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A Differential Negentropy and Boltzmann-Gibbs distributions

We adapt a proof from Cover and Thomas [17]. Let Ω be the Shannon negentropy, which is proper,
lower semi-continuous, and strictly convex [48, example 9.41], and let

KL(p‖q) :=

∫
S

p(t) log
p(t)

q(t)

be the Kullback-Leibler divergence between distributions p and q (which is always non-negative and
equals 0 iff p = q). Take q(t) = exp(f(t))∫

S
exp(f(t′))dν(t′)

= exp(f(t)−A(f)) as in (2), where A(f) is the
log-partition function.

We have, for any p ∈M1
+(S):

0 ≤ KL(p‖q) =

∫
S

p(t) log
p(t)

q(t)
= Ω(p)−

∫
S

p(t) log q(t) = Ω(p)−
∫
S

p(t)(f(t)−A(f))

= Ω(p)− Ep[f(t)] +A(f). (19)

Therefore, we have, for any p ∈M1
+(S), that

Ep[f(t)]− Ω(p) ≤ A(f), (20)

with equality if and only if p = q. Since the right hand side is constant with respect to p, we have that
the posited q must be the maximizer of (1).

B Tsallis Negentropy and Sparse Distributions

B.1 Shannon as a limit case of Tsallis when α→ 1

We show that limα→1 Ωα(p) = Ω1(p) for any p ∈ M1
+(S). From (6), it suffices to show that

limβ→1 logβ(u) = log(u) for any u ≥ 0. Let g(β) := u1−β − 1, and h(β) := 1− β. Observe that

lim
β→1

logβ(u) = lim
β→1

g(β)

h(β)
=
g(1)

h(1)
=

0

0
,

so we are in an indeterminate case. We take the derivatives of g and h:

g′(β) =
(
exp(log u1−β)

)′
= exp(log u1−β) · ((1− β) log u)′ = −u1−β log u, (21)

and h′(β) = −1. From l’Hôpital’s rule,

lim
β→1

g(β)

h(β)
= lim
β→1

g′(β)

h′(β)
= log u. (22)

B.2 Proof of Proposition 1

The proof of Proposition 1 is similar to the one in §A, replacing the KL divergence by the Bregman
divergence induced by Ωα, and using an additional bound. Let

BΩα(p, q) := Ωα(p)− Ωα(q)− 〈∇Ωα(q), p− q〉

be the (functional) Bregman divergence between distributions p and q induced by Ωα, and let

q(t) = exp2−α(f(t)−Aα(f)) = [1 + (α− 1)(f(t)−Aα(f))]
1

α−1

+ .

Note that, from (6),

(∇qΩα(q)) (t) =
q(t)α−1

α− 1
.
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From the non-negativity of the Bregman divergence [49], we have, for any p ∈M1
+(S):

0 ≤(a) BΩα(p, q)

= Ωα(p)− Ωα(q)− 〈∇Ωα(q), p− q〉

= Ωα(p)− Ωα(q)−
∫
S

q(t)α−1

α− 1
(p(t)− q(t))

= Ωα(p)− Ωα(q)− Ep[[f(t)−Aα(f) + (α− 1)−1]+]︸ ︷︷ ︸
≥Ep[f(t)−Aα(f)+(α−1)−1]

+
1

α− 1

∫
S

q(t)α

≤(b) Ωα(p)− Ωα(q)− Ep[f(t)−Aα(f) + (α− 1)−1] +
1

α− 1

∫
S

q(t)α

= Ωα(p)− Ep[f(t)]− Ωα(q) +
1

α− 1

(∫
S

q(t)α − 1

)
︸ ︷︷ ︸

=αΩα(q)

+Aα(f)

= Ωα(p)− Ep[f(t)] + (α− 1)Ωα(q) +Aα(f). (23)

Therefore, we have, for any p ∈M1
+(S),

Ep[f(t)]− Ωα(p) ≤ (α− 1)Ωα(q) +Aα(f), (24)

with equality iff p = q, which leads to zero Bregman divergence (i.e., a tight inequality (a)) and to
Ep[[f(t)−Aα(f) + (α− 1)−1]+] = Ep[f(t)−Aα(f) + (α− 1)−1] (i.e., a tight inequality (b)).

We can use the equality above to obtain an expression for the Fenchel conjugate Ω∗α(f) = Eq[f(t)]−
Ωα(q) (i.e., the value of the maximum in (1) and the right hand side in (24)):

Ω∗α(f) = (α− 1)Ωα(q) +Aα(f). (25)

B.3 Normalizing function Aα(f)

Let p = p̂Ωα [f ]. The expression for Aα in Prop. 1 is obtained by inverting (7), yielding Aα(f) =
f(t)− log2−α(p(t)), and integrating with respect to p(t)2−αdν(t), leading to:∫

S

pθ(t)
2−αAα(f) =

∫
S

p(t)2−αf(t)−
∫
S

p(t)2−α log2−α(p(t))

=

∫
S

pθ(t)
2−αf(t)−

∫
S

(p(t)− p(t)2−α)

α− 1

=

∫
S

p(t)2−αf(t)− 1

α− 1
+

∫
S
p(t)2−α

α− 1
, (26)

from which the desired expression follows.

