γ)
∥∥
2
≤ ηh/2. (13)

Theorem 4 asserts that∇2Lhλ(γ) � ηhI if dist(γ, Sh1 ) ≤ 3δh. By this, (9) with j = 1 and (13),

∇2Lλ(γ) � (ηh/2)I if dist(γ, S1) ≤ 2δh. (14)

Hence L1 is strongly convex in {γ : dist(γ, S1) ≤ 2δh}. Combined with (12), it leads to
S1 = {±γ?}, and both points therein are local minima.

Let γh = (0,βh). The fact Sh1 = {±γh} and (8) yields

|c− 1| · ‖βh‖2 = ‖γ? − γh‖2 = dist(γ?, Sh1 ) ≤ δh. (15)
When

δh < ‖βh‖2/2, (16)
we have 1/2 < c < 3/2 as claimed. The global optimality of ±γ? is obvious. Without loss of
generality, in Theorem 4 we can always take δh < ‖βh‖2 min{c0/3, 1/2} and then find εh < m. In
that case, (3), (10) and (16) imply the first proposition in Theorem 1.

Next, we study the second proposition in Theorem 1. Let S = Sh2 . Given S1 = {±γh} and
S1 = {±γ?}, from (15) we know that dist(γ, {±γ?} ∪ S) ≥ 2δh implies dist(γ, Sh1 ∪ Sh2 ) ≥ 2δh.
This combined with (7) immediately gives

‖∇Lλ(γ)‖2 ≥ εh/2 if dist(γ, {±γ?} ∪ S) ≥ 2δh.

Hence the second proposition in Theorem 1 holds if

ε = εh/2 and δ = 2δh. (17)

Finally, we study the third proposition in Theorem 1. By (14), the first part of that proposition
holds when

η = ηh/2 and δ = 2δh. (18)
It remains to prove the second part. Lemma 2 and (9) with j = 2 allow us to take a to be sufficiently
large such that

sup
dist(γ,S)≤3δh

∥∥∇2Lλ (γ)−∇2Lhλ (γ)
∥∥
2
≤ ηh/2. (19)

Theorem 4 asserts that u>∇2Lhλ(γ)u ≤ −ηh for u = (0,µ/‖µ‖2) if dist(γ, S) ≤ 3δh. By this,
(9) with j = 2 and (19),

∇2Lλ(γ) ≤ −ηh/2 if dist(γ, S) ≤ 3δh. (20)
Hence (17) suffice for the second part of the third proposition to hold.

According to (17) and (18), Theorem 1 holds with ε = εh/2, δ = 2δh and η = ηh/2.
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E.1 Proof of Theorem 4

E.1.1 Part 1: Characterization of stationary points

Note that

∇Lhλ(α,β) = E
[(

1
X

)
h′(α+ β>X)

]
+

(
λ
0

)
=

(
Eh′(α+ β>X) + λ

0

)
+

(
0

E[Y h′(α+ β>X)]µ

)
+

(
0

E[Zh′(α+ β>X)]

)
.

Now we will expand individual expected values in this sum. For the first term,

Eh′(α+ β>X) = E(α+ β>µY + β>Z)3 − E(α+ β>µY + β>Z)

= α3 + 3αE(β>µY )2 + 3αE(β>Z)2 + E(β>µY + β>Z)3 − α
= α[α2 + 3(β>µ)2 + 3‖β‖22 − 1],

where the first line follows since h′(x) = x3 − x, the other two follows from E(ZZ>) = I plus the
fact that Y and Z are independent, with zero odd moments due to their symmetry.

Using similar arguments,

E[Y h′(α+ β>X)] = E[Y (α+ β>µY + β>Z)3]− E[Y (α+ β>µY + β>Z)]

= 3α2E
[
Y (β>µY + β>Z)

]
+ E[Y (β>µY + β>Z)3]− β>µ

= 3α2β>µ+ E[Y (β>µY )3] + 3E[Y (β>µY )]E[(β>Z)2]− β>µ
=
[
3α2 + (β>µ)2EY 4 + 3‖β‖22 − 1

]
β>µ.

To work on E[Zh′(α+β>X)] = E[Zh′(α+β>µY +β>Z)], we define β̄ = β/‖β‖2 for β 6= 0
and β̄ = 0 otherwise. Observe that (Y, β̄β̄>Z, (I− β̄β̄>)Z) and (Y, β̄β̄>Z,−(I− β̄β̄>)Z) have
exactly the same joint distribution. As a result,

E[(I − β̄β̄>)Zh′(α+ β>X)] = E[(I − β̄β̄>)Zh′(α+ β>µY + β>Z)] = 0.

Hence,
E[Zh′(β>X)] = E[β̄β̄>Zh′(α+ β>X)] = E[β̄>Zh′(α+ β>µY + β>Z)]β̄

= E[β̄>Z(α+ β>µY + β>Z)3]β̄ − E[β̄>Z(α+ β>µY + β>Z)]β̄

= 3α2E[β̄>Z(β>µY + β>Z)]β̄ + E[β̄>Z(β>µY + β>Z)3]β̄ − β
= (3α2 − 1)β + 3E(β>µY )2β + E[β̄>Z(β>Z)3]β̄

= [3α2 + 3(µ>β)2 +MZ‖β‖22 − 1]β,

where besides the arguments we have been using we also employed identities ‖β‖2β̄ = β and
E(γ>Z)4 = MZ for any unit-norm γ. Combining all these together, we get

∇αLhλ(α,β) = α(α2 + 3(β>µ)2 + 3‖β‖2 + λ− 1), (21)

∇βLhλ(α,β) = [3α2 + (β>µ)2 + 3‖β‖22 − 1](µ>β)µ+ [3α2 + 3(µ>β)2 +MZ‖β‖22 − 1]β.
(22)

Taking second derivatives,

∇2
ααL

h
λ(α,β) = 3α2 + 3(β>µ)2 + 3‖β‖22 + λ− 1, (23)

∇2
βαL

h
λ(α,β) = 6α[(β>µ)µ+ β], (24)

∇2
ββL

h
λ(α,β) = 3(β>µ)2µµ> + (3α2 + 3‖β‖22 − 1)µµ> + 6µµ>ββ>

+ [3α2 + 3(µ>β)2 +MZ‖β‖22 − 1]I + β[6(µ>β)µ> + 2MZβ
>]

= [3α2 + 3(µ>β)2 +MZ‖β‖22 − 1]I + [3α2 + 3(β>µ)2 + (3‖β‖22 − 1)]µµ>

+ 6(µ>β)(µβ> + βµ>) + 2MZββ
>. (25)

Now that we have derived the gradient and Hessian in closed form, we will characterize the lanscape.
Let (α,β) be an arbitrary stationary point, we start by proving that it must satisfy α = 0.
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Claim 1. If λ ≥ 1 then α = 0 holds for any critical point (α,β).

Proof. Seeking a contradiction assume that α 6= 0. We start by assuming β = cµ for some c ∈ R,
then the optimality condition ∇αLhλ(α,β) = 0 gives 0 < α2 + 3c2‖µ‖22

(
‖µ‖22 + 1

)
= 1− λ ≤ 0,

yielding a contraction.

Now, let us assume that µ and β are linearly independent, this assumption together with (21) and
(22) imply that

α2 + 3(β>µ)2 + 3‖β‖22 + λ− 1 = 0,

[3α2 + (β>µ)2 + 3‖β‖22 − 1]µ>β = 0,

3α2 + 3(µ>β)2 +MZ‖β‖22 − 1 = 0. (26)

There are only two possible cases:

Case 1. If β>µ = 0, then the optimality condition for α gives α2 + 3‖β‖22 = 1− λ ≤ 0, which is
a contradiction.

Case 2. If β>µ 6= 0, then 3α2 + (β>µ)2 + 3‖β‖22 − 1 = 0 and by substracting it from (26) we
get 0 < 2(β>µ)2 + (MZ − 3)‖β‖22 = 0, yielding a contradiction again.

This completes the proof of the claim.

