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Abstract

We study the problem of system identification and adaptive control in partially ob-
servable linear dynamical systems. Adaptive and closed-loop system identification
is a challenging problem due to correlations introduced in data collection. In this
paper, we present the first model estimation method with finite-time guarantees in
both open and closed-loop system identification. Deploying this estimation method,
we propose adaptive control online learning (ADAPTON), an efficient reinforcement
learning algorithm that adaptively learns the system dynamics and continuously
updates its controller through online learning steps. ADAPTON estimates the model
dynamics by occasionally solving a linear regression problem through interac-
tions with the environment. Using policy re-parameterization and the estimated
model, ADAPTON constructs counterfactual loss functions to be used for updating
the controller through online gradient descent. Over time, ADAPTON improves
its model estimates and obtains more accurate gradient updates to improve the
controller. We show that ADAPTON achieves a regret upper bound of polylog (T ),
after T time steps of agent-environment interaction. To the best of our knowledge,
ADAPTON is the first algorithm that achieves polylog (T ) regret in adaptive control
of unknown partially observable linear dynamical systems which includes linear
quadratic Gaussian (LQG) control.

1 Introduction

Reinforcement learning (RL) in unknown partially observable linear dynamical systems with the goal
of minimizing a cumulative cost is one of the central problems in adaptive control [1]. In this setting,
a desirable RL agent needs to efficiently explore the environment to learn the system dynamics, and
exploit the gathered experiences to minimize overall cost [2]. However, since the underlying states
of the systems are not fully observable, learning the system dynamics with finite time guarantees
brings substantial challenges, making it a long-lasting problem in adaptive control. In particular,
when the latent states of a system are not fully observable, future observations are correlated with the
past inputs and observations through the latent states. These correlations are even magnified when
closed-loop controllers, those that naturally use past experiences to come up with control inputs, are
deployed. Therefore, more sophisticated estimation methods that consider these complicated and
unknown correlations are required for learning the dynamics.

In recent years, a series of works have studied this learning problem and presented a range of novel
methods with finite-sample learning guarantees. These studies propose to employ i.i.d. Gaussian
excitation as the control input, collect system outputs and estimate the model parameters using the data
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collected. The use of i.i.d. Gaussian noise as the open-loop control input (not using past experiences)
mitigates the correlation in the inputs and the output observations. For stable systems, these methods
provide efficient ways to learn the model dynamics with confidence bounds of Õ(1/

√
T ), after T

times step of agent-environment interaction [3–6]. Here Õ(·) denotes the order up to logarithmic
factors. Deploying i.i.d. Gaussian noise for a long period of time to estimate the model parameters has
been the common practice in adaptive control since incorporating closed-loop controller introduces
significant challenges to learn the model dynamics [7].

These estimation techniques later have been deployed to propose explore-then-commit based RL
algorithms to minimize regret, i.e., how much more cost an agent suffers compared to the cost of a
baseline policy [8]. These algorithms deploy i.i.d. Gaussian noise as the control input to learn the
model parameters in the explore phase and then exploit these estimates during the commit phase to
minimize regret. Among these works, Lale et al. [9] and Simchowitz et al. [6] respectively propose to
use optimism [10] and online convex optimization [11] during the commit phase. These works attain
regret of Õ(T 2/3) in the case of convex cost functions. Moreover, in the case of strongly convex cost
functions, Mania et al. [12], Simchowitz et al. [6] show that exploiting the strong convexity allows
to guarantee regret of Õ(

√
T ). These methods heavily rely on the lack of correlation achieved by

using i.i.d. Gaussian noise as the open-loop control input to estimate the model. Therefore, they do
not generalize to the adaptive settings, where the past observations are used to continuously improve
both model estimates and the controllers. These challenges pose the following two open problems:

“Can we estimate the model parameters in closed-loop setting with finite-time guarantees?”

“Can we utilize such an estimation method, and propose an RL algorithm to significantly improve
regret in partially observable linear dynamical systems?”

In this paper, we give affirmative answers to both of these questions:

• Novel closed-loop estimation method: We introduce the first system identification method that
allows to estimate the model parameters with finite-time guarantees in both open and closed-loop
setting. We exploit the classical predictive form representation of the system that goes back to
Kalman [13] and reformulate each output as a linear function of previous control inputs and outputs
with an additive i.i.d. Gaussian noise. This reformulation allows to address the limitations of the
prior open-loop estimation methods in handling the correlations in inputs and outputs. We state a
novel least squares problem to recover the model parameters. We show that when the controllers
persistently excite the system, the parameter estimation error is Õ(1/

√
T ) after T samples. Our

method allows updating the model estimates while controlling the system with an adaptive controller.