C Relation to the Tsallis Maxent Principle

We discuss here the relation between the (2− α)-exponential family of distributions as presented in
Prop. 1 and the distributions arising from the Tsallis maxent principle [13]. We put in perspective
the related work in statistical physics [50, 10], information geometry [25, 18], and the discrete case
presented in the machine learning literature [7, 8].

We start by noting that our α parameter matches the α used in prior machine learning literature related
to the “α-entmax transformation” [7, 8]. In the definition of Tsallis entropies (6), our α corresponds
to the entropic index q defined by Tsallis [13]. However, our (2−α)-exponential families correspond
to the q-exponential families as defined by Naudts [10], and to the t-exponential families described
by Ding and Vishwanathan [12] (which include the t-Student distribution). The family of Amari’s
α-divergences relates to this q as α = 2q − 1 [18, §4.3].

These differences in notation have historical reasons, and they are explained by the different ways
in which Tsallis entropies relate to q-exponential families. In fact, the physics literature has defined
q-exponential distributions in two distinct ways, as we next describe.
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Note first that the Ω-RPM in our Def. 1 is a generalization of the free energy variational principle,
if we see −fθ(t) = −θ>φ(t) as an energy function and Ω the entropy scaled by a temperature. Let
Ω = Ωα be the Tsallis α-entropy. An equivalent constrained version of this problem is the maximum
entropy (maxent) principle [51]:

max
p∈M1

+(S)
−Ωα(p), s.t. Ep[φ(t)] = b. (27)

The solution of this problem corresponds to a distribution in the (2− α)-exponential family (7):

p?(t) = exp2−α(θ>φ(t)−Aα(θ)), (28)

for some Lagrange multiplier θ.

However, this construction differs from the one by Tsallis [13] and others, who use escort distributions
(Eq. 5) in the expectation constraints. Namely, instead of (27), they consider the problem:

max
p∈M1

+(S)
−Ωα(p), s.t. Ep̃α [φ(t)] = b. (29)

The solution of (29) is of the form

p?(t) = Bα(θ) expα(θ>(φ(t)− b)), (30)

where θ is again a Lagrange multiplier. This is derived, for example, in [50, Eq. 15]. There are two
main differences between (28) and (30):

• While (28) involves the (2− α)-exponential, (30) involves the α-exponential.
• In (28), the normalizing term Aα(θ) is inside the (2 − α)-exponential. In (30), there is an

normalizing factor Bα(θ) outside the α-exponential.

Naturally, when α = 1, these two problems become equivalent, since an additive term inside the
exponential is equivalent to a multiplicative term outside. However, this does not happen with
β-exponentials (expβ(u + v) 6= expβ(u) expβ(v) in general, for β 6= 1), and therefore these two
alternative paths lead to two different definitions of q-exponential families. Unfortunately, both have
been considered in the physics literature, under the same name, and this has been subject of debate.
Quoting Naudts [10, §1]:

“An important question is then whether in the modification the normalization
should stand in front of the deformed exponential function, or whether it should
be included as lnZ(β) inside. From the general formalism mentioned above it
follows that the latter is the right way to go.”

Throughout our paper, we use the definition of [10, 25], equivalent to the maxent problem (27).

D Proof of Proposition 2

We adapt the proof from Amari and Ohara [25, Theorem 5]. Note first that, for t ∈ supp(pθ),

∇θpθ(t) = ∇θ[(α− 1)(θ>φ(t)−Aα(θ)) + 1]1/(α−1)

= [(α− 1)(θ>φ(t)−Aα(θ)) + 1](2−α)/(α−1)(φ(t)−∇θAα(θ))

= pθ(t)
2−α(φ(t)−∇θAα(θ)), (31)

and

∇2
θpθ(t) = ∇θp2−α

θ (t)(φ(t)−∇θAα(θ))> − p2−α
θ (t)∇2

θAα(θ)

= (2− α)p1−α
θ (t)∇θpθ(t)(φ(t)−∇θAα(θ))> − p2−α

θ (t)∇2
θAα(θ)

= (2− α)pθ(t)
3−2α

(
φ(t)−∇θAα(θ)

)(
φ(t)−∇θAα(θ)

)>
−pθ(t)2−α∇2

θAα(θ). (32)

Therefore we have:

0 = ∇θ
∫
S

pθ(t)︸ ︷︷ ︸
=1

=

∫
S

∇θpθ(t) =

∫
S

pθ(t)
2−α(φ(t)−∇θAα(θ)), (33)
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from which we obtain

