
Supplementary Material

A Additional Background for Hardness Result

In this section, we provide additional preliminaries required for the proof of Theorem 3. Throughout
the lower bound proof in the next section, we will sometimes view a vector w 2 Rd naturally as a
column matrix w 2 R1⇥d; for example, we may write hw,xi = wx

T . Furthermore, for any positive
integer m, we use [m] to denote {1, . . . ,m}. We also use ei to denote the i-th vector in the standard
basis (i.e., the vector with value one in the i-th coordinate and zero in the remaining coordinates).
We extend this notation to a set S of coordinates and use eS to denote the indicator vector for S, i.e.,
eS =

P
i2S ei.

A.1 Exponential Time Hypotheses

Recall that, in the 3-satisfiability (3SAT) problem, we are given a set of clauses, where each clause
is an OR of at most three literals. The goal is to determine whether there exists an assignment that
satisfies all clauses. The Exponential Time Hypothesis (ETH) [IP01, IPZ01] asserts that there is no
sub-exponential time algorithm for 3SAT. ETH is of course a strengthening of the famous P 6= NP
assumption. In recent years, this assumption has become an essential part of modern complexity
theory, as it allows one to prove tight running time lower bounds for many NP-hard and parameterized
problems. See, e.g., [LMS11] for a survey on the topic.

For our lower bound, we use a strengthening of ETH, called Gap-ETH. Roughly speaking, Gap-ETH
says that even finding an approximate solution to 3SAT is hard. This is stated more precisely below:
Hypothesis 13 ((Randomized) Gap Exponential Time Hypothesis (Gap-ETH) [Din16, MR17]).
There exists a constant ⇣ > 0 such that no randomized 2o(n)-time algorithm can, given a 3SAT
instance on n variables, distinguish between the following two cases correctly with probability 2/3:

• (Completeness) There exists an assignment that satisfies all clauses.

• (Soundness) Every assignment violates at least ⇣ fraction of the clauses.

Although proposed relatively recently, Gap-ETH is intimately related to a well-known open question
whether linear size probabilistic checkable proofs exist for 3SAT; for more detail, please refer to the
discussion in [Din16]. Gap-ETH has been used as a starting point for proving numerous tight running
time lower bounds against approximation algorithms (e.g., [Din16, MR17, BGS17, AS18, JKR19])
and parameterized approximation algorithms (e.g., [CCK+17, DM18, BGKM18, CGK+19]). Indeed,
we will use one such result as a starting point of our hardness reduction.

A.2 Hardness of Label Cover

Recall the definition of Label Cover and its decomposibility from Definitions 8 and 10, respectively.
We will use the following hardness of approximation result for Label Cover:
Theorem 14 ([Man20]). Assuming Gap-ETH, for any function f and any constants � 2 N\{1}, µ 2
(0, 1), there is no f(k) · no(k)-time algorithm that can, given a decomposable Label Cover instance
L = (U, V = V

1

[· · · [Vt, E,⌃U ,⌃V , {⇡e}e2E) whose right-degree is equal to �, distinguish
between

• (Completeness) val(L) = 1,

• (Soundness) wval(L) < µ,

where k := |U | and n := |U | · |⌃U |+ |V | · |⌃V |.

We remark here that the above theorem is not exactly the same as stated in [Man20]. We now briefly
explain how to derive the version above from the one in [Man20]. Specifically, in [Man20], the
decomposability of the instance L is not stated; rather, the instance there has the following property:
V is simply all subsets of size � of U , and, for any vertex {u

1

, . . . , u
�

} 2 V , its neighbors are
u
1

, . . . , u
�

2 U . Now, we can assume w.l.o.g. that k is divisible by � by expanding each vertex

1

u 2 U to � new vertices u1, . . . , u� and replicate each vertex in {u
1

, . . . , u
�

} 2 V to �� new
vertices {u⇠(1)

1

, . . . , u
⇠(�)

�

} for all ⇠ : [�] ! [�]. Once we have that k is divisible by �, Baranyai’s
theorem [Bar75] immediately implies the decomposability of the instance.

A.3 Anti-Concentration

It is well-known that, if we take m i.i.d. Rademacher random variables, their sum divided byp
m converges in distribution to the standard normal distribution (see, e.g., [Ber41, Ess42]). As a

consequence, this immediately implies the following “anti-concentration” style result:
Lemma 15. There exists C 2 (0, 1) and m

0

> 0 such that, for any m � m
0

, we have

Pr
X

1

,...,X
m

[X
1

+ · · ·+Xm � C
p
m] � 0.4 ,

where X
1

, . . . , Xm are i.i.d. Rademacher random variables.

Note that the constant 0.4 above can be replaced by any constant strictly less than 0.5. We only use
0.4 here to avoid introducing additional variables.

B Proof of Tight Running Time Lower Bound for L1 (Theorem 3)

Given the background from Section A, in this section we proceed to prove our computational lower
bound (Theorem 3). As explained in the proof overview, the main ingredient of our hardness result
is a reduction from Label Cover to the problem of L1-�-margin halfspace learning. The formal
properties of our reduction are summarized below.
Theorem 16 (Hardness Reduction). There exist absolute constants �, k

0

2 N \ {1} and µ, � > 0
such that the following holds. There is a polynomial time reduction that takes in a decomposable
Label Cover instance L = (U, V = V

1

[· · · [Vt, E,⌃U ,⌃V , {⇡e}e2E) whose right-degree is
equal to �, and produces real numbers �⇤, ✏⇤ > 0 and an oracle O that can draw a sample from a
distribution D on B|U |·|⌃

U

|+1

1 ⇥ {±1} in polynomial time, such that when |U | � k
0

we have:

• (Completeness) If L is fully satisfiable (i.e., val(L) = 1), then OPTD
�⇤  ✏⇤.

• (Soundness) If wval(L) < µ, then OPTD
(1��)�⇤ > 1.6✏⇤.

• (Margin Bound) �⇤ � ⌦(1/
p
k).