• Novel RL algorithm for partially observable linear dynamical systems: Leveraging our novel
estimation method, we propose adaptive control online learning algorithm (ADAPTON) that adaptively
learns the model dynamics and efficiently uses the model estimates to continuously optimize the
controller and reduce the cumulative cost. ADAPTON operates in growing size epochs and in the
beginning of each epoch estimates the model parameters using our novel model estimation method.
During each epoch, following the online learning procedure introduced by Simchowitz et al. [6],
ADAPTON utilizes a convex policy reparameterization of linear controllers and the estimated model
dynamics to construct counterfactual loss functions. ADAPTON then deploys online gradient descent
on these loss functions to gradually optimize the controller. We show that as the model estimates
improve, the gradient updates become more accurate, resulting in improved controllers.
We show that ADAPTON attains a regret upper bound of polylog(T ) after T time steps of agent-
environment interaction, when the cost functions are strongly convex. To the best of our knowledge,
this is the first logarithmic regret bound for partially observable linear dynamical systems with
unknown dynamics which includes the canonical LQG setting. The presented regret bound improves
Õ(
√
T ) regret of Simchowitz et al. [6], Mania et al. [12] in stochastic setting with the help of novel

estimation method which allows updating model estimates during control (Table 1).

2 Preliminaries

We denote the Euclidean norm of a vector x as ‖x‖2. For a given matrix A, ‖A‖2 is its spectral
norm, ‖A‖F is its Frobenius norm, A> is its transpose, A† is its Moore-Penrose inverse, and
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Table 1: Comparison with prior works in partially observable linear dynamical systems.
Work Regret Cost Identification Noise

Lale et al. [9] T 2/3 Convex Open-Loop Stochastic
Simchowitz et al. [6] T 2/3 Convex Open-Loop Adversarial
Mania et al. [12]

√
T Strongly Convex Open-Loop Stochastic

Simchowitz et al. [6]
√
T Strongly Convex Open-Loop Semi-adversarial

This work polylog(T ) Strongly Convex Closed-Loop Stochastic

Tr(A) is the trace of A. ρ(A) denotes the spectral radius of A, i.e., the largest absolute value
of its eigenvalues. The j-th singular value of a rank-n matrix A is denoted by σj(A), where
σmax(A) :=σ1(A)≥σ2(A)≥ . . .≥σn(A) :=σmin(A)>0. I is the identity matrix with appropriate
dimensions. N (µ,Σ) denotes a multivariate normal distribution with mean vector µ and covariance
matrix Σ.

State space form: Consider an unknown discrete-time linear time-invariant system Θ,

xt+1 = Axt +But + wt, yt = Cxt + zt, (1)

where xt ∈ Rn is the (latent) state of the system, ut ∈ Rp is the control input, and the observation
yt ∈ Rm is the output of the system. At each time step t, the system is at state xt and the agent
observes yt, i.e., an imperfect state information. Then, the agent applies a control input ut, observes
the loss function `t, pays the cost of ct = `t(yt, ut), and the system evolves to a new xt+1 at time
step t+ 1. Let (Ft; t ≥ 0) be the corresponding filtration. For any t, conditioned on Ft−1, wt and
zt are N (0, σ2

wI) and N (0, σ2
zI) respectively. In this paper, in contrast to the standard assumptions

in LQG literature that the algorithm is given the knowledge of both σ2
w and σ2

z , we only assume the
knowledge of their upper and lower bounds, i.e., σ2

w, σ
2
w, σ

2
z , and σ2

z , such that, 0 < σ2
w ≤ σ2

w ≤ σ2
w

and 0 < σ2
z ≤ σ2

z ≤ σ2
z , for some finite σ2

w, σ
2
z . For the system Θ, let Σ be the unique positive

semidefinite solution to the following DARE (Discrete Algebraic Riccati Equation),

Σ = AΣA> −AΣC>
(
CΣC> + σ2

zI
)−1

CΣA> + σ2
wI. (2)

Σ can be interpreted as the steady state error covariance matrix of state estimation under Θ.

Predictor form: An equivalent and common representation of the system Θ in (1), is its predictor
form representation introduced by Kalman [13] and characterized as,

x̂t+1 = Āx̂t +But + Fyt, yt = Cx̂t + et, (3)

where F =AΣC>
(
CΣC>+σ2

zI
)−1

is the Kalman filter gain in the observer form, et is the zero mean
white innovation process and Ā = A− FC. In this equivalent representation of system, the state x̂t
can be seen as the estimate of the state in (1).
Definition 2.1 (Controllability & Observability). A system is (A,B) controllable if the controllability
matrix [B AB A2B . . . An−1B] has full row rank. As the dual, a system is (A,C) observable if the
observability matrix [C> (CA)> (CA2)> . . . (CAn−1)>]> has full column rank.