∇θAα(θ) =

∫
S
pθ(t)

2−αφ(t)∫
S
pθ(t)2−α . (34)

To prove that Aα(θ) is convex, we will show that its Hessian is positive semidefinite. Note that

0 = ∇2
θ

∫
S

pθ(t)︸ ︷︷ ︸
=1

=

∫
S

∇2
θpθ(t)

=

∫
S

(2− α)pθ(t)
3−2α

(
φ(t)−∇θAα(θ)

)(
φ(t)−∇θAα(θ)

)> − pθ(t)2−α∇2
θAα(θ)

= (2− α)

∫
S

pθ(t)
3−2α

(
φ(t)−∇θAα(θ)

)(
φ(t)−∇θAα(θ)

)>
−∇2

θAα(θ)

∫
S

pθ(t)
2−α, (35)

hence, for α ≤ 2,

∇2
θAα(θ) =

(2− α)
∫
S
pθ(t)

3−2α

�0︷ ︸︸ ︷(
φ(t)−∇θAα(θ)

)(
φ(t)−∇θAα(θ)

)>∫
S
pθ(t)2−α � 0, (36)

where we used the fact that pθ(t) ≥ 0 for t ∈ S and that integrals of positive semidefinite functions
and positive semidefinite.

E Normalization Constants for Continuous Sparsemax Distributions

E.1 Truncated parabola

Let p(t) =
[
−λ− (t−µ)2

2σ2

]
+

as in (10). Let us determine the constant λ that ensures this distribution

normalizes to 1. Note that λ does not depend on the location parameter µ, hence we can assume µ = 0

without loss of generality. We must have λ = − a2

2σ2 and 1 =
∫ a
−a

(
−λ− x2

2σ2

)
= −2λa− a3

3σ2 = 2a3

3σ2 ,

hence a =
(

3
2σ

2
)1/3

, which finally gives:

λ = −1

2

(
3

2σ

)2/3

. (37)

E.2 Multivariate truncated paraboloid

Let p(t) =
[
−λ− 1

2 (t− µ)Σ−1(t− µ)
]
+

as in (11). Let us determine the constant λ that ensures
this distribution normalizes to 1, where we assume again µ = 0 without loss of generality. To obtain
λ, we start by invoking the formula for computing the volume of an ellipsoid defined by the equation
x>Σ−1x ≤ 1:

Vell(Σ) =
πn/2

Γ(n/2 + 1)
det(Σ)1/2, (38)

where Γ(t) is the Gamma function. Since each slice of a paraboloid is an ellipsoid, we can apply
Cavalieri’s principle to obtain the volume of a paraboloid y = 1

2x
>Σ−1x of height h = −λ as

follows:

Vpar(h) =

∫ h

0

Vell(2Σy)dy =
(2π)n/2det(Σ)1/2

Γ(n2 + 1)

∫ h

0

y
n
2 dy

=
(2π)n/2det(Σ)1/2

(n2 + 1)Γ(n2 + 1)
h
n
2 +1

=

√
(2π)ndet(Σ)

Γ(n2 + 2)
h
n
2 +1. (39)
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Equating the volume to 1, we obtain λ = −h as:

λ = −

(
Γ(n2 + 2)√
(2π)ndet(Σ)

) 2
2+n

. (40)

E.3 Triangular

Let p(t) =
[
−λ− |t−µ|b

]
+

as in (12). Let us determine the constant λ that ensures this distribution

normalizes to 1. Assuming again µ = 0 without loss of generality, we must have λ = −ab and

1 =
∫ a
−a

(
−λ− |x|b

)
= −2λa− a2

b = a2

b , hence a =
√
b, which finally gives λ = −b−1/2.

E.4 Location-scale families

We first show that a is the solution of the equation ag′(a)−g(a)+g(0) = 1
2 . From symmetry around

µ, we must have

1

2
=

∫ µ+aσ

µ

(
1

σ
g′(a)− 1

σ
g′
(
t− µ
σ

))
dt =

∫ a

0

(g′(a)− g′(s)) ds = ag′(a)− g(a) + g(0), (41)

where we made a variable substitution s = (t − µ)/σ, which proves the desired result. Now we
show that a solution always exists if g is strongly convex, i.e., if there is some γ > 0 such that
g(0) ≥ g(s) − sg′(s) + γ

2 s
2 for any s ≥ 0. Let F (s) := sg′(s) − g(s) + g(0). We want to show

that the equation F (a) = 1
2 has a solution. Since g is continuously differentiable, F is continuous.

From the strong convexity of g, we have that F (s) ≥ γ
2 s

2 for any s ≥ 0, which implies that
lims→+∞ F (s) = +∞. Therefore, since F (0) = 0, we have by the intermediate value theorem that
there must be some a such that F (a) = 1

2 .

