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Abstract

We study the computational complexity of adversarially robust proper learning of
halfspaces in the distribution-independent agnostic PAC model, with a focus on Lp

perturbations. We give a computationally efficient learning algorithm and a nearly
matching computational hardness result for this problem. An interesting implication
of our findings is that the L1 perturbations case is provably computationally harder
than the case 2  p < 1.

1 Introduction

In recent years, the design of reliable machine learning systems for secure-critical applications,
including in computer vision and natural language processing, has been a major goal in the field.
One of the main concrete goals in this context has been to develop classifiers that are robust to
adversarial examples, i.e., small imperceptible perturbations to the input that can result in erroneous
misclassification [BCM+13, SZS+14, GSS15]. This has led to an explosion of research on designing
defenses against adversarial examples and attacks on these defenses. See, e.g., [KM18] for a recent
tutorial on the topic. Despite significant empirical progress over the past few years, the broad question
of designing computationally efficient classifiers that are provably robust to adversarial perturbations
remains an outstanding theoretical challenge.

In this paper, we focus on understanding the computational complexity of adversarially robust
classification in the (distribution-independent) agnostic PAC model [Hau92, KSS94]. Specifically,
we study the learnability of halfspaces (or linear threshold functions) in this model with respect to Lp

perturbations. A halfspace is any function h
w

: Rd ! {±1} of the form1 h
w

(x) = sgn (hw,xi),
where w 2 Rd is the associated weight vector. The problem of learning an unknown halfspace has
been studied for decades — starting with the Perceptron algorithm [Ros58] — and has arguably been
one of the most influential problems in the development of machine learning [Vap98, FS97].

Before we proceed, we introduce the relevant terminology. Let C be a concept class of Boolean-valued
functions on an instance space X ✓ Rd and H be a hypothesis class on X . The set of allowable
perturbations is defined by a function U : X ! 2X . The robust risk of a hypothesis h 2 H with
respect to a distribution D on X⇥{±1} is defined as RU (h,D) = Pr

(x,y)⇠D[9z 2 U(x), h(z) 6= y].
The (adversarially robust) agnostic PAC learning problem for C is the following: Given i.i.d. samples
from an arbitrary distribution D on X ⇥ {±1}, the goal of the learner is to output a hypothesis h 2 H

1The function sgn : R ! {±1} is defined as sgn(u) = 1 if u � 0 and sgn(u) = �1 otherwise.
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such that with high probability it holds RU (h,D)  OPTD +✏, where OPTD = inff2C RU (f,D)
is the robust risk of the best-fitting function in C.

Unfortunately, it follows from known hardness results that this formulation is computationally
intractable for the class of halfspaces C = {sgn(hw,xi),w 2 Rd} under Lp perturbations, i.e, for
Up,�(x) = {z 2 X : kz� xkp  �}, for some p � 2. (The reader is referred to the supplementary
material for a more detailed explanation.) To be able to obtain computationally efficient algorithms,
we relax the above definition in two ways: (1) We allow the hypothesis to be robust within a slightly
smaller perturbation region, and (2) We introduce a small constant factor approximation in the error
guarantee. In more detail, for some constants 0 < ⌫ < 1 and ↵ > 1, our goal is to efficiently compute
a hypothesis h such that with high probability

RU
p,(1�⌫)�

(h,D)  ↵ ·OPTD
p,� +✏ , (1)

where OPTD
p,� = inff2C RU

p,�

(f,D). (Note that for ⌫ = 0 and ↵ = 1, we obtain the original
definition.) An interesting setting is when ⌫ is a small constant close to 0, say ⌫ = 0.1, and ↵ = 1+�,
where 0 < � < 1. In this paper, we characterize the computational complexity of this problem with
respect to proper learning algorithms, i.e., algorithms that output a halfspace hypothesis.

Throughout this paper, we will assume that the domain of our functions is bounded in the d-
dimensional Lp unit ball Bd

p. All our results immediately extend to general domains with a (necessary)
dependence on the diameter of the feasible set.

A simple but crucial observation leveraged in our work is the following: The adversarially robust
learning problem of halfspaces under Lp perturbations (defined above) is essentially equivalent to the
classical problem of agnostic proper PAC learning of halfspaces with an Lp margin.