This claim directly implies that the Hessian ∇2Lhλ, evaluated at any critical point, is a block diagonal
matrix with∇2

βαL
h
λ(α,β) = 0. Furthermore its first block is positive if β 6= 0, as

∇2
ααL

h
λ(α,β) = 3(β>µ)2 + 3‖β‖22 + λ− 1 > λ− 1 ≥ 0.

To prove the results regarding second order information at the critical points, it suffices to look at
∇ββLhλ(α,β).

Following a similar strategy to the one we used for the claim, let us start by assuming that β and µ
are linearly independent. Then, (22) yields

[(β>µ)2 + 3‖β‖22 − 1](µ>β) = 0, (27)

3(µ>β)2 +MZ‖β‖22 − 1 = 0. (28)

Consider two cases:

Case 1. If µ>β = 0, then (28) yields ‖β‖22 = 1/MZ and (0,β) ∈ Sh2 .

Case 2. If µ>β 6= 0, then (27) forces (β>µ)2 + 3‖β‖22 − 1 = 0. Since MZ > 3, this equation
and (28) force β = 0 and µ>β = 0, which leads to contradiction.

Therefore, Sh2 \{0} is the collection of all critical points that are linearly independent of (0,µ). For
any (0,β) ∈ Sh2 \{0}, we have

∇2
ββL

h
λ(0,β) = (3‖β‖22 − 1)µµ> + 2MZββ

>,

µ>∇2
ββL

h
λ(0,β)µ = (3‖β‖22 − 1)‖µ‖42 = −(1− 3/MZ)‖µ‖42,

u>∇2Lhλ(0,β)u ≤ −(1− 3/MZ)‖µ‖22 < 0, (29)

where u = (0,µ/‖µ‖2). Hence the points in Sh2 \{0} are strict saddles.

Now, suppose that β = cµ and∇Lhλ(0,β) = 0. By (22),

∇Lhλ(0,β) = [(c‖µ‖22)3 + (3c2‖µ‖22 − 1)c‖µ‖22]µ+ [3(c‖µ‖22)2 +MZc
2‖µ‖22 − 1]cµ

= [c2‖µ‖62 + (3c2‖µ‖22 − 1)‖µ‖22 + 3c2‖µ‖42 +MZc
2‖µ‖22 − 1]cµ

= [(‖µ‖42 + 6‖µ‖22 +MZ)‖µ‖22c2 − (‖µ‖22 + 1)]cµ.

It is easily seen that∇Lhλ(0) = 0. If c 6= 0, then

(‖µ‖42 + 6‖µ‖22 +MZ)‖µ‖22c2 = ‖µ‖22 + 1. (30)
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Hence Sh1 ∪ {0} is the collection of critical points that live in span{(0,µ)}, and Sh1 ∪ Sh2 contains
all critical points of Lhλ.

We first investigate {0}. On the one hand,

∇2
ββL

h
λ(0) = −(I + µµ>) ≺ 0. (31)

On the other hand,

Lhλ(α,0) = h(α) +
λ

2
α2 =

1

4
(α2 − 1)2 +

λ

2
α2,

∇αLhλ(α,0) = α3 + (λ− 1)α = α(α2 + λ− 1).

It follows from λ ≥ 1 that 0 is a local minimum of Lhλ(·,0). Thus 0 is a saddle point of Lhλ whose
Hessian has negative eigenvalues.

Next, for (0,β) ∈ S1, we derive from (25) that

∇2
ββL

h
λ(0,β) = [3(c‖µ‖22)2 +MZc

2‖µ‖22 − 1]I + [3(c‖µ‖22)2 + 3c2‖µ‖22 − 1]µµ>

+ 6c‖µ‖22 · 2cµµ> + 2MZc
2µµ>

= [(3‖µ‖22 +MZ)c2‖µ‖22 − 1]I + [(3‖µ‖42 + 15‖µ‖22 + 2MZ)c2 − 1]µµ>.

From (30) we see that

(3‖µ‖22 +MZ)c2‖µ‖22 − 1 =
(3‖µ‖22 +MZ)(‖µ‖22 + 1)

‖µ‖42 + 6‖µ‖22 +MZ
− 1 =

2‖µ‖42 + (MZ − 3)‖µ‖22
‖µ‖42 + 6‖µ‖22 +MZ

> 0,

(3‖µ‖42 + 15‖µ‖22 + 2MZ)c2 − 1 ≥ 2(‖µ‖42 + 6‖µ‖22 +MZ)c2 − 1 =
2(‖µ‖22 + 1)

‖µ‖22
− 1 > 0.

Hence both points in S1 are local minima because

∇2
ββL

h
λ(0,β) � 2‖µ‖42 + (MZ − 3)‖µ‖22

‖µ‖42 + 6‖µ‖22 +MZ
I � 0, ∀(0,β) ∈ S1, (32)

which immediately implies global optimality and finishes the proof.

E.1.2 Part 2: Quantitative properties of the landscape

1. Lemma 2 implies that we can choose a sufficiently small constant εh1 > 0 and a constant R > 0
correspondingly such that ‖∇Lhλ(γ)‖2 ≥ εh1 when ‖γ‖2 ≥ R. Without loss of generality, we can
always take δh ≤ 1 and R > 1 + maxγ∈Sh1 ∪Sh2 ‖γ‖2. In doing so, we have

S = {γ : ‖γ‖2 ≤ R, dist(γ, Sh1 ∪ Sh2 ) ≥ δh} 6= ∅.

We now establish a lower bound for infγ∈S ‖∇Lhλ(γ)‖2. Define

Sβ = span {(0,µ), (0,β), (1,0)} ∩ S, ∀β ⊥ µ,
εβ = inf

γ∈Sβ

∥∥∇Lhλ (γ)
∥∥
2
.

By symmetry, εβ is the same for all β ⊥ µ. Denote this quantity by εh2 . Since S = ∪β⊥µSβ,

inf
γ∈S
‖∇Lhλ(γ)‖2 = inf

β⊥µ
inf
γ∈Sβ

‖∇Lhλ(γ)‖2 = inf
β⊥µ

εβ = εh2 .

Take any β ⊥ µ. On the one hand, the nonnegative function ‖∇Lhλ(·)‖2 is continuous and
its zeros are all in Sh1 ∪ Sh2 . On the other hand, Sβ is compact and non-empty. Hence εh2 =
εβ > 0 and it only depends on the function Lhλ restricted to a three-dimensional subspace, i.e.
span {(0,µ), (0,β), (1,0)}. It is then straightforward to check using the quartic expression of Lhλ
and symmetry that εh2 is completely determined by ‖µ‖2, MZ , λ and δh. From now on we write
εh2 (δh) to emphasize its dependence on δh, whose value remains to be determined.
To sum up, when δh ≤ 1 and εh ≤ min{εh1 , εh2 (δh)}, we have the desired result in the first claim.
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2. Given properties (29), (31) and (32) of Hessians at all critical points, it suffices to show that

‖∇2Lhλ(γ1)−∇2Lhλ(γ2)‖2 ≤ C ′‖γ1 − γ2‖2, ∀γ1, γ2 ∈ B(0, R) (33)
holds for some constant C ′ determined by ‖µ‖2 and R. In that case, we can take sufficiently small
δh and ηh to finish the proof.
Based on (23), (24) and (25), we first decompose∇2Lhλ(γ) into the sum of two matrices I(γ) and
J(γ) :

∇2Lhλ (γ) =

(
3α2 + 3

(
β>µ

)2
+ 3 ‖β‖22 + λ− 1 6α

[(
β>µ

)
µ+ β

]>
6α
[(
β>µ

)
µ+ β

]
3α2

(
I + µµ>

) )
+

(
0 0>

0 ∇2
ββL

h (γ)− 3α2
(
I + µµ>

))
= I (γ) + J (γ) .