F Proof of Proposition 3

We have

∇θEp[ψi(t)] = ∇θ
∫
S

pθ(t)ψi(t) =

∫
S

∇θpθ(t)ψi(t)

=

∫
S

p2−α
θ (t)∇θ log2−α(pθ(t))ψi(t)

=

∫
S

p2−α
θ (t)∇θ(θ>φ(t)−Aα(θ))ψi(t)

=

∫
S

p2−α
θ (t)(φ(t)−∇θAα(θ))ψi(t). (42)

Using the expression for∇θAα(θ) from Proposition 2 yields the desired result.

G Continuous Attention with Gaussian RBFs

We derive expressions for the evaluation and gradient computation of continuous attention mecha-
nisms where ψ(t) are Gaussian radial basis functions, both for the softmax (α = 1) and sparsemax
(α = 2) cases. For softmax, we show closed-form expressions for any number of dimensions
(including the 1D and 2D cases). For sparsemax, we derive closed-form expressions for the 1D case,
and we reduce the 2D case to a univariate integral on an interval, easy to compute numerically.

This makes it possible to plug both continuous attention mechanisms in neural networks and learn
them end-to-end with the gradient backpropagation algorithm.

G.1 Continuous softmax (α = 1)

We derive expressions for continuous softmax for multivariate Gaussians in RD. This includes the
1D and 2D cases, where D ∈ {1, 2}.
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If S = RD, for φ(t) = [t, tt>], the distribution p = p̂Ω1 [fθ], with fθ(t) = θ>φ(t), is a multivariate
Gaussian where the mean µ and the covariance matrix Σ are related to the canonical parameters as
θ = [Σ−1µ,− 1

2Σ−1].

We derive closed form expressions for the attention mechanism output ρ1(θ) = Ep[ψ(t)] in (15) and
for its Jacobian Jρ1

(θ) = covp,1(φ(t), ψ(t)) in (18), when ψ(t) are Gaussian RBFs, i.e., each ψj is
of the form ψj(t) = N (t;µj ,Σj).

Forward pass. Each coordinate of the attention mechanism output becomes the integral of a
product of Gaussians,

Ep[ψj(t)] =

∫
RD
N (t;µ,Σ)N (t;µj ,Σj). (43)

We use the fact that the product of two Gaussians is a scaled Gaussian:

N (t;µ,Σ)N (t;µj ,Σj) = s̃N (t; µ̃, Σ̃), (44)

where

s̃ = N (µ;µj ,Σ + Σj), Σ̃ = (Σ−1 + Σ−1
j )−1, µ̃ = Σ̃(Σ−1µ+ Σ−1

j µj). (45)

Therefore, the forward pass can be computed as:

Ep[ψj(t)] = s̃

∫
RD
N (t; µ̃, Σ̃) = s̃

= N (µ;µj ,Σ + Σj).

(46)

Backward pass. To compute the backward pass, we have that each row of the Jacobian Jρ1
(θ)

becomes a first or second moment under the resulting Gaussian:

covp,1(t, ψj(t)) = Ep[tψj(t)]− Ep[t]Ep[ψj(t)]

=

∫
RD

tN (t;µ,Σ)N (t;µj ,Σj)− s̃µ

= s̃

∫
RD

tN (t; µ̃, Σ̃)− s̃µ

= s̃(µ̃− µ),

(47)

and, noting that Σ = E[(t− µ)(t− µ)>] = E[tt>]− µµ>,

covp,1(tt>, ψj(t)) = Ep[tt>ψj(t)]− Ep[tt>]Ep[ψj(t)]

=

∫
RD

tt>N (t;µ,Σ)N (t;µj ,Σj)− s̃(Σ + µµ>)

= s̃

∫
RD

tt>N (t; µ̃, Σ̃)− s̃(Σ + µµ>)

= s̃(Σ̃ + µ̃µ̃>)− s̃(Σ + µµ>)

= s̃(Σ̃ + µ̃µ̃> − Σ− µµ>).

(48)

G.2 Continuous sparsemax in 1D (α = 2, D = 1)

With φ(t) = [t, t2], the distribution p = p̂Ω2
[fθ], with fθ(t) = θ>φ(t), becomes a truncated parabola

where µ and σ2 are related to the canonical parameters as above, i.e., θ = [ µσ2 ,− 1
2σ2 ].