Let p � 2, q be the dual exponent of p, i.e., 1/p + 1/q = 1. The problem of agnostic proper
PAC learning of halfspaces with an Lp margin is the following: The learner is given i.i.d. samples
from a distribution D over Bd

p ⇥ {±1}. For w 2 Bd
q , its �-margin error is defined as errD� (w) :=

Pr
(x,y)⇠D[sgn(hw,xi � y · �) 6= y]. We also define OPTD

� := min
w2Bd

q

errD� (w). An algorithm is
a proper ⌫-robust ↵-agnostic learner for Lp-�-margin halfspace if, with probability at least 1� ⌧ , it
outputs a halfspace w 2 Bd

q with

errD
(1�⌫)�(w)  ↵ ·OPTD

� +✏ . (2)

(When unspecified, the failure probability ⌧ is assumed to be 1/3. It is well-known and easy to see
that we can always achieve arbitrarily small value of ⌧ at the cost of O(log(1/⌧)) multiplicative
factor in the running time and sample complexity.)

We have the following basic observation, which implies that the learning objectives (1) and (2) are
equivalent. Throughout this paper, we will state our contributions using the margin formulation (2).
Fact 1. For any non-zero w 2 Rd, � � 0 and D over Rd ⇥ {±1}, RU

p,�

(h
w

,D) = errD� (
w

kwk
q

).

1.1 Our Contributions

Our main positive result is a robust and agnostic proper learning algorithm for Lp-�-margin halfspace
with near-optimal running time:
Theorem 2 (Robust Learning Algorithm). Fix 2  p < 1 and 0 < � < 1. For any 0 < ⌫, � < 1,
there is a proper ⌫-robust (1 + �)-agnostic learner for Lp-�-margin halfspace that draws O( p

✏2⌫2�2

)

samples and runs in time (1/�)
O
⇣

p

⌫

2

�

2

⌘

· poly(d/✏).
Furthermore, for p = 1, there is a proper ⌫-robust (1 + �)-agnostic learner for L1-�-margin

halfspace that draws O( log d
✏2⌫2�2

) samples and runs in time d
O
⇣

log(1/�)

⌫

2

�

2

⌘

· poly(1/✏).

To interpret the running time of our algorithm, we consider the setting � = ⌫ = 0.1. We note two
different regimes. If p � 2 is a fixed constant, then our algorithm runs in time 2O(1/�2

) poly(d/✏).
On the other hand, for p = 1, we obtain a runtime of dO(1/�2

) poly(1/✏). That is, the L1 margin
case (which corresponds to adversarial learning with L1 perturbations) appears to be computationally
the hardest. As we show in Theorem 3, this fact is inherent for proper learners.
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Our algorithm establishing Theorem 2 follows via a simple and unified approach, employing a reduc-
tion from online (mistake bound) learning [Lit87]. Specifically, we show that any computationally
efficient Lp online learner for halfspaces with margin guarantees and mistake bound M can be used in
a black-box manner to obtain an algorithm for our problem with runtime roughly poly(d/✏)(1/�)M .
Theorem 2 then follows by applying known results from the online learning literature [Gen01a].

For the special case of p = 2 (and ⌫ = 0.1), recent work [DKM19] gave a sophisticated algorithm for
our problem with running time poly(d/✏)2

˜O(1/(��2

)). We note that our algorithm has significantly
better dependence on the parameter � (quantifying the approximation ratio), and better dependence
on 1/�. Importantly, our algorithm is much simpler and immediately generalizes to all Lp norms.

Perhaps surprisingly, the running time of our algorithm is nearly the best possible for proper learning.
For constant p � 2, this follows from the hardness result of [DKM19]. (See the supplementary
material for more details.) Furthermore, we prove a tight running time lower bound for robust L1-�-
margin proper learning of halfspaces. Roughly speaking, we show that for some sufficiently small
constant ⌫ > 0, one cannot hope to significantly speed-up our algorithm for ⌫-robust L1-�-margin
learning of halfspaces. Our computational hardness result is formally stated below.
Theorem 3 (Tight Running Time Lower Bound). There exists a constant ⌫ > 0 such that, assuming
the (randomized) Gap Exponential Time Hypothesis, there is no proper ⌫-robust 1.5-agnostic learner
for L1-�-margin halfspace that runs in time f(1/�) · do(1/�2

) poly(1/✏) for any function f .