For any γ1 = (α1,β1),γ2 = (α2,β2) ∈ B(0, R), we have

‖I (γ1)− I (γ2)‖2 ≤
∣∣∣3α2

1 + 3
(
β>1 µ

)2
+ 3 ‖β1‖22 − 3α2

2 − 3
(
β>2 µ

)2 − 3 ‖β2‖22
∣∣∣

+ 2
∥∥6α1

[(
β>1 µ

)
µ+ β1

]
− 6α2

[(
β>2 µ

)
µ+ β2

]∥∥
2

+
∥∥3
(
α2
1 − α2

2

) (
I + µµ>

)∥∥
2
.

Let ∆ = ‖γ1 − γ2‖2 and note that |α2
1 − α2

2| ≤ 2R∆, |‖β1‖22 − ‖β2‖22| ≤ 2R∆, |(β>1 µ)2 −
(β>2 µ)2| ≤ 2R‖µ‖22∆, ‖α1β1 − α2β2‖2 ≤ 2R∆ and |α1(β>1 µ)− α2(β>2 µ)| ≤ 2R‖µ‖2∆, we
immediately have

‖I(γ1)− I(γ2)‖2 . (1 + ‖µ‖2 + ‖µ‖22)R‖γ1 − γ2‖2.
According to (25), J(γ) depends on β but not α. Moreover, we have the following decomposition
for its bottom right block:[

3
(
µ>β

)2
+MZ ‖β‖22 − 1

]
I︸ ︷︷ ︸

J1(β)

+
[
3
(
β>µ

)2
+
(

3 ‖β‖22 − 1
)]
µµ>︸ ︷︷ ︸

J2(β)

+ 6
(
µ>β

) (
µβ> + β>µ

)︸ ︷︷ ︸
J3(β)

+ 2MZββ
>︸ ︷︷ ︸

J4(β)

.

Similar argument gives ‖J1(β1) − J1(β2)‖ . (‖µ‖22 + MZ)R∆, ‖J2(β1) − J2(β2)‖2 .
(‖µ‖42 + ‖µ‖22)R∆, ‖J3(β1)− J3(β2)‖2 . ‖µ‖22R∆ and ‖J4(β1)− J4(β2)‖2 .MZR∆. As
a result, we have

‖J(γ1)− J(γ2)‖2 . (‖µ‖22 + ‖µ‖42 +MZ)R‖γ1 − γ2‖2.
Hence we finally get (33).

E.2 Proof of Lemma 2

By definition,∇Lλ (γ)−∇Lhλ (γ) = E
(
X
[
f ′
(
γ>X

)
− h′

(
γ>X

)])
. From Lemma 1 we obtain

that |f ′(x)− h′(x)| . |x|31{|x|≥a} when b ≥ 2a and a is sufficiently large. When ‖γ‖2 ≤ R, we
have ∥∥∇Lλ (γ)−∇Lhλ (γ)

∥∥
2

= sup
u∈Sd

E
(
u>X

[
f ′
(
γ>X

)
− h′

(
γ>X

)])
. sup
u∈Sd

E
(∣∣u>X∣∣∣∣γ>X∣∣31{|γ>X|≥a})

(i)
. sup
u∈Sd

E1/3
∣∣u>X∣∣3E1/3

∣∣γ>X∣∣9P1/3
(∣∣γ>X∣∣ ≥ a)

(ii)
. sup
u∈Sd

∥∥u>X∥∥
ψ2

∥∥γ>X∥∥3
ψ2

exp

(
− C1a

2

‖γ>X‖2ψ2

)
(iii)
≤ R3M4 exp

(
− C1a

2

R2M2

)
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for some constant C1 > 0. Here (i) uses Hölder’s inequality, (ii) comes from sub-Gaussian property
(Vershynin, 2010), and (iii) uses ‖v>X‖ψ2 ≤ ‖v‖2‖X‖ψ2 = ‖v‖2M , ∀v ∈ Rd+1.

To study the Hessian, we start from ∇2Lλ (γ) − ∇2Lhλ (γ) =
E
(
XX>

[
f ′′
(
γ>X

)
− h′′

(
γ>X

)])
. Again from Lemma 1 we know that |f ′′(x) − h′′(x)| .

x21{|x|≥a}. When ‖γ‖2 ≤ R, we have∥∥∇2Lλ (γ)−∇2Lhλ (γ)
∥∥
2

= sup
u∈Sd

u>E
(
XX>

[
f ′′
(
γ>X

)
− h′′

(
γ>X

)])
u

. sup
u∈Sd

E
(∣∣u>X∣∣2∣∣γ>X∣∣21{|γ>X|≥a})

. sup
u∈Sd

E1/3
∣∣u>X∣∣6E1/3

∣∣γ>X∣∣6P1/3
(∣∣γ>X∣∣ ≥ a)

. sup
u∈Sd

∥∥u>X∥∥2
ψ2

∥∥γ>X∥∥2
ψ2

exp

(
− C1a

2

‖γ>X‖2ψ2

)

≤ R2M4 exp

(
− C1a

2

R2M2

)
for some constant C1 > 0.

We finally work on the lower bound for ‖∇Lλ(γ)‖2. From b ≥ 2a ≥ 4 we get f(x) = h(x) for
|x| ≤ a; f ′(x) ≥ 0 and f ′′(x) ≥ 0 for all x ≥ 1. Since f ′ is odd,

inf
x∈R

xf ′(x) = inf
|x|≤1

xf ′(x) = inf
|x|≤1

xh′(x) = inf
|x|≤1
{x4 − x2} ≥ −1,

inf
|x|≥2

f ′(x) sgn(x) = inf
x≥2

f ′(x) ≥ f ′(2) = h′(2) = 23 − 2 = 6.

Taking a = 2, b = 1 and c = 6 in Lemma 8, we get

‖Lλ(γ)‖2 ≥ 6 inf
u∈Sd

E|u>X| − 12 + 1

‖γ‖2
≥ 6ϕ(‖X‖ψ2 , λmin[E(XX>)])− 13

‖γ‖2
≥ 6ϕ(M,σ2)− 13

‖γ‖2

for γ 6= 0. Here ϕ is the function in Lemma 9. If we let m = ϕ(M,σ2),
then inf‖γ‖2≥3/m ‖Lλ(γ)‖2 ≥ m. Follow a similar argument, we can show that
inf‖γ‖2≥3/m ‖Lhλ(γ)‖2 ≥ m also holds for the same m.

E.3 Proof of Lemma 3

To prove the first part, we define µ̄ = µ/‖µ‖2 and seek for c > 0 determined by ‖µ‖2, the function
f , and the distribution of Z such that∇L1(0,±cµ̄) = 0.

By the chain rule, for any (α,β, t) ∈ R× Rd × R we have

∇Lλ(α,β) =

(
Ef ′(α+ β>X) + λα
E[Xf ′(α+ β>X)]

)
and ∇L1(0, tµ̄) =

(
Ef ′(tµ̄>X)

E[Xf ′(tµ̄>X)]

)
.

Since f is even, f ′ is odd and tµ̄>X has symmetric distribution with respect to 0, we have
Ef ′(tµ̄>X) = 0. It follows from (I − µ̄µ̄>)X = (I − µ̄µ̄>)Z that

(I − µ̄µ̄>)E[Xf ′(tµ̄>X)] = E[(I − µ̄µ̄>)Zf ′(tµ̄>X)] = E[(I − µ̄µ̄>)Zf ′(t‖µ‖2Y + tµ̄>Z)].

Thanks to the independence between Y andZ as well as the spherical symmetry ofZ, (Y, µ̄>Z, (I−
µ̄µ̄>)Z) and (Y, µ̄>Z,−(I − µ̄µ̄>)Z) share the same distribution. Then

(I − µ̄µ̄>)E[Xf ′(tµ̄>X)] = 0 and E[Xf ′(tµ̄>X)] = µ̄µ̄>E[Xf ′(tµ̄>X)].