We assume that the unknown system Θ is (A,B) controllable, (A,C) observable and (A,F ) control-
lable. This provides exponential convergence of the Kalman filter to the steady-state. Thus, without
loss of generality, for the simplicity of analysis, we assume that x0 ∼ N (0,Σ), i.e., the system starts
at the steady-state. In the steady state, et ∼ N

(
0, CΣC> + σ2

zI
)
.

We assume that the unknown system Θ is order n and ρ(A) < 1. Let Φ(A) = supτ≥0 ‖Aτ‖ /ρ(A)τ .
In the following we consider the standard setting where Φ(A) is finite. The above mentioned
construction is the general setting for the majority of literature on both estimation and regret mini-
mization [3–6, 9, 12] for which the main challenge is the estimation and the controller design.

Note that, recently there has been significant effort to generalize this setting to stabilizable systems
when a stabilizing controller is given [6]. However, many partially observable linear dynamical
systems cannot be stabilized by a static feedback controller and the assumption of the existence of
such controller can be restrictive [14]. Therefore, in this work, we consider the setting described
above in order to present the general framework of learning and regret analysis in partially observable
linear dynamical systems.
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3 System Identification

In this section, we first explain the estimation methods that use state-space representation of the
system (1) to recover the model parameters and discuss the reason why they cannot provide reliable
estimates in closed-loop estimation problems. Then we present our novel estimation method which
provides reliable estimates in both open and closed-loop estimation.

Challenges in using the state-space representation for system identification: Using the state-
space representation in (1), for any positive integer H , one can rewrite the output at time t as follows,

yt =
∑H

i=1
CAi−1But−i + CAHxt−H + zt +

∑H−1

i=0
CAiwt−i−1. (4)

Definition 3.1 (Markov Parameters). The set of matrices that maps the inputs to the output in (4)
is called Markov parameters of the system Θ. They are the first H parameters of the Markov
operator, G={G[i]}i≥0 with G[0] =0m×p, and ∀i>0, G[i] =CAi−1B that uniquely describes the
system behavior. Moreover, G(H)=[G[0]G[1] . . . G[H−1]]∈Rm×Hp denotes the H-length Markov
parameters matrix.

For κG≥1, let the Markov operator of Θ be bounded, i.e.,
∑
i≥0 ‖G[i]‖≤κG. Due to stability of A,

the second term in (4) decays exponentially and for large enough H it becomes negligible. Therefore,
using Definition 3.1, we obtain the following for the output at time t,

yt ≈
∑H

i=0
G[i]ut−i + zt +

∑H−1

i=0
CAiwt−i−1. (5)

From this formulation, a least squares estimation problem can be formulated using outputs as the
dependent variable and the concatenation of H input sequences ūt = [ut, . . . , ut−H ] as the regressor
to recover the Markov parameters of the system:

Ĝ(H) = arg min
X

∑T

t=H
‖yt −Xūt‖22. (6)

Prior finite-time system identification algorithms propose to use i.i.d. zero-mean Gaussian noise for
the input, to make sure that the two noise terms in (5) are not correlated with the inputs i.e. open-loop
estimation. This lack of correlation allows them to solve (6), estimate the Markov parameters and
develop finite-time estimation error guarantees [3, 4, 9, 15]. From Markov parameter estimates,
they recover the system parameters (A,B,C) up to similarity transformation using singular value
decomposition based methods like Ho-Kalman algorithm [16].

However, when a controller designs the inputs based on the history of inputs and observations, the
inputs become highly correlated with the past process noise sequences, {wi}t−1

i=0 . This correlation
prevents consistent and reliable estimation of Markov parameters using (6). Therefore, these prior
open-loop estimation methods do not generalize to the systems that adaptive controllers generates
the inputs for estimation, i.e., closed-loop estimation. In order to overcome this issue, we exploit
the predictor form of the system Θ and design a novel system identification method that provides
consistent and reliable estimates both in closed and open-loop estimation problems.