• (Error Bound) ✏⇤ � n�O(

p
k).

Here k := |U | and n := |U | · |⌃U |+ |V | · |⌃V | are defined similarly to Theorem 14.

We remark that, similar to Theorem 3, the constant 1.6 in the soundness above can be changed to any
constant strictly less than two. However, we choose to use an explicit constant here to avoid having a
further variable.

The majority of this section will be spent proving Theorem 16. Specifically, in Section B.1, we
describe the parameter setting for our reduction (including the margin bound and the error bound).
Then, in Sections B.2 and B.3, we prove the completeness and the soundness respectively. Finally, in
Section B.4, we briefly argue how it implies the claimed running time lower bound (Theorem 3).

B.1 Parameter Selection for the Reduction

Recall that we already presented the reduction in Figure 1. The parameters of our reduction are
chosen as follows:

• C and m
0

are as in Lemma 15,
• � = d104/C2e,

• �⇤ = 0.5C
p
�/k,

• k
0

= m
0

�,

2

• � = (0.1/�)4,

• ` = d�
p
ke,

• q = 0.001/n` (where n is as defined is Theorem 14),
• ✏⇤ = 0.6(0.25q),
• µ = 0.01

�(��1)

.

It is easy to see that the oracle can draw a sample in polynomial time. Furthermore, ✏⇤ = 0.001/n` �
n�O(

p
k) and �⇤ � ⌦(1/

p
k), as desired. Hence, we are only left to prove the completeness and the

soundness of the reduction, which we will do next.

B.2 Completeness

Suppose that the Label Cover instance L is satisfiable, i.e., that there exists a labeling �⇤ that covers
all right vertices. Let w⇤ be such that w⇤

? = 1/2 and

w⇤
(u,�) =

⇢
1

2k if � = �⇤(u),

0 otherwise

for all u 2 U,� 2 ⌃U . It is simple to check that the samples generated in Steps 1, 2, 3, 4a and 4b are
all correctly labeled with margin �⇤.

Hence, we are left with computing the probability that the samples generated in Step 4c are violated.
To do this, first notice that, for every j 2 [t], v 2 V j ,�v 2 ⌃V , we have

(w⇤(⇧j)T)
(v,�

v

)

=
X

(u,�

u

)2U⇥⌃

U

v

j

(u)=v,⇡

(u,v)

(�

u

)=�

v

w⇤
(u,�

u

)

(From definition of w⇤) =
1

2k

��{u 2 N(v) | ⇡
(u,v)(�

⇤(u)) = �v}
�� .

Now since every v 2 V j is covered by �⇤, there exists a unique �v such that ⇡
(u,v)(�

⇤(u)) = �v for
all u 2 N(v). As a result, w⇤(⇧j)T has |V j | = k/� coordinates exactly equal to � · 1

2k = �

2k , and
the remaining coordinates are equal to zero. Recall that, for the samples in Step 4c, s is a random
{±1} vector. Thus,

⌦
w

⇤, s⇧j
↵
=
⌦
w

⇤(⇧j)T , s
↵

has the same distribution as �

2k times a sum of
k/� i.i.d. Rademacher random variables. By Lemma 15, we can conclude that Pr

s

[
⌦
w

⇤, s⇧j
↵
�

0.5C
p
�/k] � 0.4. Since we set �⇤ = 0.5C

p
�/k, this implies that w⇤ correctly classifies (at

least) 0.4 fraction of the samples from Step 4c. Hence, we have

errD� (w
⇤)  0.6 · (0.25q) = ✏⇤ ,

as desired.

B.3 Soundness

We will prove the soundness contrapositively. For this purpose, suppose that there is a halfspace
w 2 Bd

1

such that errD
(1��)�(w)  1.6✏⇤ = 0.96(0.25q). We will show that there exists an

assignments �0 with wval(�0) � µ.

B.3.1 Some Simple Bounds

We start by proving a few observations/lemmas that will be useful in the subsequent steps.

First, observe that every distinct sample from Steps 1, 2, 3, 4a and 4b has probability mass (in D) at
least 0.125(1�q)

n`

> q > 1.6✏⇤. Since we assume that errD
(1��)�(w)  1.6✏⇤, it must be the case that

all these examples are correctly classified by w with margin at least (1� �)�⇤:
Observation 17. w correctly classifies all samples in Steps 1, 2, 3, 4a and 4b with margin (1� �)�⇤.

Throughout the remainder of this section, we will use the following notations:

3

Definition 18. For every u 2 U , let Mu denote
P

�2⌃

u

|w
(u,�)|. Then, let Usmall denote {u 2 U |

Mu  1/k} and Ularge denote U \ Usmall.

The next observation, which follows almost immediately from Observation 17, is that the value of the
“constant coordinate” w? is roughly 1/2 (as we had in the completeness case) and that the sum of the
absolute values of the negative coordinates is quite small.
Observation 19. The following holds:

1. (Constant Coordinate Value) w? 2 [0.5(1� �), 0.5(1 + �)].

2. (Negative Coordinate Value)
P

j2(U⇥⌃

U

)[{?}
w

j

<0

|wj |  �.

Proof. 1. Since w correctly classifies the sample from Step 1 with margin (1� �)�⇤, we have
2�⇤w? > (1� �)�⇤. This implies that w? � 0.5(1� �).

Let a = hw, eU⇥⌃

U

i. Similarly, from w correctly classifies the sample from Step 2 with
margin (1� �)�⇤, we have a � 0.5(1� �). Furthermore, observe that

a+ w?  kwk
1

 1. (3)
As a result, we have w?  0.5(1 + �) as desired.

2. Since w? > 0, we may rearrange the desired term as
X

j2(U⇥⌃

U

)[{?}
w

j

<0

|wj | =
1

2
(kwk

1

� a� w?)

 1

2
(1� 0.5(1� �)� 0.5(1� �))

< �,

where the first inequality follows from a,w⇤ � 0.5(1� �) that we had shown above.