As a result,

∇Lλ(0, tµ̄) = E[µ̄>Xf ′(tµ̄>X)]

(
0
µ̄

)
.
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Define W = µ̄>X = ‖µ‖2Y + µ̄>Z and ϕ(t) = E[Wf ′(tW )] for t ∈ R. The fact that f is even
yields f ′(0) = 0 and ϕ(0) = E[Wf ′(0)] = 0. On the one hand, f ′′(0) < 0 forces

ϕ′(0) = E[W 2f ′′(tW )]|t=0 = f ′′(0)EW 2 = f ′′(0)(‖µ‖22 + 1) < 0. (34)

Hence there exists t1 > 0 such that ϕ(t1) < 0. On the other hand, limx→+∞ xf ′(x) = +∞ leads
to limt→+∞ xϕ(x) = E[tWf ′(tW )] = +∞. Then there exists t2 > 0 such that ϕ(t2) > 0. By the
continuity of ϕ, we can find some c > 0 such that ϕ(c) = 0. Consequently,

∇L1(0, cµ̄) = ϕ(c)

(
0
µ̄

)
= 0.

In addition, from

ϕ(−c) = E[Wf ′(−cW )] = −E[Wf ′(cW )] = −ϕ(c) = 0

we get ∇L(0,−cµ̄) = 0. It is easily seen that t1, t2 and c are purely determined by properties of f
and W , where the latter only depends on ‖µ‖2 and the distribution of Z. This finishes the first part.

To prove the second part, we first observe that

|ϕ′′(t)| = |E[W 3f ′′′(tW )]| ≤ F3E|W |3 = F3(3−1/2E1/3|W |3)3 · 33/2 ≤ 33/2F3M, ∀t ∈ R.

Let c0 = −f ′′(0)(‖µ‖22 + 1)/(33/2F3M). In view of (34),

ϕ′(t) ≤ ϕ′(0) + t sup
s∈R
|ϕ′′(s)| ≤ f ′′(0)(‖µ‖22 + 1) + 33/2F3Mt < 0, ∀t ∈ [0, c0).

Thus ϕ(t) < ϕ(0) = 0 in the same interval, forcing c > c0.

F Proof of Theorem 2

It suffices to prove the bound on the exceptional probability for each claim.

1. Claim 1 can be derived from Lemma 4, Theorem 1 and concentration of gradients within a ball
(cf. Lemma 6).
Lemma 4. Let {Xi}ni=1 be i.i.d. random vectors in Rd+1 with ‖Xi‖ψ2

≤ 1 and E(XiX
>
i ) � σ2I

for some σ > 0, f be defined in (8) with b ≥ 2a ≥ 4, and

L̂λ(γ) =
1

n

n∑
i=1

f(γ>Xi) +
λ

2
(γ>µ̂)2

with µ̂ = 1
n

∑n
i=1Xi and λ ≥ 0. There exist positive constants C,C1, C2, R and ε1 determined

by σ such that when n/d ≥ C,

P
(

inf
‖γ‖2≥R

‖∇L̂λ(γ)‖2 > ε1

)
> 1− C1(d/n)C2d.

Proof. See Appendix F.1.

Let R and ε be the constants stated in Lemma 4 and Theorem 1, respectively. Lemma 6 asserts that

P

(
sup

γ∈B(0,R)

∥∥∇L̂λ (γ)−∇Lλ (γ)
∥∥
2
<
ε

2

)
> 1− C1(d/n)C2d

for some constant C1, C2 > 0, provided that n/d is large enough. From Theorem 1 we know that
‖∇Lλ(γ)‖2 ≥ ε if dist(γ, {±γ?} ∪ S) ≥ δ. The triangle inequality immediately gives

P
(

inf
γ: dist(γ,{±γ?}∪S)≥δ

‖∇L̂λ(γ)‖2 > ε/2

)
< 1− C ′1(d/n)C

′
2d,

for some constants C ′1 and C ′2.
2. We invoke the following Lemma 5 to prove Claim 2.
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Lemma 5. Let {Xi}ni=1 be i.i.d. random vectors in Rd+1 with ‖Xi‖ψ2 ≤ 1; u ∈ Sd be determin-
istic; R > 0 be a constant. Let f be defined in (8) with constants b ≥ 2a ≥ 4, and

L̂λ(γ) =
1

n

n∑
i=1

f(γ>Xi) +
λ

2
(γ>µ̂)2

with µ̂ = 1
n

∑n
i=1Xi and λ ≥ 0. Suppose that n/d ≥ e. There exist positive constants C1, C2, C

and N such that when n > N ,

P
(

sup
γ1 6=γ2

‖∇L̂λ(γ1)−∇L̂λ(γ2)‖2
‖γ1 − γ2‖2

< C

)
> 1− C1e

−C2n,

P
(

sup
γ1 6=γ2

‖∇2L̂λ(γ1)−∇2L̂λ(γ2)‖2
‖γ1 − γ2‖2

< C max{1, d log(n/d)/
√
n}
)
> 1− C1(d/n)C2d,

P
(

sup
‖γ‖2≤R

|u>[∇2L̂λ(γ)−∇2Lλ(γ)]u| < C
√
d log(n/d)/n

)
> 1− C1(d/n)C2d − C1e

−C2n
1/3

.

Proof. See Appendix F.2.

From Theorem 1 we know that u>∇2Lλ(γ)u ≤ −η if dist(γ, S) ≤ δ. Lemma 5 (after proper
rescaling) asserts that

P
(

sup
‖γ‖2≤R

|u>[∇2L̂λ(γ)−∇2Lλ(γ)]u| < η

2

)
> 1− C1(d/n)C2d − C1e

−C2n
1/3

provided that n/d is sufficiently large. Then Claim 2 follows from the triangle’s inequality.

3. Claim 3 follows from Lemma 5 with proper rescaling.

F.1 Proof of Lemma 4

It is shown in Lemma 2 that when b ≥ 2a ≥ 4, we have infx∈R xf
′(x) ≥ −1 and

inf |x|≥2 f
′(x) sgn(x) ≥ 6. Using an empirical version of Lemma 8,

∇L̂λ(γ) ≥ inf
u∈Sd

1

n

n∑
i=1

|u>Xi| −
13

‖γ‖2
, ∀γ ∈ Rd.

Define Sn(u) = 1
n

∑n
i=1(|u>Xi| − E|u>Xi|) for u ∈ Sd. By the triangle inequality,

L̂λ(γ) ≥ inf
u∈Sd

E|u>X1| − sup
u∈Sd

|Sn(u)| − 13

‖γ‖2
, ∀γ ∈ Rd.

According to Lemma 9, infu∈Sd E|u>X1| > ϕ for some constant ϕ > 0 determined by σ. Then it
suffices to prove

sup
u∈Sd

|Sn(u)| = OP(
√
d log(n/d)/n; d log(n/d)). (35)

We will use Theorem 1 in Wang (2019) to get there.

1. Since ‖Xi‖ψ2 ≤ 1, the Hoeffding-type inequality in Proposition 5.10 of Vershynin (2010) asserts
the existence of a constant c > 0 such that

P(|Sn(u)| ≥ t) ≤ e · e−cnt
2

, ∀t ≥ 0.

Then {Sn(u)}u∈Sd = OP(
√
d log(n/d)/n; d log(n/d)).

2. Let εn =
√
d/n. According to Lemma 5.2 in Vershynin (2010), there exists an εn-net Nn of

Sd with cardinality at most (1 + 2R/εn)d. When n/d is large, log |Nn| = d log(1 +
√
n/d) .

d log(n/d).
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3. Define Mn = supu∈Sd,v∈Sd,u6=v{|Sn(u)− Sn(v)|/‖u− v‖2}. By Cauchy-Schwarz inequality,∣∣∣∣ 1n
n∑
i=1

|u>Xi| −
1

n

n∑
i=1

|v>Xi|
∣∣∣∣ ≤ 1

n

n∑
i=1

|(u− v)>Xi| ≤
(

1

n

n∑
i=1

|(u− v)>Xi|2
)1/2

≤ ‖u− v‖2 sup
w∈Sd

(
1

n

n∑
i=1

|w>Xi|2
)1/2

= ‖u− v‖2 ·OP(1; n),

where the last equality follows from Lemma 11. Similarly,∣∣E|u>X1| − E|v>X1|
∣∣ ≤ ‖u− v‖2‖E(X1X

>
1 )‖2 . ‖u− v‖2.