We derive closed form expressions for the attention mechanism output ρ2(θ) = Ep[ψ(t)] in (15) and
its Jacobian Jρ2(θ) = ∂ρ2(θ)

∂θ = covp,2(φ(t), ψ(t)) in (18) when ψ(t) and Gaussian RBFs, i.e., each
ψj is of the form ψj(t) = N (t;µj , σ

2
j ).
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Forward pass. Each coordinate of the attention mechanism output becomes:

Ep[ψj(t)] =

∫ µ+a

µ−a

(
−λ− (t− µ)2

2σ2

)
N (t;µj , σ

2
j )

=

∫ µ−µj+a

σj

µ−µj−a
σj

1

σj

(
−λ− (σjt+ µj − µ)2

2σ2

)
N (s; 0, 1)ds, (49)

where a = ( 3
2σ

2)1/3 and λ = − a2

2σ2 = − 1
2 ( 3

2σ )2/3, as stated in (37), and we made the substitution
s =

t−µj
σj

. We use the fact that, for any u, v ∈ R such that u ≤ v:∫ v

u

N (t; 0, 1) =
1

2

(
erf

(
v√
2

)
− erf

(
u√
2

))
,∫ v

u

tN (t; 0, 1) = −N (v; 0, 1) +N (u; 0, 1),∫ v

u

t2N (t; 0, 1) =
1

2

(
erf

(
v√
2

)
− erf

(
u√
2

))
− vN (v; 0, 1) + uN (u; 0, 1), (50)

from which the expectation (49) can be computed directly.

Backward pass. Since |supp(p)| = 2a, we have from (17) and (50) that each row of the Jacobian
Jρ2

(θ) becomes:

covp,2(t, ψj(t)) =∫ µ+a

µ−a
tN (t;µj , σ

2
j )− 1

2a

(∫ µ+a

µ−a
t

)(∫ µ+a

µ−a
N (t;µj , σ

2
j )

)

=

∫ µ−µj+a

σj

µ−µj−a
σj

(µj + σjs)N (s; 0, 1)− 1

2a

(
(µ+ a)2

2
− (µ− a)2

2

)
︸ ︷︷ ︸

=µ

∫ µ−µj+a

σj

µ−µj−a
σj

N (s; 0, 1)



= (µj − µ)

∫ µ−µj+a

σj

µ−µj−a
σj

N (s; 0, 1) + σj

∫ µ−µj+a

σj

µ−µj−a
σj

sN (s; 0, 1)

=
µj − µ

2

(
erf

(
µ− µj + a√

2σj

)
− erf

(
µ− µj − a√

2σj

))

−σj
(
N
(
µ− µj + a

σj
; 0, 1

)
−N

(
µ− µj − a

σj
; 0, 1

))
, (51)

and

covp,2(t2, ψj(t)) =∫ µ+a

µ−a
t2N (t;µj , σ

2
j )− 1

2a

(∫ µ+a

µ−a
t2
)(∫ µ+a

µ−a
N (t;µj , σ

2
j )

)

=

∫ µ−µj+a

σj

µ−µj−a
σj

(µj + σjs)
2N (s; 0, 1)− 1

2a

(
(µ+ a)3

3
− (µ− a)3

3

)
︸ ︷︷ ︸

= a2

3 +µ2

∫ µ−µj+a

σj

µ−µj−a
σj

N (s; 0, 1)



=

(
µ2
j − µ2 − a2

3

)∫ µ−µj+a

σj

µ−µj−a
σj

N (s; 0, 1) + 2µjσj

∫ µ−µj+a

σj

µ−µj−a
σj

sN (s; 0, 1) + σ2
j

∫ µ−µj+a

σj

µ−µj−a
σj

s2N (s; 0, 1)

=

(
µ2
j − µ2 + σ2

j −
a2

3

)(
erf

(
µ− µj + a√

2σj

)
− erf

(
µ− µj − a√

2σj

))

−σj(µ+ µj + a)N
(
µ− µj + a

σj
; 0, 1

)
+ σj(µ+ µj − a)N

(
µ− µj − a

σj
; 0, 1

)
. (52)
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G.3 Continuous sparsemax in 2D (α = 2, D = 2)

Let us now consider the case where D = 2. For φ(t) = [t, tt>], the distribution p = p̂Ω2
[fθ], with

fθ(t) = θ>φ(t), becomes a bivariate truncated paraboloid where µ and Σ are related to the canonical
parameters as before, θ = [Σ−1µ,− 1

2Σ−1]. We obtain expressions for the attention mechanism
output ρ2(θ) = Ep[ψ(t)] and its Jacobian Jρ2

(θ) = covp,2(φ(t), ψ(t)) that include 1D integrals
(simple to integrate numerically), when ψ(t) are Gaussian RBFs, i.e., when each ψj is of the form
ψj(t) = N (t;µj ,Σj).

We start with the following lemma:

Lemma 1. LetN (t, µ,Σ) be a D-dimensional multivariate Gaussian, Let A ∈ RD×R be a full
column rank matrix (withR ≤ D), and b ∈ RD. Then we haveN (Au+b;µ,Σ) = s̃N (u; µ̃, Σ̃)
with:

Σ̃ = (A>Σ−1A)−1

µ̃ = Σ̃A>Σ−1(µ− b)

s̃ = (2π)
R−D

2
|Σ̃|1/2

|Σ|1/2
exp

(
−1

2
(µ− b)>P (µ− b)

)
, P = Σ−1 − Σ−1AΣ̃A>Σ−1.