Another bound we will use is that Ularge is quite small, and the sum of absolute values of the
coordinates correspond to Ularge is also quite small.
Observation 20 (Bounds on Ularge). The following holds:

1. (Size Bound) |Ularge|  2�k.

2. (Mass Bound)
P

u2Ularge
Mu  2�.

Proof. To prove the desired bounds, first notice that, since w correctly classifies the sample in Step 3
with T = Usmall with margin (1� �)�⇤, we must have

hw, eUsmall⇥⌃

U

i �
✓
|Usmall|

k
� 2�⇤

◆
w? + (1� �)�⇤.

Now, observe that the term on the left hand side is at most
P

u2Usmall
Mu which, from kwk

1

 1, is
in turn at most 1� w? �

P
u2Ularge

Mu. Combining these, we get

1� w? �
X

u2Ularge

Mu �
✓
|Usmall|

k
� 2�⇤

◆
w? + (1� �)�⇤ =

✓
1� |Ularge|

k
� 2�⇤

◆
w? + (1� �)�⇤

Recall from Observation 19 that w? � 0.5(1� �). Plugging this into the above, we have
X

u2Ularge

Mu  1�
✓
2� |Ularge|

k
� 2�⇤

◆
· 0.5(1� �)� (1� �)�⇤

= 1�
✓
2� |Ularge|

k

◆
· 0.5(1� �)

 � +
0.5|Ularge|

k
. (4)

4

1. Subtracting 0.5|Ularge|
k from both sides, we have

X

u2Ularge

✓
Mu � 0.5

k

◆
 �.

By definition, Mu > 1/k for all u 2 Ularge. As a result, we have |Ularge|  2�k, as desired.

2. Plugging the bound on |Ularge| back into (4), we get the claimed bound on
P

u2Ularge
Mu.

B.3.2 Identifying a “Nice” Halfspace

We will now convert w into a “nicer” halfspace, i.e., one without negative and large coordinates. It
will be much more convenient to deal with such a nice halfspace when we “decode” back a labeling
later in this section.

The “nice” halfspace is quite simple: we just zero out all coordinates w
(u,�), where u 2 Ularge. More

formally, let ŵ 2 R|U |·|⌃
U

| be such that

ŵ
(u,�) =

⇢
w

(u,�) u 2 Usmall,

0 u 2 Ularge,

for all u 2 U and � 2 ⌃U .

The main lemma needed in our analysis is that, for each j 2 [t], ŵ(⇧j)T preserves most of the L
2

norm compared to the original w(⇧j)T .
Lemma 21 (Nice Halfspace Preserves Most of L

2

Norm). For every j 2 [t], we have

kŵ(⇧j)T k2
2

� kw(⇧j)T k2
2

2
�

4

p
�

k
. (5)

Proof. For convenience, let v = w � ŵ and b = v(⇧̂j)T . The majority of this proof is spent on
bounding kbk2

2

. To do this, let us define several new notations:

• Let C>0

= |{(u,�) 2 U⇥⌃V | b
(u,�) > 0}| and C<0

= |{(u,�) 2 U⇥⌃V | b
(u,�) < 0}|.

• Let b�0 2 RU⇥⌃

V be defined by

b�0

(u,�) = max{0, b
(u,�)}

for all (u,�) 2 U ⇥ ⌃V . Furthermore, let b<0 = b� b

�0.

Observe that k⇧̂jk
1

 1, because each column has exactly a single entry equal to one and the
remaining entries equal to zero. As a result, we have

kbk
1

= kv(⇧̂j)T k
1

 kvk
1

=
X

u2U
large

Mu  2� , (6)

where the last inequality follows from Observation 20.

Since b = b

�0 + b

<0, we may bound kb�0k
2

, kb<0k
2

separately, starting with the former.

Bounding kb�0k
2

. Let us sort the coordinates of b

�0 from largest to smallest entries as
b�0

(u1,�1

)

, . . . , b�0

(u|U|⇥|⌃
V

|,�|U|⇥|⌃
V

|
)

(tie broken arbitrarily). For every j  min{C>0

, `}, consider the
sample from Step 4a when S = {(u1,�1), . . . , (uj ,�j)}. Since w correctly classifies this sample
with margin (1� �)�⇤, we have

(1� �)�⇤ 
⌧
w,

✓
j

k
+ 2�⇤

◆
e? � eS⇧̂

j

�

=

✓
j

k
+ 2�⇤

◆
w? �w(⇧̂j)T (eS)

T

5

=

✓
j

k
+ 2�⇤

◆
w? �

0

@
X

i2[j]

(w(⇧̂j)T)
(ui,�i

)

1

A

(Observation 19) 
✓
j

k
+ 2�⇤

◆
· 0.5(1 + �)�

0

@
X

i2[j]

(w(⇧̂j)T)
(ui,�i

)

1

A

=

✓
j

k
+ 2�⇤

◆
· 0.5(1 + �)�

0

@
X

i2[j]

⇣
b�0

(ui,�i

)

+ (ŵ(⇧̂j)T)
(ui,�i

)

⌘
1

A

=

✓
j

k
+ 2�⇤

◆
· 0.5(1 + �)�

0

@
X

i2[j]

b�0

(ui,�i

)

1

A ,

where the last equality follows from the fact that, for every i  C>0

, we must have ui 2 Ularge as
otherwise b�0

(ui,�i

)

would have been equal to zero.

Rearranging the above inequality, we have
0

@
X

i2[j]

b�0

(ui,�i

)

1

A  0.5(1 + �)j

k
+ 2��⇤  j

k
+ 2��⇤.

Recall from our assumption that b�0

(u1,�1

)

� · · · � b�0

(uj ,�j

)

. Plugging this into the above, we get

b�0

(uj ,�j

)

 1

k
+

2��⇤

j
. (7)

Notice that while we have only derived the above inequality for j  min{C>0

, `}, it also extends to
all j  ` because b�0

(uj ,�j

)

= 0 for all j > C>0

.