Hence Mn = OP(1; n).

Then Theorem 1 in Wang (2019) yields (35).

F.2 Proof of Lemma 5

It follows from Example 6 in Wang (2019) that ‖n−1
∑n
i=1Xi − µ0‖2 = OP(1; n). As a result

‖n−1
∑n
i=1Xi‖2 = OP(1; n). This combined with Lemma 8 and Lemma 11 gives

sup
γ1 6=γ2

‖∇L̂λ(γ1)−∇L̂λ(γ2)‖2
‖γ1 − γ2‖2

= OP(1; n),

sup
γ1 6=γ2

|u>[∇2L̂λ(γ1)−∇2L̂λ(γ2)]u|
‖γ1 − γ2‖2

= OP(1; n1/3),

sup
γ1 6=γ2

‖∇2L̂λ(γ1)−∇2L̂λ(γ2)‖2
‖γ1 − γ2‖2

= OP(max{1, d log(n/d)/
√
n}; d log(n/d))

given F2 ≤ 3a2 . 1 and F3 ≤ 6a . 1, provided that n/d is sufficiently large. It is easily
seen that there exist universal constants (c1, c2, N) ∈ (0,+∞)3 and a non-decreasing function
f : [c2,+∞)→ (0,+∞) with limx→∞ f(x) =∞, such that

P
(

sup
γ1 6=γ2

‖∇L̂λ(γ1)−∇L̂λ(γ2)‖2
‖γ1 − γ2‖2

≥ t
)
≤ c1e−nf(t), (36)

P
(

sup
γ1 6=γ2

|u>[∇2L̂λ(γ1)−∇2L̂λ(γ2)]u|
‖γ1 − γ2‖2

≥ t
)
≤ c1e−n

1/3f(t), (37)

P
(

sup
γ 6=γ

‖∇2L̂λ(γ1)−∇2L̂λ(γ2)‖2
‖γ1 − γ2‖2

≥ tmax{1, d log(n/d)/
√
n}
)
≤ c1e−d log(n/d)f(t) = c1(d/n)df(t),

(38)

as long as n ≥ N1 and t ≥ c2. We prove the first two inequalities in Lemma 5 by (36), (38) and
choosing proper constants.

Let
Xn(γ) = u>[∇2L̂λ(γ)−∇2Lλ(γ)]u = u>[∇2L̂(γ)−∇2L(γ)]u,

Sn = B(0, R) and m = log(n/d). We will invoke Theorem 1 in Wang (2019) to control
supγ∈Sn |Xn(γ)| and prove the remaining claim.

1. By definition, Xn(γ) = 1
n

∑n
i=1{(u>Xi)

2f ′′(γ>Xi)− E[(u>Xi)
2f ′′(γ>Xi)]} and

‖(u>Xi)
2f ′′(γ>Xi)‖ψ1

≤ F2‖(u>Xi)
2‖ψ1

. F2‖u>Xi‖2ψ2
. 1.

By the Bernstein-type inequality in Proposition 5.16 of Vershynin (2010), there is a constant c′
such that

P(|Xn(γ)| ≥ t) ≤ 2e−c
′n[t2∧t], ∀t ≥ 0, γ ∈ Rd.
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When t = s
√
md/n for s ≥ 1, we have nt2 = s2md ≥ smd. Since n/d ≥ e, we have

m = log(n/d) = log[1 + (n/d− 1)] ≤ n/d− 1 ≤ n/d,

n ≥ md and nt = s
√
nmd ≥ smd. This gives

P(|Xn(γ)| ≥ s
√
md/n) ≤ 2e−c

′mds, ∀s ≥ 1, γ ∈ Rd.

Hence {Xn(γ)}γ∈Sn = OP(
√
md/n; md).

2. Let εn = 2R
√
d/n. According to Lemma 5.2 in Vershynin (2010), there exists an εn-net Nn

of Sn with cardinality at most (1 + 2R/εn)d. Since n/d ≥ e, log |Nn| = d log(1 +
√
n/d) .

d log(n/d) = md.
3. Define Mn = supγ1 6=γ2

{|Xn(γ1) − Xn(γ2)|/‖γ1 − γ2‖2}. Observe that by Lemma 8 and
‖Xi‖ψ2

≤ 1,

sup
γ1 6=γ2

|u>[∇2Lλ(γ1)−∇2Lλ(γ2)]u|
‖γ1 − γ2‖2

≤ sup
γ1 6=γ2

‖∇2L(γ1)−∇2L(γ2)‖2
‖γ1 − γ2‖2

≤ F3 sup
u∈Sd

E|u>X|3 ≤ (
√

3)3F3 . 1.

From this and (37) we obtain that Mn = OP(1; n1/3).

Based on these, Theorem 1 Wang (2019) implies that

sup
γ∈Sn

|Xn(γ)| = OP(
√
md/n+ εn; md ∧ n1/3) = OP(

√
log(n/d)d/n; d log(n/d) ∧ n1/3).

As a result, there exist absolute constants (c′1, c
′
2, N

′
1) ∈ (0,+∞)3 and a non-decreasing function

g : [c′2,+∞)→ (0,+∞) such that

P
(

sup
γ∈Sn

|Xn(γ)| ≥ t
√

log(n/d)d/n

)
≤ c′1e−(md∧n

1/3)g(t) ≤ c′1(e−mdg(t) + e−n
1/3g(t))

≤ c′1(d/n)dg(t) + c′1e
−n1/3g(t), ∀n ≥ N ′1, t ≥ c′2.

The proof is finished by taking t = c′2 and re-naming some constants above.

G Proof of Corollary 1

From Claim 1 in the second item of Theorem 2, we know that ‖∇L̂1(γ)‖2 ≤ ε implies
dist(γ, {±γ?} ∪ S) < δ. On the other side, since λmin[∇2L̂1(γ)] > −η, we have v>∇2L̂1(γ)v >
−η for any unit vector v. Then in view of Claim 2 of Theorem 2, we know that dist(γ, S) > δ.
Therefore we arrive at dist(γ, {±γ?}) < δ. According to Theorem 1, ∇2L1(γ′) � ηI so long as
dist(γ′, S1) ≤ δ. This and ∇L1(γ?) = 0 lead to

min
s=±1

‖sγ − γ?‖2 ≤
1

η
‖∇L1 (γ)−∇L1 (γ?)‖2 =

1

η
‖∇L1 (γ)‖2

≤ 1

η
‖∇L̂1(γ)‖2 +

1

η
‖∇L̂1 (γ)−∇L1(γ)‖2. (39)

All of these hold with probability exceeding 1− C1(d/n)C2d − C1 exp(−C2n
1/3).

The desired result is a product of (39) and Lemma 6 below.
Lemma 6. For any constant R > 0, there exists a constant C > 0 such that when n ≥ Cd for all n,

sup
‖γ‖2≤R

∥∥∇L̂1 (γ)−∇L1 (γ)
∥∥
2

= OP

(√
d

n
log
(n
d

)
; d log

(n
d

))
(40)

Proof. See Appendix G.1.
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G.1 Proof of Lemma 6

Let γ = (α,β), L̂(γ) = 1
n

∑n
i=1 f(α+ β>Xi), L(γ) = Ef(α+ β>X), R̂(γ) = 1

2 (α+ β>µ̂0)2

andR(γ) = 1
2 (α+β>µ0)2. Since |f ′(0)| = 0, supx∈R |f ′′(x)| = h′(a)+(b−a)h′′(a) ≤ 3a2b . 1

and ‖Xi‖ψ2
≤M . 1, from Theorem 2 in Wang (2019) we get

sup
‖γ‖2≤R

∥∥∇L̂ (γ)−∇L (γ)
∥∥
2

= OP

(√
d

n
log
(n
d

)
; d log

(n
d

))
.