If R = D, then A is invertible and the expressions above can be simplified to:

Σ̃ = A−1ΣA−>

µ̃ = A−1(µ− b)
s̃ = |A|−1.

Proof. The result can be derived by writing N (Au + b;µ,Σ) = (2π)−R/2|Σ|−1/2 exp(− 1
2 (Au +

b−µ)>Σ−1(Au+ b−µ)) and splitting the exponential of the sum as a product of exponentials.

Forward pass. For the forward pass, we need to compute

Ep[ψj(t)] =

∫∫
R2

[
−λ− 1

2
(t− µ)>Σ−1(t− µ)

]
+

N (t;µj ,Σj)dt, (53)

with

N (t;µj ,Σj) =
1

2π |Σj |
1
2

exp

(
−1

2
(t− µj)>Σ−1

j (t− µj)
)
, (54)

and (from (11))

λ = −

(
1

π
√

det(Σ)

) 1
2

. (55)

Using Lemma 1 and the change of variable formula (which makes the determinants cancel), we can
reparametrize u = (−2λ)−

1
2 Σ−

1
2 (t− µ) and write this as an integral over the unit circle:

Ep[ψj(t)] =

∫∫
‖u‖≤1

−λ(1− ‖u‖2)N (u; µ̃, Σ̃)du, (56)

with µ̃ = (−2λ)−
1
2 Σ−

1
2 (µj − µ), Σ̃ = (−2λ)−1Σ−

1
2 ΣjΣ

− 1
2 . We now do a change to polar

coordinates, u = (r cos θ, r sin θ) = ar, where a = [cos θ, sin θ]> ∈ R2×1. The integral becomes:

Ep[ψj(t)] =

∫ 2π

0

∫ 1

0

−λ(1− r2)N (ar; µ̃, Σ̃)r dr dθ

=

∫ 2π

0

∫ 1

0

−λr(1− r2)s̃N (r; r0, σ
2) dr dθ, (57)
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where in the second line we applied again Lemma 1, resulting in

σ2(θ) ≡ σ2 = (a>Σ̃−1a)−1

r0(θ) ≡ r0 = σ2a>Σ̃−1µ̃

s̃(θ) ≡ s̃ =
1√
2π

σ

|Σ̃|1/2
exp

(
−1

2
µ̃>Pµ̃

)
, P = Σ̃−1 − σ2Σ̃−1aa>Σ̃−1.

Applying Fubini’s theorem, we fix θ and integrate with respect to r. We use the formulas (50) and
the fact that, for any u, v ∈ R such that u ≤ v:∫ v

u

t3N (t; 0, 1) = −N (v; 0, 1)(2 + v2) +N (u; 0, 1)(2 + u2). (58)

We obtain a closed from expression for the inner integral:

F (θ) =

∫ 1

0

r(1− r2)N (r; r0, σ
2) dr

= (2σ3 + r2
0σ + r0σ)N

(
1− r0

σ
; 0, 1

)
− (2σ3 + r2

0σ − σ)N
(
−r0

σ
; 0, 1

)
−r

3
0 + (3σ2 − 1)r0

2

[
erf

(
1− r0√

2σ

)
− erf

(
− r0√

2σ

)]
. (59)

The desired integral can then be expressed in a single dimension as

Ep[ψj(t)] = −λ
∫ 2π

0

s̃(θ)F (θ), (60)

which may be integrated numerically.

Backward pass. For the backward pass we need to solve

covp,2(t, ψj(t)) =

∫∫
E

tN (t;µj ,Σj)−
1

|E|

(∫∫
E

t

)(∫∫
E

N (t;µj ,Σj)

)
(61)

and

covp,2(tt>, ψj(t)) =

∫∫
E

tt>N (t;µj ,Σj)−
1

|E|

(∫∫
E

tt>
)(∫∫

E

N (t;µj ,Σj)

)
(62)

where E = supp(p) = {t ∈ R2 | 1
2 (t− µ)>Σ−1(t− µ) ≤ −λ} denotes the support of the density

p, a region bounded by an ellipse. Note that these expressions include integrals of vector-valued
functions and that (61) and (62) correspond to the first to second and the third to sixth row of the
Jacobian, respectively. The integrals that do not include Gaussians have closed form expressions and
can be computed as

1

|E|

(∫∫
E

t

)
= µ (63)

and
1

|E|

(∫∫
E

tt>
)

= µµ> +
Σ

|E|
, (64)

where |E| is the area of the region E given by

|E| = π√
det
(

1
−2λ Σ−1

) . (65)

All the other integrals are solved using the same affine transformation and change to polar coordinates
as in the forward pass. Given this, µ̃, Σ̃, a, σ2, r0 and s̃ are the same as before. To solve (61) we
write ∫∫