We can use this to bound kb�0k2
2

as follows.

kb�0k2
2

=

|U |·|⌃
V

|X

j=1

⇣
b�0

(uj ,�j

)

⌘
2

=
X

j<`

⇣
b�0

(uj ,�j

)

⌘
2

+
X

j�`

⇣
b�0

(uj ,�j

)

⌘
2


X

j<`

⇣
b�0

(uj ,�j

)

⌘
2

+ b�0

(u`,�`

)

· kb�0k
1

(7)

X

j<`

✓
1

k
+

2��⇤

j

◆
2

+

✓
1

k
+

2��⇤

`

◆
· kbk

1

(6)

X

j<`

2

✓
1

k2
+

1

j2
· 4�2(�⇤)2

◆
+

✓
1

k
+

2��⇤

`

◆
· 2�

 2(`� 1)

k2
+

⇡2

6
· 8�2(�⇤)2 +

2�

k
+

4�2�⇤

`

(From our choice of ` and ��⇤  0.1
p
�/k)  2�

k1.5
+

�

k
+

2�

k
+

p
�

k

 2
p
�

k
.

Bounding kb<0k
2

. This is very similar (and in fact slightly simpler) to how we bound kb�0k
2

above; we repeat the argument here for completeness. Let us first sort the coordinates of b<0 from
smallest to largest entries as b<0

(u�1,��1

)

, . . . , b<0

(u�|U|⇥|⌃
V

|,��|U|⇥|⌃
V

|
)

(tie broken arbitrarily). For

6

every j  min{C<0

, `}, consider the sample from Step 4b when S = {(u�1,��1), . . . , (u�j ,��j)}.
Since w correctly classifies this sample with margin (1� �)�⇤, we have

(1� �)�⇤ 
D
w, 2�⇤

e? + eS⇧̂
j
E

= 2�⇤ · w? + b(eS)
T

(Observation 19)  2�⇤ · 0.5(1 + �)�

0

@
X

i2[j]

|b<0

(u�i,��i

)

|

1

A .

Rearranging the above inequality, we have
0

@
X

i2[j]

|b<0

(u�i,��i

)

|

1

A  2��⇤.

Recall from our assumption that |b<0

(u�1,��1

)

| � · · · � |b<0

(u�j ,��j

)

|. Plugging this into the above, we
get

|b<0

(u�j ,��j

)

|  2��⇤

j
. (8)

Similar to the previous case, although we have derived the above inequality for j  min{C<0

, `}, it
also holds for all j  ` simply because b<0

(u�j ,��j

)

= 0 for all j > C<0

.

We can use this to bound kb<0k2
2

as follows.

kb<0k2
2

=

|U |·|⌃
V

|X

j=1

⇣
b<0

(u�j ,��j

)

⌘
2

=
X

j<`

⇣
b<0

(u�j ,��j

)

⌘
2

+
X

j�`

⇣
b<0

(u�j ,��j

)

⌘
2


X

j<`

⇣
b<0

(u�j ,��j

)

⌘
2

+ |b<0

(u�`,��`

)

| · kb<0k
1

(8)

X

j<`

✓
2��⇤

j

◆
2

+

✓
2��⇤

`

◆
· kbk

1

(6)
 ⇡2

6
· 4�2(�⇤)2 +

✓
2��⇤

`

◆
· 2�

(From our choice of ` and ��⇤  0.1
p
�/k)  �

k
+

p
�

k

 2
p
�

k
.

Using our bounds on kb�0k2
2

, kb<0k2
2

, we can easily bound kbk2
2

by

kbk2
2

= kb�0k2
2

+ kb<0k2
2

 4
p
�

k
. (9)

Next observe that k⇧̃jk
1

= 1, because each column has exactly a single entry equal to one and the
remaining entries equal to zero. Furthermore, k⇧̃jk1 = � because each row has exactly � entries

equal to one7. As a result, by Holder’s inequality, we have k⇧̃jk
2


q
k⇧̃jk

1

k⇧̃jk1 =
p
�. From

this and from (9), we arrive at

4
p
� ·�
k

� kb(⇧̃j)T k2
2

= kv(⇧j)T k2
2

, (10)

7For every row (v,�
v

), these 1-entries are the entries (u,�
v

) for all u 2 N(v).

7

where the latter follows from our definition of b.

Thus, we have

kw(⇧j)T k2
2

= kŵ(⇧j)T + v(⇧j)T k2
2

 2kŵ(⇧j)T k2
2

+ 2kv(⇧j)T k2
2

(10)
 2kŵ(⇧j)T k2

2

+
8
p
��

k
.

Finally, recall from our choice of parameter that
p
��  0.1 4

p
�. This, together with the above

inequality, implies the desired bound.

B.3.3 Decoding Label Cover Assignment

We now arrive at the last part of the proof, where we show that there exists an assignment that weakly
covers at least µ = 0.01

�(��1)

fraction of vertices in V , which completes our soundness proof.

Lemma 22. There exists an assignment �0 of L such that wval(�0) � µ.

Proof. We define a (random) assignment � for L as follows:

• For each u 2 Usmall, let �(u) be a random element from ⌃U where �u 2 ⌃U is selected
with probability |ŵ

(u,�

u

)

|P
�2⌃

U

|ŵ
(u,�)

| .

• For each u 2 Ularge, let �(u) be an arbitrary element in ⌃U .

We will now argue that E�[wval(�)] � µ. Since we assume that OPTD
(1��)�⇤(w)  0.96(0.25q),

we have

0.96(0.25q) � OPTD
(1��)�⇤(w)

� (0.25q) Pr
j2[t],s2{±1}V ⇥⌃

V

⇥⌦
w, s⇧j

↵
< (1� �)�⇤⇤ ,

where the second inequality is due to the error from the samples from Step 4c.