Then it boils down to proving uniform convergence of ‖∇R̂(γ) − ∇R(γ)‖. Let X̄i = (1,Xi),
µ̃0 = (1, 1

n

∑n
i=1Xi) and µ̄0 = (1,µ0). By definition,

∇R̂ (γ) =
(
γ>µ̃0

)
µ̃0 and ∇R (γ) =

(
γ>µ̄0

)
µ̄0,

Since ‖X̄i − µ̄0‖ψ2
. ‖X̄i‖ψ2

. 1, we know that ‖µ̃0 − µ̄0‖ψ2
. 1/

√
n. In view of Example 6

Wang (2019) and ‖µ0‖2 . 1, we know that ‖µ̃0 − µ0‖2 = OP(
√
d/n log(n/d); d log(n/d)) and

‖µ̃0‖2 = OP(1; d log(n/d)). As a result,

sup
‖γ‖2≤R

∥∥∇R̂ (γ)−∇R (γ)
∥∥
2
≤ sup
‖γ‖2≤R

{∣∣γ> (µ̃0 − µ̄0)
∣∣ ‖µ̃0‖2 +

∣∣γ>µ̄0

∣∣ ‖µ̃0 − µ̄0‖2
}

≤ R ‖µ̃0 − µ̄0‖2 (‖µ̃0‖2 + ‖µ̄0‖2)

= OP

(√
d

n
log
(n
d

)
; d log

(n
d

))
.

H Proof of Theorem 3

To prove Theorem 3, we invoke the convergence guarantees for perturbed gradiend descent in Jin
et al. (2017).
Theorem 5 (Theorem 3 of Jin et al. (2017)). Assume that F (·) is `-smooth and ρ-Hessian Lipschitz.
Then there exists an absolute constant cmax such that, for any δpgd > 0, εpgd ≤ `2/ρ, ∆pgd ≥
F (γpgd)−infγ∈Rd+1 F (γ) and constant cpgd ≤ cmax, with probability exceeding 1−δpgd, Algorithm
1 terminates within

T .
`
[
F (γpgd)− infγ∈Rd+1 F (γ)

]
ε2pgd

log4

(
d`∆pgd

ε2pgdδpgd

)
iterations and the output γT satisfies∥∥∇F (γT )∥∥

2
≤ εpgd and λmin

(
∇2F (γ)

)
≥ −√ρεpgd.

Let A denote this event where all of the geometric properties in Theorem 2 holds. When A happens,
L̂1 is `-smooth and ρ-Hessian Lipschitz with

` = M1 and ρ = M1

(
1 ∨ d log(n/d)√

n

)
.

Let γpgd = 0 and ∆pgd = 1/4. Since infγ∈R×Rd L̂1 (γ) ≥ 0, we have

∆pgd = L̂1 (γpgd) ≥ L̂1 (γpgd)− inf
γ∈R×Rd

L̂1 (γ) .

In addition, we take δpgd = n−11 and let

εpgd =

√
d

n
log
(n
d

)
∧ `

2

ρ
∧ η

2

ρ
∧ ε.

Here ε and η are the constants defined in Theorem 2.

Recall that M1, η, ε � 1. Conditioned on the event A, Theorem 5 asserts that with probability
exceeding 1− n−10, Algorithm 1 with parameters γpgd, `, ρ, εpgd, cpgd, δpgd, and ∆pgd terminates
within

T .

(
n

d log (n/d)
+
d2

n
log2

(n
d

))
log4 (nd) = Õ

(
n

d
+
d2

n

)
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iterations, and the output γ̂ satisfies∥∥∇L̂1 (γ̂)
∥∥
2
≤ εpgd ≤

√
d

n
log
(n
d

)
and λmin

(
∇2L̂1(γ̂)

)
≥ −√ρεpgd ≥ −η.

Then the desired result follows directly from P(A) ≥ 1 − C1(d/n)C2d − C1 exp(−C2n
1/3) in

Theorem 2.

I Proof of Corollary 1

Throughout the proof we suppose that the high-probability event

min
s=±1

∥∥sγ̂ − cγBayes
∥∥
2
.

√
d

n
log
(n
d

)
in Theorem 1 happens. Write γ̂ = (α̂, β̂) and γ? = (α?,β?) = cγBayes. Without loss of generality,
assume that µ0 = 0, Σ = Id, arg mins=±1 ‖sγ̂−γ?‖2 = 1 and β̂>µ > 0. Let F be the cumulative
distribution function of Z = e>1 Z.

For any γ = (α,β) with β>µ > 0, we useX = µY +Z and the symmetry of Z to derive that

R (γ) =
1

2
P
(
α+ β> (µ+Z) < 0

)
+

1

2
P
(
α+ β> (−µ+Z) > 0

)
=

1

2
P
(
β>Z < −α− β>µ

)
+

1

2
P
(
β>Z > −α+ β>µ

)
=

1

2
F
(
−α/ ‖β‖2 − (β/ ‖β‖2)

>
µ
)

+
1

2
F
(
α/ ‖β‖2 − (β/ ‖β‖2)

>
µ
)
.

Define γ0 = (α0,β0) with α0 = α̂/‖β̂‖2 and β0 = β̂/‖β̂‖2; γ1 = (α1,β1) with α1 = 0 and
β1 = µ/‖µ‖2. Recall that γBayes = c(0,µ) for some constant c > 0. We have

R (γ̂)−R
(
γBayes

)
=

1

2
F
(
− α0 − β>0 µ

)
− 1

2
F
(
− α1 − β>1 µ

)
︸ ︷︷ ︸

E1

+
1

2
F
(
α0 − β>0 µ

)
− 1

2
F
(
α1 − β>1 µ

)
︸ ︷︷ ︸

E2

.

Using Taylor’s Theorem, ‖p′‖∞ . 1 and ‖µ‖2 . 1, one can arrive at∣∣∣E1 − p
(
− α1 − β>1 µ

)(
α1 − α0 + (β1 − β0)

>
µ
)∣∣∣ . ‖γ0 − γ1‖22 ,∣∣∣E2 − p

(
α1 − β>1 µ

)(
α0 − α1 + (β1 − β0)

>
µ
)∣∣∣ . ‖γ0 − γ1‖22 ,

From α1 = 0, β1 = µ/‖µ‖2 and ‖p‖∞ . 1 we obtain that

R (γ̂)−R
(
γBayes

)
. |p(−β>1 µ)[−α0 + (β1 − β0)

>
µ] + p(−β>1 µ)[α0 + (β1 − β0)

>
µ]|+ ‖γ0 − γ1‖22

. | (β1 − β0)
>
β1|+ ‖γ0 − γ1‖22 .

Since β0 and β1 are unit vectors,

‖β1 − β0‖22 = ‖β0‖22 − 2β>0 β1 + ‖β1‖22 = 2(1− β>0 β1) = 2(β1 − β0)>β1,

R (γ̂)−R
(
γBayes

)
. ‖β1 − β0‖22 + ‖γ0 − γ1‖22 . ‖γ0 − γ1‖22. (41)

Note that ‖β̂ − β?‖2 ≤ ‖γ̂ − γ?‖2 .
√
d/n log(n/d) and ‖β?‖2 � 1. When n/d is sufficiently

large, we have ‖β̂‖2 � 1 and

‖β1 − β0‖2 =
∥∥β̂/‖β̂‖2 − β?/ ‖β?‖2∥∥2 .

∥∥‖β?‖2 β̂ − ‖β̂‖2β?∥∥2
≤
∣∣‖β?‖2 − ‖β̂‖2∣∣∥∥β̂∥∥2 + ‖β̂‖2

∥∥β̂ − β?∥∥
2
.
∥∥β̂ − β?∥∥

2
.

In addition, we also have |α0−α1| = |α0| = |α̂|/‖β̂‖2 . |α̂| = |α̂−α?|. As a result, ‖γ0−γ1‖2 .
|α̂− α?|+ ‖β1 − β0‖2 . ‖γ̂ − γ?‖2. Plugging these bounds into (41), we get

R (γ̂)−R (γ?) .
∥∥γ̂ − γ?∥∥2

2
.
d

n
log
(n
d

)
.
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J Technical lemmas

Lemma 7. LetX be a random vector in Rd+1 with E‖X‖32 <∞. Then

sup
u,v∈Sd

E(|u>X|2|v>X|) = sup
u∈Sd

E|u>X|3.