Novel estimation method for partially observable linear dynamical systems: Using the predictor
form representation (3), for a positive integer He, the output at time t can be rewritten as follows,

yt =
∑He−1

k=0
CĀk (Fyt−k−1+But−k−1) + et + CĀHext−He . (7)

Using the open or closed-loop generated input-output sequences up to time τ , {yt, ut}τt=1, we
construct subsequences of He input-output pairs for He≤ t≤ τ ,

φt=
[
y>t−1 . . . y

>
t−Heu

>
t−1 . . . u

>
t−He

]>∈R(m+p)He .

The output of the system, yt can be represented using φt as:

yt=Gyφt+et+CĀHext−He for Gy =
[
CF CĀF . . . CĀHe−1F CB CĀB . . . CĀHe−1B

]
. (8)

Notice that Ā is stable due to (A,F )-controllability of Θ [17]. Therefore, with a similar argument
used in (4), for He = O(log(T )), the last term in (7) is negligible. This yields into a linear model of
the dependent variable yt and the regressor φt with additive i.i.d. Gaussian noise et:

yt ≈ Gyφt + et. (9)
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For this model, we achieve consistent and reliable estimates by solving the following regularized
least squares problem,

Ĝy = arg min
X

λ‖X‖2F +
∑τ

t=He
‖yt −Xφt‖22. (10)

This problem does not require any specification on how the inputs are generated and therefore can be
deployed in both open and closed-loop estimation problems. Exploiting the specific structure of Gy in
(8), we design a procedure named SYSID, which recovers model parameters from Ĝy (see Appendix
B for details). To give an overview, SYSID forms two Hankel matrices from the blocks of Ĝy which
corresponds to the product of observability and controllability matrices. SYSID applies a variant of
Ho-Kalman procedure and similar to this classical algorithm, it uses singular value decomposition of
these Hankel matrices to recover model parameter estimates (Â, B̂, Ĉ) and finally constructs Ĝ(H).
For the persistently exciting inputs, the following gives the first finite-time system identification
guarantee in both open and closed-loop estimation problems (see Appendix D for the proof).
Theorem 1 (System Identification). If the inputs are persistently exciting, then for T input-output
pairs, as long as T is large enough, solving the least squares problem in (10) and deploying SYSID

procedure provides model parameter estimates (Â, B̂, Ĉ, Ĝ(H)) in which there exists a similarity
transformation S ∈ Rn×n such that, with high probability,

‖Â− S−1AS‖, ‖B̂ − S−1B‖, ‖Ĉ − CS‖, ‖Ĝ(H)−G(H)‖ = Õ(1/
√
T ) (11)

4 Controller and Regret

In this section we describe the class of linear dynamic controllers (LDC) and show how a convex
policy reparameterization can provide accurate approximations of the LDC controllers. Then we
provide the regret definition, i.e. performance metric, of the adaptive control task.

Linear dynamic controller (LDC): An LDC policy π is a linear controller with an internal state
dynamics of

sπt+1 = Aπs
π
t +Bπyt, uπt = Cπs

π
t +Dπyt, (12)

where sπt ∈ Rs is the state of the controller, yt is the input to the controller, i.e. observation from the
system that controller is designing a policy for, and uπt is the output of the controller. LDC controllers
provide a large class of controller. For instance, when the problem is canonical LQG setting, the
optimal policy is known to be a LDC policy [1].

Nature’s output: Using (4), we can further decompose the generative components of yt to obtain,

yt = zt + CAtx0 +
∑t−1

i=0
CAt−i−1wi +

∑t

i=0
G[i]ut−i

Notice that first three components generating yt are derived from the uncontrollable noise processes
in the system, while the last one is a linear combination of control inputs. The first three components
are known as Nature’s y, i.e., Nature’s output [6, 18], of the system,

bt(G) := yt −
∑t−1

i=0
G[i]ut−i = zt + CAtx0 +

∑t−1

i=0
CAt−i−1wi. (13)

The ability to define Nature’s y is a unique characteristics of linear dynamical systems. At any time
step t, after following a sequence of control inputs {ui}ti=0, and observing yt, we can compute
bt(G) using (13). This quantity allows for counterfactual reasoning about the outcome of the system.
Particularly, having access to {bτ−t(G)}t≥0, we can reason what the outputs y′τ−t of the system
would have been, if the agent, instead, had taken other sequence of control inputs {u′i}τ−ti=0 , i.e.,

y′τ−t = bτ−t(G) +
∑τ−t−1

i=0
G[i]u′τ−t−i.

This property indicates that we can use {bτ−t(G)}t≥0 to evaluate the quality of any other potential
input sequences, and build a desirable controller, as elaborated in the following.