Let J ✓ [t] contain all j 2 [t] such that Pr
s2{±1}V ⇥⌃

V

⇥⌦
w, s⇧j

↵
< (1� �)�⇤⇤ < 0.99. The above

inequality implies that

Pr
j2[t]

[j 2 J] > 0.01. (11)

Now, let us fix j 2 J . By definition of J , we have

0.01  Pr
s2{±1}V ⇥⌃

V

⇥⌦
w, s⇧j

↵
� (1� �)�⇤⇤

 Pr
s2{±1}V ⇥⌃

V

⇥
|
⌦
w, s⇧j

↵
| � (1� �)�⇤⇤

= Pr
s2{±1}V ⇥⌃

V

⇥
|
⌦
w(⇧j)T , s

↵
|2 � ((1� �)�⇤)2

⇤

(Markov’s inequality) 
E
s2{±1}V ⇥⌃

V

[|
⌦
w(⇧j)T , s

↵
|2]

((1� �)�⇤)2

=
kw(⇧j)T k2

2

((1� �)�⇤)2
.

As a result, we must have kw(⇧j)T k2
2

� 0.01((1� �)�⇤)2. We now apply Lemma 21, which yields

kŵ(⇧j)T k2
2

� 0.005((1� �)�⇤)2 �
4

p
�

k
� 2

k
. (12)

Using the definition of ⇧j , we may now rewrite kŵ(⇧j)T k2
2

as follows.

kŵ(⇧j)T k2
2

8

=
X

(v,�
v

)2V⇥⌃

V

((ŵ(⇧j)T)
(v,�

v

)

)2

=
X

(v,�
v

)2V
j

⇥⌃

V

((ŵ(⇧j)T)
(v,�

v

)

)2

=
X

(v,�
v

)2V
j

⇥⌃

V

0

B@
X

u2N(v),�
u

2⇡�1

(u,v)

(�
v

)

ŵ
(u,�

u

)

1

CA

2

=
X

(v,�
v

)2V
j

⇥⌃

V

X

u2N(v)

0

B@
X

�
u

2⇡�1

(u,v)

(�
v

)

ŵ
(u,�

u

)

1

CA

2

+
X

(v,�
v

)2V
j

⇥⌃

V

X

u,u

02N(v)

u 6=u

0

0

B@
X

�
u

2⇡�1

(u,v)

(�
v

)

ŵ
(u,�

u

)

1

CA

0

B@
X

�
u

02⇡�1

(u

0
,v)

(�
v

)

ŵ
(u0,�

u

0)

1

CA

=
X

(v,�
v

)2V
j

⇥⌃

V

X

u2N(v)\Usmall

0

B@
X

�
u

2⇡�1

(u,v)

(�
v

)

ŵ
(u,�

u

)

1

CA

2

+
X

(v,�
v

)2V
j

⇥⌃

V

X

u,u

02N(v)\Usmall
u 6=u

0

0

B@
X

�
u

2⇡�1

(u,v)

(�
v

)

ŵ
(u,�

u

)

1

CA

0

B@
X

�
u

02⇡�1

(u

0
,v)

(�
v

)

ŵ
(u0,�

u

0)

1

CA , (13)

where the last equality follows from the fact that ŵ
(u,�

u

)

= 0 for all u /2 Usmall.

We will now bound the two terms in (13) separately. For the first term, we have

X

(v,�
v

)2V
j

⇥⌃

V

X

u2N(v)\Usmall

0

B@
X

�
u

2⇡�1

(u,v)

(�
v

)

ŵ
(u,�

u

)

1

CA

2


X

(v,�
v

)2V
j

⇥⌃

V

X

u2N(v)\Usmall

0

B@
X

�
u

2⇡�1

(u,v)

(�
v

)

|ŵ
(u,�

u

)

|

1

CA

2

=
X

u2Usmall

0

B@
X

�
v

2⌃

V

0

B@
X

�
u

2⇡�1

(u,v

j

(u))

(�
v

)

|ŵ
(u,�

u

)

|

1

CA

2

1

CA


X

u2Usmall

X

�
u

2⌃

U

|ŵ
(u,�

u

)

|
!

2

=
X

u2Usmall

M2

u

 1

k
, (14)

where the last inequality follows from Mu  1/k for all u 2 Usmall (by definition) and fromP
u2Usmall

Mu  kwk
1

 1.

We now move on to bound the second term of (13). To do so, let us observe that, for every
u 2 Usmall, v 2 N(u) and �v 2 ⌃V , we have

Pr
�
[⇡

(u,v)(�(u)) = �v] =
X

�
u

2⇡�1

(u,v)

(�
v

)

|ŵ
(u,�

u

)

|
Mu

� k
X

�
u

2⇡�1

(u,v)

(�
v

)

|ŵ
(u,�

u

)

| .

9

As a result, we have

X

(v,�
v

)2V
j

⇥⌃

V

X

u,u

02N(v)\Usmall
u6=u

0

0

B@
X

�
u

2⇡�1

(u,v)

(�
v

)

ŵ
(u,�

u

)

1

CA

0

B@
X

�
u

02⇡�1

(u

0
,v)

(�
v

)

ŵ
(u0,�

u

0)

1

CA


X

(v,�
v

)2V
j

⇥⌃

V

X

u,u

02N(v)\Usmall
u 6=u

0

Pr�[⇡
(u,v)(�(u)) = �v]

k
·
Pr�[⇡

(u0,v)(�(u
0)) = �v]

k

=
1

k2

X

(v,�
v

)2V
j

⇥⌃

V

X

u,u

02N(v)\Usmall
u6=u

0

Pr
�
[⇡

(u,v)(�(u)) = ⇡
(u0,v)(�(u

0)) = �v]

=
1

k2

X

v2V
j

X

u,u

02N(v)\Usmall
u6=u

0

X

�
v

2⌃

V

Pr
�
[⇡

(u,v)(�(u)) = ⇡
(u0,v)(�(u

0)) = �v]

=
1

k2

X

v2V
j

X

u,u

02N(v)\Usmall
u6=u

0

Pr
�
[⇡

(u,v)(�(u)) = ⇡
(u0,v)(�(u

0))]

 1

k2

X

v2V
j

X

u,u

02N(v)\Usmall
u6=u

0

Pr
�
[� weakly covers v]

 �(�� 1)

k2

X

v2V
j

Pr
�
[� weakly covers v] , (15)

where the last inequality follows from the fact that each v 2 V has degree �.