Proof. It is easily seen that supu,v∈Sd E(|u>X|2|v>X|) ≥ supu∈Sd E|u>X|3. To prove the other
direction, we first use Cauchy-Schwarz inequality to get

E(|u>X|2|v>X|) = E[|u>X|3/2(|u>X|1/2|v>X|)] ≤ E1/2|u>X|3 · E1/2(|u>X| · |v>X|2).

By taking suprema we prove the claim.

Lemma 8. Let X be a random vector in Rd+1 and f ∈ C2(R). Suppose that E‖X‖32 < ∞,
supx∈R |f ′′(x)| = F2 <∞ and f ′′ is F3-Lipschitz. Define µ̄ = EX . Then

Lλ(γ) = Ef(γ>X) + λ(γ>µ̄)2/2

exists for all γ ∈ Rd+1 and λ ≥ 0, and

sup
γ1 6=γ2

‖∇Lλ(γ1)−∇Lλ(γ2)‖2
‖γ1 − γ2‖2

≤ F2 sup
u∈Sd

E|u>X|2 + λ‖µ̄‖22,

sup
γ1 6=γ2

|u>[∇2Lλ(γ1)−∇2Lλ(γ2)]u|
‖γ1 − γ2‖2

≤ F3 sup
v∈Sd

E[(u>X)2|v>X|], ∀u ∈ Sd−1,

sup
γ1 6=γ2

‖∇2Lλ(γ1)−∇2Lλ(γ2)‖2
‖γ1 − γ2‖2

≤ F3 sup
u∈Sd

E|u>X|3.

In addition, if there exist nonnegative numbers a, b and c such that infx∈R xf
′(x) ≥ −b and

inf |x|≥a f
′(x) sgn(x) ≥ c, then

‖∇Lλ(γ)‖2 ≥ c inf
u∈Sd

E|u>X| − ac+ b

‖γ‖2
, ∀γ 6= 0.

Proof. Let L(γ) = Ef(γ>X) and R(γ) = (γ>µ̄)2/2. Since Lλ = L + λR, ∇2L(γ) =
E[XX>f ′′(γ>X)] and ∇2R(γ) = µ̄µ̄>,

sup
γ1 6=γ2

‖∇Lλ(γ1)−∇Lλ(γ2)‖2
‖γ1 − γ2‖2

= sup
γ∈Rd+1

‖∇2Lλ(γ)‖2 = sup
γ∈Rd+1

sup
u∈Sd

u>∇2Lλ(γ)u

≤ F2 sup
u∈Sd

E(u>X)2 + λ‖µ̄‖22.

For any u ∈ Sd,

|u>[∇2Lλ(γ1)−∇2Lλ(γ2)]u| =
∣∣E[(u>X)2f ′′(γ>1 X)]− E[(u>X)2f ′′(γ>2 X)]

∣∣
≤ E[(u>X)2|f ′′(γ>1 X)− f ′′(γ>2 X)|]
≤ F3E[(u>X)2|(γ1 − γ2)>X|]
≤ F3‖γ1 − γ2‖2 sup

v∈Sd
E[(u>X)2|v>X|].

As a result,

sup
γ1 6=γ2

‖∇2Lλ(γ1)−∇2Lλ(γ2)‖2
‖γ1 − γ2‖2

= sup
γ1 6=γ2

supu∈Sd |u>[∇2Lλ(γ1)−∇2Lλ(γ2)]u|
‖γ1 − γ2‖2

= sup
u∈Sd

sup
γ1 6=γ2

|u>[∇2Lλ(γ1)−∇2Lλ(γ2)]u|
‖γ1 − γ2‖2

≤ sup
u∈Sd
{F3 sup

v∈Sd
E[(u>X)2|v>X|]} = F3 sup

u∈Sd
E|u>X|3,
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where the last equality follows from Lemma 7.

We finally come to the lower bound on ‖∇Lλ(γ)‖2. Note that ‖∇Lλ(γ)‖2‖γ‖2 ≥ 〈γ,∇Lλ(γ)〉,
∇L(γ) = E[Xf ′(X>γ)] and ∇R(γ) = (γ>µ̄)µ̄. The condition inf |x|≥a f

′(x) sgn(x) ≥ c
implies that xf ′(x) ≥ c|x| when |x| ≥ a. By this and infx∈R xf

′(x) ≥ −b,

〈γ,∇L(γ)〉 = E[X>γf ′(X>γ)] = E[X>γf ′(X>γ)1{|X>γ|≥a}] + E[X>γf ′(X>γ)1{|X>γ|<a}]

≥ cE(|X>γ|1{|X>γ|≥a})− b = cE|X>γ| − cE(|X>γ|1{|X>γ|<a})− b
≥ cE|X>γ| − (ac+ b) ≥ ‖γ‖2c inf

u∈Sd
E|u>X| − (ac+ b).

In addition, we also have 〈γ,∇R(γ)〉 = (γ>µ̄)2 ≥ 0. Then the lower bound directly follows.

Lemma 9. There exists a continuous function ϕ : (0,+∞)2 → (0,+∞) that is non-increasing in the
first argument and non-decreasing in the second argument, such that for any nonzero sub-Gaussian
random variable X , E|X| ≥ ϕ(‖X‖ψ2

,EX2).

Proof. For any t > 0,

E|X| ≥ E(|X|1{|X|≤t}) ≤ t−1E(X21{|X|≤t}) = t−1[EX2 − E(X21{|X|>t})].

By Cauchy-Schwarz inequality and the sub-Gaussian property (Vershynin, 2010), there exist constants
C1, C2 > 0 such that

E(X21{|X|>t}) ≤ E1/2X4 · P1/2(|X| > t) ≤ C1‖X‖2ψ2
e−C2t

2/‖X‖2ψ2 .

By taking ϕ(‖X‖ψ2
,EX2) = supt>0 t

−1(EX2 − C1‖X‖2ψ2
e−C2t

2/‖X‖2ψ2 ) we finish the proof, as
the required monotonicity is obvious.

Lemma 10. Let {Xni}n≥1,i∈[n] be an array of random variables where for any n, {Xni}ni=1

are i.i.d. sub-Gaussian random variables with ‖Xn1‖ψ2 ≤ 1. Fix some constant a ≥ 2, define
Sn = 1

n

∑n
i=1 |Xni|a and let {rn}∞n=1 be a deterministic sequence satisfying log n ≤ rn ≤ n. We

have

Sn − E|Xn1|a = OP(r(a−1)/2n /
√
n; rn),

Sn = OP(max{1, r(a−1)/2n /
√
n}; rn).

Proof. Define Rnt = t
√
rn and Snt = 1

n

∑n
i=1 |Xni|a1{|Xni|≤Rnt} for n, t ≥ 1. For any p ≥ 1, we

have 2p ≥ 2 > 1 and (2p)−1/2E1/(2p)|Xni|2p ≤ ‖Xni‖ψ2
≤ 1. Hence

E(|Xni|a1{|Xni|≤Rnt})
p = E(|Xni|ap1{|Xni|≤Rnt}) = E(|Xni|2p|Xni|(a−2)p1{|Xni|≤Rnt})

≤ E|Xni|2pR(a−2)p
nt ≤ [(2p)1/2‖Xni‖ψ2 ]2pR

(a−2)p
nt ≤ (2pRa−2nt )p

and ‖|Xni|a1{|Xni|≤Rnt}‖ψ1
≤ 2Ra−2nt . By the Bernstein-type inequality in Proposition 5.16 of

Vershynin (2010), there exists a constant c such that

P(|Snt − ESnt| ≥ s) ≤ 2 exp

[
− cn

(
s2

R
2(a−2)
nt

∧ s

Ra−2nt

)]
, ∀t ≥ 0, s ≥ 0. (42)