Disturbance feedback control (DFC): In this work, we adopt a convex policy reparametrization
called DFC introduced by Simchowitz et al. [6]. A DFC policy of length H ′ is defined as a set of
parameters, M(H ′) := {M [i]}H′−1

i=0 , prescribing the control input of

uMt =
∑H′−1

i=0
M [i]bt−i(G). (14)
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Assumption 4.1. For all t, the unknown lost function ct = !t(·, ·) is non-negative strongly convex204

and associated with a parameter L, such that for any R with ‖u‖, ‖u′‖, ‖y‖, ‖y′‖ ≤ R, we have,205

|!t(y, u)− !t(y′, u′)| ≤ LR(‖y − y′‖+ ‖u− u′‖) and |!t(y, u)| ≤ LR2.

Regret definition: Throughout the interaction with the system, the agent has access to a convex206

compact set of DFCs, M, such that all the controllers M(H ′) ∈ M persistently excite the system207

Θ and
∑H′−1

i≥0 ‖M [i]‖ ≤ κM. The precise definition of persistence of excitation condition is given208

in Appendix E.2. We evaluate the agent’s performance by its regret with respect to M!, which is the209

optimal DFC policy in the given set M, i.e., M! = arg minM∈M
∑T

t=1 !t(y
M
t , uM

t ). After T step210

of interaction, the agent’s regret is denoted as211

REGRET(T ) =
∑T

t=1
ct − !t(yM! , uM!). (15)

5 ADAPTON212

In this section, we present ADAPTON, a sample efficient adaptive control online learning algorithm213

which learns the model dynamics through interaction with the environment and continuously deploys214

online convex optimization to improve the control policy. ADAPTON is illustrated in Figure 1 and215

the detailed pseudo-code is provided in Appendix C.216

Warm-up: ADAPTON starts with a fixed warm-up period and applies ut ∼ N (0,σ2
uI) for first Tw217

time steps. The length of the warm-up period is chosen to guarantee an accountable first estimate of218

the system, the persistence of excitation during the adaptive control period and the stability of the219

online learning algorithm on the underlying system.220

Adaptive Control in epochs: After warm-up, ADAPTON starts controlling the system and operates221

in epochs with doubling length. ADAPTON sets the base period Tbase to the initial value Tbase = Tw222

and for each epoch i, it runs for 2i−1Tbase time steps.223

Model estimation in the beginning of epochs: At the beginning of each epoch i, ADAPTON exploits224

the past experiences up to epoch i. It deploys our novel closed-loop estimation method and solves225

(10) to estimate Gy. ADAPTON then exploits the construction of true Gy to estimate model parameter226

estimates Âi, B̂i, Ĉi and constructs an estimate of H-length Markov parameters matrix, Ĝi(H), via227

SYSID described in Section 3 and provided in Appendix B.228

Control Input, Output and Loss during the epochs: ADAPTON utilizes Ĝi(H) and the past inputs229

to estimate the Nature’s outputs, bt(Ĝi) = yt −
∑H

j=1 Ĝ
[j]
i ut−j . Using these estimates, ADAPTON230

executes a DFC policy Mt ∈ M such that uMt
t =

∑H′−1
j=0 M

[j]
t bt−j(Ĝi) and observes the output231

of yMt
t . Finally, ADAPTON receives the loss function !t, pays a cost of !(yMt

t , uMt
t ).232

Counterfactual input, output, loss: ADAPTON uses counterfactual reasoning introduced in Sim-233

chowitz et al. [6] to update its controller. After observing the loss function !t, it constructs,234

ũt−j(Mt, Ĝi) =
∑H′−1

l=0
M

[l]
t bt−j−l(Ĝi), (16)
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for Nature’s y, {bt−i(G)}H′−1
i=0 . The DFC policy construction is in parallel with the classical Youla

parametrization [18] which states that any linear controller can be prescribed as acting on past noise
sequences. Thus, DFC policies can be regarded as truncated approximations to LDCs. More formally,
any stabilizing LDC policy can be well-approximated as a DFC policy (see Appendix A).

Define the convex compact sets of DFCs, Mψ and M such that all the controllers in these sets
persistently excite the system Θ. The precise definition of persistence of excitation condition is
given in Appendix E.2. The persistence of excitation condition is a mild condition and it only
requires a significantly wide matrix that maps past H ′ noise sequences to input to be full row rank.
This condition holds in many well-known controllers such as H2, H∞. Moreover, if a controller
is persistently exciting there exists a neighborhood around it consisting of persistently exciting
controllers.