Combining (12), (13), (14) and (15), we have
X

v2V
j

Pr
�
[� weakly covers v] � k

�(�� 1)
.

By summing over all j 2 J and using the bound from (11), we have

0.01t · k

�(�� 1)

X

j2J

X

v2V
j

Pr
�
[� weakly covers v]


X

v2V

Pr
�
[� weakly covers v]

= |V | · E�[wval(�)]

 kt · E�[wval(�)] .

Equivalently, this means that E�[wval(�)] � µ, which implies that there exists an assignment �0 of
L such that wval(�0) � µ, as desired.

B.4 Putting Things Together

Now that we have proved Theorem 16, we briefly argue that it implies the desired running time lower
bound (Theorem 3).

Proof of Theorem 3. Let �, k
0

, µ, � be as in Theorem 16. Suppose for the sake of contradiction that
there exists a proper �-robust 1.5-agnostic learner for L1-�-margin halfspace A that runs in time
f(1/�) · do(1/�2

) poly(1/✏). We will use this to construct an algorithm B for Label Cover.

Given a Label Cover instance L as an input, the algorithm B works as follows:

• Run the reduction from Theorem 16 on input L to get ✏⇤, �⇤,O.

• Run A on O with parameters � = �⇤, ✏ = 0.05✏⇤, ⌧ = 0.9 to get a halfspace w.

10

• Draw 106/✏2 additional samples from O. Let D̃ be the empirical distribution.

• If err ˜D
(1��)�(w)  1.58✏⇤, return YES. Otherwise, return NO.

The first step of B runs in poly(n) time. The second step runs in time f(1/�)do(1/�
2

) poly(1/✏) =

f(O(
p
k)) · no(k) · poly(nO(

p
k)) = f(O(

p
k)) · no(k). The last two steps run in time poly(n, 1/✏);

recall from Theorem 16 that ✏⇤ = nO(

p
k), meaning that these two steps run in time nO(

p
k). Hence,

the entire algorithm B runs in g(k) · no(k) time for some function g.

We will next argue the following correctness guarantee of the algorithm: If val(L) = 1, then the
algorithm answers YES with probability 0.8 and, if wval(L) < µ, then the algorithm returns NO with
probability 0.8. Before we do so, observe that this, together with Theorem 14, means that Gap-ETH
is violated, which would complete our proof.

Note that we may assume that k � k
0

, as otherwise the Label Cover instance can already be solved
in polynomial time. Now consider the case val(L) = 1. Theorem 16 ensures that OPTD

�⇤  ✏⇤.
As a result, A returns w that satisfies the following with probability 0.9: errD

(1��)�⇤(w)  1.5✏⇤ +

0.05✏⇤ = 1.55✏⇤. Furthermore, it is simple to check that Pr[| errD
(1��)�⇤(w) � err

˜D
(1��)�⇤(w)| >

0.02✏⇤]  0.1. Hence, with probability 0.8, we must have err
˜D
(1��)�⇤  1.57✏⇤ and the algorithm

returns YES.

On the other hand, suppose that wval(L) < µ. The soundness of Theorem 16 ensures that
errD

(1��)�⇤(w) > 1.6✏⇤. Similar to before, since Pr[| errD
(1��)�⇤(w)� err

˜D
(1��)�⇤(w)| > 0.02✏⇤] 

0.1, we have err
˜D
(1��)�⇤(w) > 1.58✏⇤ with probability at least 0.9. Thus, in this case, the algorithm

returns NO with probability 0.9 as desired.

C Tight Running Time Lower Bound for Lp when 2  p < 1

In this section, we briefly sketch a nearly tight running time lower bound when p � 2 is a (finite)
constant, which follows almost directly from our previous work [DKM19]. In fact, [DKM19] already
provided such a hardness in the case of p = 2, which we summarize below.
Theorem 23 ([DKM19]). For any constant ↵ > 1, assuming Gap-ETH, there is no proper 1-robust
↵-agnostic learner for L

2

-�-margin halfspace that runs in time poly(d/✏) · 2(1/�)2�o(1)

.

Moreover, this holds even when �, ✏ = 1/dO(1).

Note that the hardness above is quite strong in the two aspects. First, it holds even against 1-robust
learner, i.e. when the learner only requires to output a halfspace with small classification error (with
margin 0). Secondly, the above hardness holds for any constant factor ↵ > 1.

We can extend this hardness to any constant p � 2, which matches with our algorithm from Theorem 2
upto a O(�o(1)) factor in the exponent.
Theorem 24. For any finite constant p � 2 and any constant ↵ > 1, assuming Gap-ETH, there
is no proper 1-robust ↵-agnostic learner for Lp-�-margin halfspace that runs in time poly(d/✏) ·
2(1/�)

2�o(1)

.

In the proof sketch below, since we are dealing with multiple Lp norms at once, we will write errDp,�
to emphasize that this refers to errD� with respect to the Lp norm.

Proof Sketch. Suppose for the sake of contradiction that, for some finite constant p � 2 and constants
↵ > 1, ⇣ 0 > 0, there is a proper 1-robust ↵-agnostic learner A for Lp-�0-margin halfspace that runs

in time poly(d/✏0) · 2O
⇣
(1/�0

)

2�⇣

0⌘

. We will use this to devise a proper 1-robust ↵-agnostic learner B
for L

2

-�-margin halfspace that runs in time poly(d/✏) · 2O((1/�)
2�⇣) for some constant ⇣ > 0 when

�, ✏ = 1/dO(1). Together with Theorem 23, we arrive at the desired lower bound.