Take t ≥ 1 and s = ta−1r
(a−1)/2
n /

√
n. We have

s

Ra−2nt

=
ta−1r

(a−1)/2
n /

√
n

ta−2r
(a−2)/2
n

= t
√
rn/n,

s2

R
2(a−2)
nt

∧ s

Ra−2nt

=
t2rn
n
∧
t
√
rn√
n
≥ trn

n
,

where the last inequality is due to rn/n ≤ 1 ≤ t. By (42),

P(|Snt − ESnt| ≥ ta−1r(a−1)/2n /
√
n) ≤ 2e−crnt, ∀t ≥ 1. (43)
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By Cauchy-Schwarz inequality and ‖Xn1‖ψ2 ≤ 1, there exist C1, C2 > 0 such that

0 ≤ ESn − ESnt = E(|Xn1|a1{|Xn1|>t
√
rn}) ≤ E1/2|Xn1|2a · P1/2(|Xn1| > t

√
rn) ≤ C1e

−C2t
2rn

holds for all t ≥ 0. Since rn ≥ log n, there exists a constant C > 0 such that C1e
−C2t

2rn ≤
ta−1r

(a−1)/2
n /

√
n as long as t ≥ C. Hence (43) forces

P(|Snt − ESn| ≥ 2ta−1r(a−1)/2n /
√
n) ≤ P(|Snt − ESnt|+ |ESnt − ESn| ≥ 2ta−1r(a−1)/2n /

√
n)

≤ P(|Snt − ESnt| ≥ ta−1r(a−1)/2n /
√
n) ≤ 2e−crnt, ∀t ≥ C.

Note that

P(|Sn − ESn| ≥ 2ta−1r(a−1)/2n /
√
n) (44)

≤ P(|Sn − ESn| ≥ 2ta−1r(a−1)/2n /
√
n, Sn = Snt) + P(Sn 6= Snt)

≤ P(|Snt − ESn| ≥ 2qta−1r(a−1)/2n /
√
n) + P(Sn 6= Snt)

≤ 2e−crnt + P
(

max
i∈[n]
|Xni| > t

√
rn

)
, ∀t ≥ C. (45)

Since ‖Xni‖ψ2
≤ 1, there exist constants C ′1, C

′
2 > 0 such that

P(|Xni| ≥ t) ≤ C ′1e−C
′
2t

2

, ∀n ≥ 1, i ∈ [n], t ≥ 0.

By union bounds,

P
(

max
i∈[n]
|Xni| > t

√
rn

)
≤ nC ′1e−C

′
2t

2rn = C ′1e
logn−C′2t

2rn , ∀t ≥ 0.

When t ≥
√

2/C ′2, we have C ′2t
2rn ≥ 2rn ≥ 2 log n and thus log n−C ′2t2rn ≤ −C ′2t2rn/2. Then

(45) leads to

P(|Sn − ESn| ≥ 2ta−1r(a−1)/2n /
√
n) ≤ 2e−crnt + C ′1e

−C′2rnt
2/2, ∀t ≥ C ∨

√
2/C ′2.

This shows Sn − E|Xn1|a = Sn − ESn = OP(r
(a−1)/2
n /

√
n; rn). The proof is finished by

E|Xn1|a . 1.

Lemma 11. Suppose that {Xi}ni=1 ⊆ Rd+1 are independent random vectors, maxi∈[n] ‖Xi‖ψ2
≤ 1

and n ≥ md ≥ log n for some m ≥ 1. We have

sup
u∈Sd

1

n

n∑
i=1

|u>Xi|2 = OP(1; n),

sup
u∈Sd

1

n

n∑
i=1

(v>Xi)
2|u>Xi| = OP(1; n1/3), ∀v ∈ Sd,

sup
u∈Sd

1

n

n∑
i=1

|u>Xi|3 = OP
(
max{1, md/

√
n}; md

)
.

Proof. From 2−1/2E1/2(u>X)2 ≤ ‖u>X‖ψ2 ≤ 1, ∀u ∈ Sd we get E(XX>) � 2I . Since
n ≥ d+ 1, Remark 5.40 in Vershynin (2010) asserts that

sup
u∈Sd

1

n

n∑
i=1

|u>Xi|2 =

∥∥∥∥ 1

n

n∑
i=1

XiX
>
i

∥∥∥∥
2

≤
∥∥∥∥ 1

n

n∑
i=1

XiX
>
i −E(XX>)

∥∥∥∥
2

+‖E(XX>)‖2 = OP(1; n).

For any u,v ∈ Sd, the Cauchy-Schwarz inequality forces

1

n

n∑
i=1

(v>Xi)
2|u>Xi| ≤

(
1

n

n∑
i=1

(v>Xi)
4

)1/2(
1

n

n∑
i=1

(u>Xi)
2

)1/2

,

sup
u∈Sd

1

n

n∑
i=1

(v>Xi)
2|u>Xi| ≤

(
1

n

n∑
i=1

(v>Xi)
4

)1/2

OP(1; n).
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Since {v>Xi}ni=1 are i.i.d. sub-Gaussian random variables and ‖v>Xi‖ψ2 ≤ 1, Lemma
10 with a = 4 and rn = n1/3 yields 1

n

∑n
i=1(v>Xi)

4 = OP(1; n1/3). Hence
supu∈Sd

1
n

∑n
i=1(v>Xi)

2|u>Xi| = OP(1; n1/3).

To prove the last equation in Lemma 11, defineZi = Xi−EX̄i. From ‖Zi‖ψ2
= ‖Xi−EXi‖ψ2

≤
2‖Xi‖ψ2

≤ 2 we get supu∈Sd
1
n

∑n
i=1 |u>Zi|2 = OP(1; n). For u ∈ Sd,

|u>Xi|3 = |u>Zi|3 + (|u>Xi| − |u>Zi|)(|u>Xi|2 + |u>Xi| · |u>Zi|+ |u>Zi|2)

≤ |u>Zi|3 + |u>(Xi −Zi)|(|u>Xi|2 + |u>Xi| · |u>Zi|+ |u>Zi|2)

≤ |u>Zi|3 + |u>EX̄i| ·
3

2
(|u>Xi|2 + |u>Zi|2) ≤ |u>Zi|3 +

3

2
(|u>Xi|2 + |u>Zi|2),

where the last inequality is due to |u>EX̄i| ≤ ‖EX̄i‖2 ≤ ‖Xi‖ψ2
≤ 1. Hence

sup
u∈Sd

1

n

n∑
i=1

|u>Xi|3 ≤ sup
u∈Sd

1

n

n∑
i=1

|u>Zi|3 +OP(1; n). (46)

Define S(u) = 1
n

∑n
i=1 |u>Zi|3 for u ∈ Sd. We will invoke Theorem 1 in Wang (2019) to control

supu∈Sd S(u).

1. For any u ∈ Sd, {u>Zi}ni=1 are i.i.d. and ‖u>Zi‖ψ2
≤ 1. Lemma 10 with a = 3 and rn = md

yields

{S(u)}u∈Sd = OP(max{1,md/
√
n}; md).

2. According to Lemma 5.2 in Vershynin (2010), for ε = 1/6 there exists an ε-net N of Sd with
cardinality at most (1 + 2/ε)d = 13d. Hence log |N | . md.

3. For any x, y ∈ R, we have ||x| − |y|| ≤ |x− y|, 2|xy| ≤ x2 + y2 and∣∣|x|3 − |y|3∣∣ ≤ ||x| − |y|| (x2 + |xy|+ y2) ≤ 3

2
|x− y|(x2 + y2).

Hence for any u,v ∈ Sd,

|S(u)− S(v)| ≤ 1

n

n∑
i=1

∣∣|u>Zi|3 − |v>Zi|3∣∣ ≤ 3

2
· 1

n

n∑
i=1

|(u− v)>Zi|(|u>Zi|2 + |v>Zi|2)

≤ 3‖u− v‖2 sup
w1,w2∈Sd

1

n

n∑
i=1

|w>1 Zi| · |w>2 Zi|2 =
1

2ε
‖u− v‖2 sup

w∈Sd
S(w).

where the last inequality follows from ε = 1/6 and Lemma 7.

Theorem 1 in Wang (2019) then asserts that supu∈Sd S(u) = OP(max{1,md/
√
n}; md). We finish

the proof using (46).
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