As indicated above, our running time lower bound is based on the so-called Gap Exponential Time
Hypothesis (Gap-ETH), which roughly states that no subexponential time algorithm can approximate
3SAT to within (1� ✏) factor, for some constant ✏ > 0. Since we will not be dealing with Gap-ETH
directly here, we defer the formal treatment of the hypothesis and discussions on its application to the
supplementary material.

We remark that the constant 1.5 in our theorem is insignificant. We can increase this “gap” to any
constant less than 2. We use the value 1.5 to avoid introducing an additional variable. Another remark
is that Theorem 3 only applies for a small constant ⌫ > 0. This leaves the possibility of achieving,
e.g., a faster 0.9-robust L1-�-margin learner for halfspaces, as an interesting open problem.

1.2 Related Work

A sequence of recent works [CBM18, SST+18, BLPR19, MHS19] has studied the sample complexity
of adversarially robust PAC learning for general concept classes of bounded VC dimension and for
halfspaces in particular. [MHS19] established an upper bound on the sample complexity of PAC
learning any concept class with finite VC dimension. A common implication of the aforementioned
works is that, for some concept classes, the sample complexity of adversarially robust PAC learning
is higher than the sample complexity of (standard) PAC learning. For the class of halfspaces, which
is the focus of the current paper, the sample complexity of adversarially robust agnostic PAC learning
was shown to be essentially the same as that of (standard) agnostic PAC learning [CBM18, MHS19].

Turning to computational aspects, [BLPR19, DNV19] showed that there exist classification tasks that
are efficiently learnable in the standard PAC model, but are computationally hard in the adversarially
robust setting (under cryptographic assumptions). Notably, the classification problems shown hard
are artificial, in the sense that they do not correspond to natural concept classes. [ADV19] shows that
adversarially robust proper learning of degree-2 polynomial threshold functions is computationally
hard, even in the realizable setting. On the positive side, [ADV19] gives a polynomial-time algorithm
for adversarially robust learning of halfspaces under L1 perturbations, again in the realizable setting.
More recently, [MGDS20] generalized this upper bound to a broad class of perturbations, including
Lp perturbations. Moreover, [MGDS20] gave an efficient algorithm for learning halfspaces with
random classification noise [AL88]. We note that all these algorithms are proper.

The problem of agnostically learning halfspaces with a margin has been studied extensively. A
number of prior works [BS00, SSS09, SSS10, LS11, BS12, DKM19] studied the case of L

2

margin
and gave a range of time-accuracy tradeoffs for the problem. The most closely related prior work
is the recent work [DKM19], which gave a proper ⌫-robust ↵-agnostic learning for L

2

-�-margin
halfspace with near-optimal running time when ↵, ⌫ are universal constants, and a nearly matching
computational hardness result. The algorithm of the current paper broadly generalizes, simplifies,
and improves the algorithm of [DKM19].
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2 Upper Bound: From Online to Adversarially Robust Agnostic Learning

In this section, we provide a generic method that turns an online (mistake bound) learning algorithm
for halfspaces into an adversarially robust agnostic algorithm, which is then used to prove Theorem 2.

Recall that online learning [Lit87] proceeds in a sequence of rounds. In each round, the algorithm
is given an example point, produces a binary prediction on this point, and receives feedback on
its prediction (after which it is allowed to update its hypothesis). The mistake bound of an online
learner is the maximum number of mistakes (i.e., incorrect predictions) it can make over all possible
sequences of examples.

We start by defining the notion of online learning with a margin gap in the context of halfspaces:
Definition 4. An online learner A for the class of halfspaces is called an Lp online learner with
mistake bound M and (�, �0) margin gap if it satisfies the following: In each round, A returns
a vector w 2 Bd

q . Moreover, for any sequence of labeled examples (xi, yi) such that there exists
w

⇤ 2 Bd
q with sgn(hw⇤,xii � yi�) = yi for all i, there are at most M values of t such that

sgn(hwt,xti � yt�
0) 6= yt, where wt = A((x

1

, y
1

), . . . , (xt�1

, yt�1

)).

The Lp online learning problem of halfspaces has been studied extensively in the literature, see,
e.g., [Lit87, GLS01, Gen01b, Gen03, BB14]. We will use a result of [Gen01a], which gives a
polynomial time Lp online learner with margin gap (�, (1�⌫)�) and mistake bound O((p�1)/⌫2�2).