On input samples (x
1

, y
1

), . . . , (xm, ym), B works as follows:

11

• Sample a rotation matrix ⇧ 2 Rd⇥d uniformly at random.

• Run A on samples
⇣

⇧x

1

k⇧x

1

k
p

, y
1

⌘
, . . . ,

⇣
⇧x

m

k⇧x

m

k
p

, ym

⌘
to get a halfspace w

0 where �0 =
�

C·log2

(↵/✏)
and ✏0 = ✏/2.

• Output ⇧

�1

w

0

k⇧�1

w

0k
q

.

The claimed running time of B follows immediately from that of A. We will now argue the correctness
of B. Let D0 denote the distribution of

⇣
⇧x

k⇧xk
p

, y
⌘

where (x, y) ⇠ D. Our main technical claim is
that when the constant C (for �0) is sufficiently large, the following holds with probability 0.9:

OPTD0

p,�0  OPTD
2,� +

✏

2↵
. (16)

Before we sketch the proof of (16), let us briefly argue the correctness assuming (16). Observe that
errD

2,0

⇣
⇧

�1

w

0

k⇧�1

w

0k
q

⌘
= errD

0

p,0(w
0). As a result, we have

errD
2,0

✓
⇧�1

w

0

k⇧�1

w

0kq

◆
= errD

0

p,0(w
0)  ↵ ·OPTD0

p,�0 +✏0
(16)
 ↵ ·OPTD

2,� +✏,

where the first inequality follows from the guarantee of A. Thus, B is the desired ↵-agnostic learner
for L

2

-�-margin halfspace.

Finally, we turn our attention to proving (16). Let w⇤ be the optimal halfspace for D, i.e. that
errD

2,�(w
⇤) = OPTD

2,� . It is simple to see that, when C
1

is a sufficiently large constant, we have
k⇧w

⇤kq  C
1

· d1/q�1/2 · log(↵/✏) with probability 1 � 0.01✏/↵. Similarly, for any (x, y) 2
supp(D), when C

2

is a sufficiently large constant we have k⇧xkp  C
2

· d1/p�1/2 · log(↵/✏) with
probability 1� 0.01✏/↵. Let C = 2C

1

C
2

. When both of these occur and y hw⇤,xi � �, we have
y
D

⇧w

⇤

k⇧w

⇤k
q

, ⇧x

k⇧xk
p

E
> �0. In other words, for each sample (x, y) 2 D correctly classified by w

⇤

with margin � w.r.t. L
2

norm,
⇣

⇧x

k⇧xk
p

, y
⌘

is correctly classified by ⇧w

⇤

k⇧w

⇤k
q

with margin �0 w.r.t. Lp

norm with probability 1� 0.02✏/↵. Markov’s inequality then implies that, with probability 0.9, we
have

OPTD0

p,�0  errD
0

p,�0

✓
⇧w

⇤

k⇧w

⇤kq

◆
 errD

2,�(w
⇤) +

✏

2↵
= OPTD

2,� +
✏

2↵
,

which concludes our proof sketch.

D Proof of Fact 1

Proof of Fact 1. For convenience, let w0 = w

kwk
q

. Consider any (x, y) 2 Rd ⇥ {±1}. We claim
that sgn(hw0,xi � �) 6= y iff 9z 2 Up,�(x), hw

(z) 6= y. Below we only show this statement when
y = �1. The case y = 1 follows analogously.

Suppose y = �1. Let us first prove the forward direction: if sgn(hw0,xi � �) 6= y = �1, we have
hw0,xi � �. Let t 2 Rd be such that ti = � · sgn(w0

i) · |w0
i|q�1. It is simple to verify that ktkp = �

and that hw0, ti = �. Consider z = x� t 2 Up,�(x). We have

hw0, zi = hw0,xi � hw0, ti � 0.

Thus, we have h
w

(z) = h
w

0(z) = 1 6= y as desired.

We will next prove the converse by contrapositive. Suppose that sgn(hw0,xi � �) = y = �1. Then,
we have hw0,xi < �� and, for any z 2 Up,�(x), we can derive

hw0, zi  hw0,xi+ | hw0, z� xi |
(Holder’s Inequality) < �� + kw0kqkz� xkp

< 0 ,

12

where the last inequality follows from kw0kq = 1 and kz � xkp  �. Hence, h
w

(z) = h
w

0(z) =
�1 = y as desired.

To summarize, so far we have shown that sgn(hw0,xi � �) 6= y iff 9z 2 Up,�(x), hw

(z) 6= y. As a
result, we have

RU
p,�

(h
w

,D) = Pr
(x,y)⇠D

[9z 2 Up,�(x), hw

(z) 6= y]

= Pr
(x,y)⇠D

[sgn(hw0,xi � �) 6= y]

= errD� (w
0) .

E On the Necessity of Bicriterion Approximation

In this section, we briefly argue that, when there is no margin gap (i.e., for ⌫ = 0), the learning problem
we consider is computationally hard. In particular, we show the following hardness that, when ⌫ = 0
and8 � = 0.5, there is no poly(d/✏)-time learning algorithm for any constant approximation ratio
↵ > 1. Note that this result holds under the assumption NP * RP . If we further assume ETH, we
can get a stronger lower bound of 2(d/✏)

c

for some constant c > 0. This is in contrast to our main
algorithmic result (Theorem 2) that, when ⌫, � > 0 and ↵ > 1 are constants, runs in polynomial (in
d/✏) time.
Proposition 25. For any constant ↵ > 1, assuming NP * RP , there is no proper 0-robust
↵-agnostic learner for L1-0.5-margin halfspaces in time poly(d/✏).

Similar to before (see, e.g., Section 3), the above result immediately follows from Lemma 26 below.
We will henceforth focus on the proof of this lemma.
Lemma 26. For any constant ↵ > 1, assuming P 6= NP , no poly(d/✏)-time algorithm can, given
✏ > 0 and a multiset S ✓ Bd

1 ⇥ {±1} of labeled samples, distinguish between:

• (Completeness) OPTS
0.5  ✏.