E

tN (t;µj ,Σj) =

∫∫
‖u‖≤1

(
(−2λ)

1
2 Σ

1
2u+ µ

)
N (u; µ̃, Σ̃)du (66)
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in polar coordinates, ∫ 2π

0

∫ 1

0

r
(

(−2λ)
1
2 Σ

1
2 ar + µ

)
s̃N (r; r0, σ

2)dr dθ, (67)

which can be then expressed in a single dimension as∫∫
E

tN (t;µj ,Σj) =

∫ 2π

0

s̃(θ)G(θ)dθ, (68)

with

G(θ) =

∫ 1

0

r
(

(−2λ)
1
2 Σ

1
2 ar + µ

)
N (r; r0, σ

2) dr

=

∫ 1−r0
σ

− r0σ
(sσ + r0)

(
(−2λ)

1
2 Σ

1
2 a(sσ + r0) + µ

)
N (r; r0, σ

2) ds

=
(

(−2λ)
1
2 Σ

1
2 aσ(r0) + µσ

)
N
(
−r0

σ
; 0, 1

)
−
(

(−2λ)
1
2 Σ

1
2 aσ(1 + r0) + µσ

)
N
(

1− r0

σ
; 0, 1

)
+

1

2

(
(−2λ)

1
2 Σ

1
2 a(σ2 + r2

0) + µr0

)[
erf

(
1− r0√

2σ

)
− erf

(
− r0√

2σ

)]
. (69)

We do the same for∫∫
E

N (t;µj ,Σj) =

∫∫
‖u‖≤1

N (u; µ̃, Σ̃)du =

∫ 2π

0

∫ 1

0

rs̃N (r; r0, σ
2)dr dθ, (70)

which can then be expressed in a single dimension as∫∫
E

N (t;µj ,Σj) =

∫ 2π

0

s̃(θ)H(θ)dθ, (71)

with

H(θ) =

∫ 1

0

rN (r; r0, σ
2) dr =

∫ 1−r0
σ

− r0σ
(sσ + r0)N (r; r0, σ

2) ds

= σ

[
N
(
−r0

σ
; 0, 1

)
−N

(
1− r0

σ
; 0, 1

)]
+
r0

2

[
erf

(
1− r0√

2σ

)
− erf

(
− r0√

2σ

)]
.

Finally, to solve (62) we simplify the integral∫∫
E

tt>N (t;µj ,Σj) =

∫∫
‖u‖≤1

(
(−2λ)

1
2 Σ

1
2u+ µ

)(
(−2λ)

1
2 Σ

1
2u+ µ

)>
N (u; µ̃, Σ̃)du

=

∫ 2π

0

∫ 1

0

r(r2A+ rB + C)s̃N (r; r0, σ
2)dr dθ (72)

with
A = (−2λ)Σ

1
2 aa>(Σ

1
2 )> (73)

B = (−2λ)
1
2

(
Σ

1
2 aµ> + µa>(Σ

1
2 )>
)

(74)

C = µµ>. (75)

The integral can then be expressed in a single dimension as∫∫
E

tt>N (t;µj ,Σj) =

∫ 2π

0

s̃(θ)M(θ)dθ, (76)
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with

M(θ) =

∫ 1

0

(r3A+ r2B + rC)N (r; r0, σ
2)dr

=

∫ 1−r0
σ

− r0σ
(s3Ã+ s2B̃ + s C̃ + D̃)N (s; 0, 1) ds

=

[(
2 +

(
−r0

σ

)2
)
Ã− r0

σ
B̃ + C̃

]
N
(
−r0

σ
; 0, 1

)
−

[(
2 +

(
1− r0

σ

)2
)
Ã+

1− r0

σ
B̃ + C̃

]
N
(

1− r0

σ
; 0, 1

)
+

1

2

(
B̃ + D̃

)[
erf

(
1− r0√

2σ

)
− erf

(
− r0√

2σ

)]
(77)

where
Ã = σ3A (78)

B̃ = σ2(3r0A+B) (79)

C̃ = σ(3r2
0 A+ 2r0B + C) (80)

D̃ = r3
0 A+ r2

0 B + r0 C. (81)

H Experimental Details and Model Hyperparameters

H.1 Document classification

We used the IMDB movie review dataset [29],6 which consist of user-written text reviews with
binary labels (positive/negative). Following [43], we used 25K training documents, 10% of which for
validation, and 25K for testing. The training and test sets are perfectly balanced: 12.5K negative and
12.5K positive examples. The documents have 280 words on average.