The controllers M(H ′0) ∈ Mψ are bounded i.e.,
∑H′0−1
i≥0 ‖M [i]‖ ≤ κψ andM is an r-expansion

of Mψ, i.e., M = {M(H ′) = M(H ′0) + ∆ : M(H ′0) ∈ Mψ,
∑H′−1
i≥0 ‖∆[i]‖ ≤ rκψ} where

H ′0 = bH′2 c −H . Thus, all controllers M(H ′) ∈M are also bounded
∑H′−1
i≥0 ‖M [i]‖ ≤ κM where

κM = κψ(1 + r). Throughout the interaction with the system, the agent has access toM.

Loss function: The loss function at time t, `t, is smooth and strongly convex for all t, i.e., 0 ≺
αlossI � ∇2`t(·, ·) � αlossI for a finite constant αloss. Note that the standard quadratic regulatory
costs of `t(yt, ut) = y>t Qtyt + u>t Rtu

>
t with bounded positive definite matrices Qt and Rt are

special cases of the mentioned setting. For all t, the unknown lost function ct = `t(·, ·) is non-negative
strongly convex and associated with a parameterL, such that for anyRwith ‖u‖, ‖u′‖, ‖y‖, ‖y′‖ ≤ R,
we have,

|`t(y, u)− `t(y′, u′)| ≤ LR(‖y − y′‖+ ‖u− u′‖) and |`t(y, u)| ≤ LR2. (15)

Regret definition: We evaluate the agent’s performance by its regret with respect to M?, the optimal,
in hindsight, DFC policy in the given setMψ, i.e., M?=arg minM∈Mψ

∑T
t=1 `t(y

M
t , u

M
t ). After

T step of interaction, the agent’s regret is denoted as

REGRET(T ) =
∑T

t=1
ct − `t(yM? , uM?). (16)

5 ADAPTON

In this section, we present ADAPTON, a sample efficient adaptive control online learning algorithm
which learns the model dynamics through interaction with the environment and continuously deploys
online convex optimization to improve the control policy. ADAPTON is illustrated in Figure 1 and the
detailed pseudo-code is provided in Appendix C.

Warm-up: ADAPTON starts with a fixed warm-up period and applies ut ∼ N (0, σ2
uI) for the first

Tw time steps. The length of the warm-up period is chosen to guarantee an accountable first estimate
of the system, the persistence of excitation during the adaptive control period and the stability of the
online learning algorithm on the underlying system.
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Adaptive control in epochs: After warm-up, ADAPTON starts controlling the system and operates in
epochs with doubling length. ADAPTON sets the base period Tbase to the initial value Tbase = Tw
and for each epoch i, it runs for 2i−1Tbase time steps.

Model estimation in the beginning of epochs: At the beginning of each epoch i, ADAPTON exploits
the past experiences up to epoch i. It deploys the proposed closed-loop estimation method and solves
(10) to estimate Gy. ADAPTON then exploits the construction of true Gy to estimate model parameter
estimates Âi, B̂i, Ĉi and constructs an estimate of H-length Markov parameters matrix, Ĝi(H), via
SYSID described in Section 3 and provided in Appendix B.

Control input, output and loss during the epochs: ADAPTON utilizes Ĝi(H) and the past inputs
to estimate the Nature’s outputs, bt(Ĝi) = yt −

∑H
j=1 Ĝ

[j]
i ut−j . Using these estimates, ADAPTON

executes a DFC policy Mt ∈M such that uMt
t =

∑H′−1
j=0 M

[j]
t bt−j(Ĝi) and observes the output of

yMt
t . Finally, ADAPTON receives the loss function `t, pays a cost of `(yMt

t , uMt
t ).

Counterfactual input, output, loss: ADAPTON uses counterfactual reasoning introduced in Sim-
chowitz et al. [6] to update its controller. After observing the loss function `t, it constructs,

ũt−j(Mt, Ĝi) =
∑H′−1

l=0
M

[l]
t bt−j−l(Ĝi), (17)

the counterfactual inputs, which are the recomputations of past inputs as if the current DFC policy is
applied using Nature’s y estimates. Then, ADAPTON reasons about the counterfactual output of the
system. Using the current Nature’s y estimate and the counterfactual inputs, the agent approximates
what the output of the system could be, if counterfactual inputs had been applied,

ỹt(Mt, Ĝi) = bt(Ĝi) +
∑H

j=1
Ĝ

[j]
i ũt−j(Mt, Ĝi). (18)

Using the counterfactual inputs, output and the revealed loss function `t, ADAPTON finally constructs,

ft(Mt, Ĝi) = `t(ỹt(Mt, Ĝi), ũt(Mt, Ĝi)). (19)
which is termed as the counterfactual loss. It is ADAPTON’s approximation of what the cost would
have been at time t, if the current DFC policy was applied until time t. It gives a performance
evaluation of the current DFC policy to ADAPTON for updating the policy. Note that the Markov
parameter estimates are crucial in the accuracy of this performance evaluation.