• (Soundness) OPTS
0.5 > ↵ · ✏.

To prove Lemma 26, we will use the following hardness for (no-margin) proper agnostic learning
of halfspaces. Observe here that in the Completeness case, there is an extra promise that every
coordinate of w is non-negative; this follows from the construction of [ABSS97].

Theorem 27 ([ABSS97]). For any constant ↵ > 1, assuming P 6= NP , no poly(d̃/✏̃)-time algo-
rithm can, given ✏̃ > 0 and a multiset S̃ ✓ B ˜d

1 ⇥ {±1} of labeled samples, distinguish between:

• (Completeness) There exists w̃ 2 B ˜d
1

where w̃i � 0 for all i 2 [d] such that err ˜S
0

(w̃)  ✏̃.

• (Soundness) OPT
˜S
0

> ↵ · ✏̃.

Proof of Lemma 26. Given a multiset S̃ ✓ B ˜d
1 ⇥ {±1} from Theorem 27. Let m = |S̃|. We create

a new multiset of samples S ✓ Bd
1 ⇥ {±1} as follows:

• Let d = d̃+ 1.

• For every (x, y) 2 S̃, add9 (x � y, y) to S.

• Add d↵m+ 1e copies of ((1, . . . , 1, 0),+1) to S.

Finally, let ✏ = ✏̃·m
m+d↵m+1e . It is obvious that the reduction runs in polynomial time. We will now

argue its completeness and soundness.

8We remark that 0.5 is unimportant here and the reduction works for any �  0.5.
9Note that we use x � y to denote the vector resulting from concatenating x and y.

13

Completeness. Suppose that there is w̃ 2 B ˜d
1

whose coordinates are non-negative such that
err

˜S
0

(w̃)  ✏̃. Consider w = (0.5w̃/kw̃k
1

) � 0.5. Since each coordinate of w̃ is non-negative, the
new halfspace w correctly classifies the last sample with margin 0.5. Furthermore, it is also simple to
verify that (x, y) 2 S̃ is correctly classified by w̃ (with margin 0) iff (x � y, y) is correctly classified
by w with margin 0.5. As a result, we have errS

0.5(w) = m
m+d↵m+1e · err

˜S
0

(w̃)  ✏, as desired.

Soundness. Suppose that OPT
˜S
0

> ↵ · ✏̃. Consider any w 2 B ˜d
1

. Let us consider two cases, based
on the value of wd+1

.

• wd+1

> 1/2. In this case, hw, (1, . . . , 1, 0)i < 0.5. In other words, w does not correctly
classify the last sample with margin 0.5. As a result, we immediately have errS

0.5(w) �
d↵m+1e

m+d↵m+1e > ↵ · ✏ as desired.

• wd+1

 1/2. In this case, notice that sgn(hw,x � yi � 0.5y) = y implies
that sgn(h(w

1

, . . . , wd),xi) = y. Thus, we have errS
0.5(w) � m

m+d↵m+1e ·
err

˜S
0

((w
1

, . . . , wd)) � m
m+d↵m+1e · (↵ · ✏̃) = ↵ · ✏.

Hence, in both cases, we have OPTS
0.5 > ↵ · ✏, which concludes our proof.

F Additional Open Questions

In addition to the broader open questions posed in Section 4, we list several concrete open questions
below, regarding our lower bound (Theorem 3).

• As alluded to in Section 4, our proof can only rule out a margin gap (�, (1 � ⌫)�) when
⌫ > 0 is a small constant. An intriguing direction here is to extend our hardness to include a
larger ⌫, or conversely give a better algorithm for larger ⌫. We remark that even the case of
margin gap (�, 0) (i.e., ⌫ = 1) remains open for the L1-margin setting. In this case, the
learner only seeks a small misclassification error (without any margin). Note that [DKM19]
gave hardness results that hold even when ⌫ = 1 in the setting of L

2

-margin.
• Our technical approach can rule out approximation ratio ↵ of at most 2. The reason is that,

the labeled samples (Step 4c in our reduction) that test the Label Cover constraints are still
violated with probability at least 0.5 by the intended solution. As a result, any “reasonable”
solution will achieve an approximation ratio of 2. In contrast, [DKM19] can rule out any
constant ↵. Can our hardness be strengthened to also handle larger values of ↵?

• Finally, it may be interesting to attempt to prove our hardness result under a weaker as-
sumption, specifically ETH. Note that this is open for both our L1-margin setting and the
L
2

-margin setting in [DKM19]10. This question is closely related to the general research
direction of basing parameterized inapproximability results under ETH instead of Gap-
ETH. There are some parameterized hardness of approximation results known under ETH
(e.g., [Mar13, CL19, KLM19, Lin19, BBE+19]), but a large number of questions remain
open, including basing Theorem 14 on ETH instead of Gap-ETH, which would have given
our hardness of L1-margin learning under ETH. However, it might be possible to give a
different proof for hardness of L1-margin learning assuming ETH directly, without going
through such a result as Theorem 14.

10In [DKM19], the hardness result is stated under ETH but it is not asymptotically tight (as there is a �

o(1)

factor in the exponent); their reduction only gives asymptotically tight hardness under Gap-ETH.

14

	Introduction
	Our Contributions
	Related Work

	Upper Bound: From Online to Adversarially Robust Agnostic Learning
	Tight Running Time Lower Bound: Proof Overview
	Conclusions and Open Problems
	Additional Background for Hardness Result
	Exponential Time Hypotheses
	Hardness of Label Cover
	Anti-Concentration

	Proof of Tight Running Time Lower Bound for L (Theorem 3)
	Parameter Selection for the Reduction
	Completeness
	Soundness
	Some Simple Bounds
	Identifying a ``Nice'' Halfspace
	Decoding Label Cover Assignment

	Putting Things Together

	Tight Running Time Lower Bound for Lp when 2 p <
	Proof of Fact 1
	On the Necessity of Bicriterion Approximation
	Additional Open Questions