Our architecture is the same as [29], a BiLSTM with attention. We used pretrained GloVe embeddings
from the 840B release,7 kept frozen. We tuned three hyperparameters using the discrete softmax
attention baseline: learning rate within {0.003,0.001, 0.0001}; `2 within {0.01, 0.001,0.0001, 0};
number of epochs within {5,10, 20}. We picked the best configuration by doing a grid search and by
taking into consideration the accuracy on the validation set (selected values in bold). Table 3 shows
the hyperparameters and model configurations used for all document classification experiments.

H.2 Machine translation

We used the De→En dataset from the IWSLT 2017 evaluation campaign [30], with the standard
splits (206K, 9K, and 2K sentence pairs for train/dev/test).8 We used BPE [52] with 32K merges
to reduce the vocabulary size. Our implementation is based on Joey-NMT [53] and we used the
provided configuration script for the baseline, a BiLSTM model with discrete softmax attention9 with
the hyperpameters in Table 4.

H.3 Visual question answering

We used the VQA-v2 dataset [31] with the standard splits (443K, 214K, and 453K question-image
pairs for train/dev/test, the latter subdivided into test-dev, test-standard, test-challenge and test-
reserve). We adapted the implementation of [32],10 consisting of a Modular Co-Attention Network

6https://ai.stanford.edu/~amaas/data/sentiment
7http://nlp.stanford.edu/data/glove.840B.300d.zip
8https://wit3.fbk.eu/mt.php?release=2017-01-trnted
9https://github.com/joeynmt/joeynmt/blob/master/configs/iwslt14_deen_bpe.yaml

10https://github.com/MILVLG/mcan-vqa
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Table 3: Hyperparmeters for document classification.

HYPERPARAMETER VALUE

Batch size 16
Word embeddings size 300
BiLSTM hidden size 128
Merge BiLSTM states Concat
Attention scorer [14]
Conv filters 128
Conv kernel size 3
Early stopping patience 5
Number of epochs 10
Optimizer Adam
`2 regularization 0.0001
Learning rate 0.001

Table 4: Hyperparmeters for neural machine translation.

HYPERPARAMETER VALUE

Batch size 80
Word embeddings size 620
BiLSTM hidden size 1000
Attention scorer [14]
Early stopping patience 8
Number of epochs 100
Optimizer Adam
`2 regularization 0
Dropout 0.0
Hidden dropout 0.2
Learning rate 0.0002
Scheduling Plateau
Decrease factor 0.7
Lower case True
Normalization Tokens
Maximum output length 80
Beam size 5
RNN type GRU
RNN layers 1
Input feeding True
Init. hidden Bridge

(MCAN). Our architecture is the same as [32] except that we represent the image input with grid
features generated by a ResNet [54] pretrained on ImageNet [55], instead of bounding-box features
[56]. The images are resized to 448× 448 before going through the ResNet that outputs a feature
map of size 14 × 14 × 2048. To represent the input question words we use 300-dimensional
GloVe word embeddings [57], yielding a question feature matrix representation. Table 5 shows the
hyperparameters used for all the VQA experiments presented.

All the models we experimented with use the same features and were trained only on the train set
without data augmentation.

Examples. Figure 4 illustrates the difficulties that continuous attention models may face when
trying to focus on objects that are too far from each other or that seem to have different relative
importance to answer the question. Intuitively, in VQA, this becomes a problem when counting
objects in those conditions. On the other side, in counting questions that require the understanding of
a contiguous region of the image only, continuous attention may perform better (see Figure 5).

Figures 6 and 7 show other examples where continuous attention focus on the right region of the
image and answers the question correctly. For these cases, discrete attention is more diffuse than its
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Table 5: Hyperparmeters for VQA.

HYPERPARAMETER VALUE

Batch size 64
Word embeddings size 300
Input image features size 2048
Input question features size 512
Fused multimodal features size 1024
Multi-head attention hidden size 512
Number of MCA layers 6
Number of attention heads 8
Dropout rate 0.1
MLP size in flatten layers 512
Optimizer Adam
Base learning rate at epoch t starting from 1 min(2.5t · 10−5, 1 · 10−4)
Learning rate decay ratio at epoch t ∈ {10, 12} 0.2
Number of epochs 13

How many men are seen in this picture? 2

1E
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9
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15

1

Figure 4: Attention maps for an example in VQA-v2: original image, discrete attention, continuous
softmax, and continuous sparsemax.

continuous counterpart: in both examples, it attends to two different regions in the image, leading to
incorrect answers.
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How many birds in the water? 3
1E-90

1E-40
1E-14

1E-01

1E+01

2

0

40

2

Figure 5: Attention maps for an example in VQA-v2: original image, discrete attention, continuous
softmax, and continuous sparsemax.

Is the man wearing a hat? yes
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no
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Figure 6: Attention maps for an example in VQA-v2: original image, discrete attention, continuous
softmax, and continuous sparsemax.

What are they playing? basketball
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Figure 7: Attention maps for an example in VQA-v2: original image, discrete attention, continuous
softmax, and continuous sparsemax.
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