Online convex optimization: In order to optimize the controller during the epoch, at each time step,
ADAPTON runs online gradient descent on the counterfactual loss function ft(Mt, Ĝi) while keeping
the updates in the setM via projection [6],

Mt+1 = projM

(
Mt − ηt∇Mft

(
M, Ĝi

) ∣∣∣
Mt

)
.

Notice that if ADAPTON had access to the underlying Markov operator G, the counterfactual loss
would have been the true loss of applying the current DFC policy until time t, up to truncation. By
knowing the exact performance of the DFC policy, online gradient descent would have obtained
accurate updates. Using the counterfactual loss for optimizing the controller causes an error in the
gradient updates which is a function of estimation error of Ĝi. Therefore, as the Markov estimates
improve via our closed-loop estimation method, the gradient updates get more and more accurate.

6 Regret Analysis

In this section, we first provide the closed-loop learning guarantee of ADAPTON, then show that
ADAPTON maintains stable system dynamics and present the regret upper bound for ADAPTON.

Closed-loop learning guarantee: In the beginning of adaptive control epochs, ADAPTON guarantees
that Markov parameter estimates are accurate enough that deploying any controller from set M
provides persistence of excitation in inputs (see Appendix E). Under this guarantee, using our novel
estimation method at the beginning of any epoch i ensures that during the epoch, ‖Ĝi(H)−G(H)‖ =

Õ(1/
√

2i−1Tbase), due to Theorem 1 and doubling length epochs.
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Stable system dynamics with ADAPTON: Since wt and zt are Gaussian disturbances, from standard
concentration results we have that Nature’s y is bounded with high probability for all t (see Appendix
F). Thus, let ‖bt(G)‖ ≤ κb for some κb. The following lemma shows that during ADAPTON, Markov
parameter estimates are well-refined such that the inputs, outputs and the Nature’s y estimates of
ADAPTON are uniformly bounded with high probability. The proof is in Appendix F.
Lemma 6.1. For all t during the adaptive control epochs, ‖ut‖ ≤ κMκb, ‖yt‖ ≤ κb(1 + κGκM)

and ‖bt(Ĝ)‖ ≤ 2κb with high probability.

Regret upper bound of ADAPTON: The regret decomposition of ADAPTON includes 3 main pieces:
(R1)Regret due to warm-up,(R2)Regret due to online learning controller,(R3)Regret due to lack
of system dynamics knowledge (see Appendix G for exact expressions and proofs). R1 gives
constant regret for the short warm-up period. R2 results in O(log(T )) regret. Note that this
regret decomposition and these results follow and adapt Theorem 5 of Simchowitz et al. [6]. The
key difference is in R3, which scales quadratically with the Markov parameter estimation error
‖Ĝi(H)−G(H)‖. Simchowitz et al. [6] deploys open-loop estimation and does not update the
model parameter estimates during adaptive control and attains R3 = Õ(

√
T ) which dominates

the regret upper bound. However, using our novel system identification method with the closed-
loop learning guarantees of Markov parameters and the doubling epoch lengths ADAPTON gets
R3 = O(polylog(T )).
Theorem 2. GivenM, a closed, compact and convex set of DFC policies with persistence of excita-
tion, with high probability, ADAPTON achieves logarithmic regret, i.e., REGRET(T ) = polylog(T ).

In minimizing the regret, ADAPTON competes against the best DFC policy in the given setM. Recall
that any stabilizing LDC policy can be well-approximated as a DFC policy. Therefore, for any LDC
policy π whose DFC approximation lives in the givenM, Theorem 2 can be extended to achieve the
first logarithmic regret in LQG setting.
Corollary 6.1. Let π? be the optimal linear controller for LQG setting. If the DFC approximation of
π? is inMψ , then the regret of ADAPTON with respect to π? is

∑T
t=1 ct−`t(yπ?t , uπ?t ) = polylog(T ).

Note that without any estimation updates during the adaptive control, ADAPTON reduces to a variant of
the algorithm given in Simchowitz et al. [6]. While the update rule in ADAPTON results in O(log(T ))
updates in adaptive control period, one can follow different update schemes as long as ADAPTON

obtains enough samples in the beginning of the adaptive control period to obtain persistence of
excitation. The following is an immediate corollary of Theorem 2 which considers the case when
number of epochs or estimations are limited during the adaptive control period.
Corollary 6.2. If enough samples are gathered in the adaptive control period, ADAPTON with any
update scheme less than log(T ) updates has REGRET(T ) ∈ [polylog(T ), Õ(

√
T )].

7 Related Works

Classical results in system identification: The classical open or closed-loop system identification
methods either consider the asymptotic behavior of the estimators or demonstrate the positive and
negative empirical performances without theoretical guarantees [19–26]. Most of prior work exploits
the state-space form or the innovations form representation of the system. Among all closed-loop
estimation methods only a handful consider the predictor form representation for system identification
[27, 28]. For an extensive overview of classical system identification is provided in Qin [7].

Finite-time system identification for partially observable linear dynamical systems: In partially
observable linear systems, most of the prior works focus on open-loop system identification guaran-
tees [3–5, 15, 29–31]. Among all, only Lee and Lamperski [29] considers finite-time closed-loop
system identification. However, they analyze the output estimation error rather than explicitly re-
covering the model parameters as presented in this work. Another body of work aims to extend the
problem of estimation and prediction to online convex optimization where a set of strong guarantees
on cumulative prediction errors are provided [32–37]

Regret in fully observable linear dynamical systems: Efforts in regret analysis of adaptive control
in fully observable linear dynamical systems is initiated by seminal work of Abbasi-Yadkori and
Szepesvári [38]. They present Õ(

√
T ) regret upper bound for linear quadratic regulators (LQR)
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which are fully observable counterparts of LQG. This work sparked the flurry of research with
different directions in the regret analysis in LQRs [39–44, 12, 45]. Recently, Cassel et al. [46] show
that logarithmic regret is achievable if only A or B is unknown, and Simchowitz and Foster [47]
provide Õ(

√
T ) regret lower bound for LQR setting with fully unknown systems. However, due to

the persistent noise in the observations of the hidden states, the mentioned lower bound does not
carry to the partially observable linear dynamical systems.

Regret in adversarial noise setting: In adversarial noise setting, most of the works consider full
information of the underlying system [48–51]. Recent efforts extend to adaptive control in the
adversarial setting for the unknown system model [52, 6].

8 Conclusion

In this paper, we propose the first system identification algorithm that provides consistent and
reliable estimates with finite-time guarantees in both open and closed-loop estimation problems in
partially observable linear dynamical systems. We believe this system identification algorithm fills an
important gap in learning linear dynamical systems and is of independent interest for reinforcement
learning and control communities. We deploy this estimation technique in ADAPTON, a novel adaptive
control algorithm that efficiently learns the model parameters of the underlying dynamical system
and deploys projected online gradient descent to design a controller. We show that in the presence of
convex set of persistently exciting linear controllers and strongly convex loss functions, ADAPTON

achieves a regret upper bound that is polylogarithmic in number of agent-environment interactions.
The unique nature of ADAPTON which combines occasional model estimation with continual online
convex optimization allows the agent to achieve significantly improved regret in the challenging
setting of adaptive control in partially observable linear dynamical systems.

In future work, it would be an interesting direction to further relax the persistence of excitation
condition and provide regret analysis in such settings. Moreover, adapting these techniques to
adaptive control of non-linear systems or safety constrained control would be other important
directions.

9



9 Broader Impact

In this work, we study the two open problems regarding the system identification and the adaptive
control in partially observable linear dynamical systems. In the system identification front, we provide
the first estimation method that provides finite-time guarantees in estimating the model parameters
from the data collected by using a controller that acts based on history of inputs and outputs (closed-
loop control). We believe this result is crucial in both theory and practice fronts. It opens doors
for developing efficient interactive learning algorithms, that adaptively utilize past experiences to
improve performance. We provide our estimation method, using a different representation of the
system. We believe the idea of using different representations would inspire new advancements in
future methods in system identification.

Moreover, this result provides a solution with theoretical guarantees to a practical problem. In
real-world system identification problems, the system is not usually stable and a stabilizing controller
is required for data collection to avoid catastrophic results in data collection, e.g. a robot learning
to accomplish a task using a stabilizing controller. Prior methods cannot provide finite-sample
guarantees in learning dynamics of this setting. However, our novel method provides guarantees in
this setting and we think this will be useful in designing policies in many similar RL tasks.

In adaptive control front, we deploy our novel estimation method in an RL algorithm and show that
how it can significantly improve the performance. We believe the structure of our algorithm can
inspire new developments of RL algorithms in high dimensional and realistic environment when the
whole system is not fully observable by the decision making agent.
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