We are now ready to state our generic proposition that translates an online algorithm with a given
mistake bound into an agnostic learning algorithm. We will use the following notation: For S ✓
Bd
p ⇥ {±1}, we will use S instead of D to denote the empirical error on the uniform distribution over

S. In particular, we denote errS� (w) := 1

|S| · |{(x, y) 2 S | sgn(hw,xi � y�) 6= y}|.

The main result of this section is the following proposition. While we state our proposition for the
empirical error, it is simple to convert it into a generalization bound as we will show later in the proof
of Theorem 2.
Proposition 5. Assume that there is a polynomial time Lp online learner A for halfspaces with a
(�, �0) margin gap and mistake bound of M . Then there exists an algorithm that given a multiset of
labeled examples S ✓ Bd

p ⇥ {±1} and � 2 (0, 1), runs in poly(|S|d) · 2O(M log(1/�)) time and with
probability 9/10 returns w 2 Bd

q such that errS�0(w)  (1 + �) ·OPTS
� .

Notice that our algorithm runs in time poly(|S|d) · 2O(M log(1/�)) and has success probability 9/10.
It is more convenient to describe a version of our algorithm that runs in poly(|S|d) time, but has
small success probability of 2�O(M log(1/�)), as encapsulated by the following lemma.
Lemma 6. Assume that there is a polynomial time Lp online learner A for halfspaces with a
(�, �0) margin gap and mistake bound of M . Then there exists an algorithm that given a multiset of
labeled examples S ✓ Bd

p ⇥ {±1} and � 2 (0, 1), runs in poly(|S|dM) time and with probability
2�O(M log(1/�)) returns w 2 Bd

q such that errS�0(w)  (1 + �) ·OPTS
� .

Before proving Lemma 6, notice that Proposition 5 now follows by running the algorithm from
Lemma 6 independently 2O(M log(1/�)) times and returning the w with minimum errS�0(w). Since
each iteration has a 2�O(M log(1/�)) probability of returning a w with errS�0(w)  (1 + �) ·OPTS

� ,
with 90% probability at least one of our runs finds a w that satisfies this.

Proof of Lemma 6. Let w⇤ 2 Bd
q denote an “optimal” halfspace with errS� (w

⇤) = OPTS
� .

The basic idea of the algorithm is to repeatedly run A on larger and larger subsets of samples each
time adding one additional sample in S that the current hypothesis gets wrong. The one worry here
is that some of the points in S might be errors, inconsistent with the true classifier w⇤, and feeding
them to our online learner will lead it astray. However, at any point in time, either we misclassify
(w.r.t. margin �0) only a (1 + �) · OPTS

� fraction of points (in which case we can abort early and
use this hypothesis) or guessing a random misclassified point will have at least an ⌦(�) probability
of giving us a non-error. Since our online learner has a mistake bound of M , we will never need to
make more than this many correct guesses. Specifically, the algorithm is as follows:
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• Let Samples = ;

• For i = 0 to M

– Let w = A(Samples)

– Let T be the set of (x, y) 2 S so that sgn(hw,xi � y�0) 6= y

– If T = ;, and otherwise with 50% probability, return w

– Draw (xi, yi) uniformly at random from T , and add it to Samples

• Return w

To analyze this algorithm, let Sbad be the set of (x, y) 2 S with sgn(hw⇤,xi � y�) 6= y. Recall
that by assumption |Sbad|  OPTS

� ·|S|. We claim that with probability at least 2�O(M log(1/�)) our
algorithm never adds an element of Sbad to Samples and never returns a w in the for loop for which
errS�0(w) > (1 + �) ·OPTS

� . This is because during each iteration of the algorithm either:

1. errS�0(w) > (1+ �) ·OPTS
� . In this case, there is a 50% probability that we do not return w.

If we do not return, then |T | � (1 + �) · |Sbad| so there is at least a �
1+� � �/2 probability

that the new element added to Samples is not in Sbad.

2. Or errS�0(w)  (1 + �) ·OPTS
� . In this case, there is a 50% probability of returning w.

Hence, there is a (�/4)M+1 � 2�O(M log(1/�)) probability of never adding an element of Sbad to
Samples or returning a w in our for-loop with errS�0(w) > (1+�)·OPTS

� . When this occurs, we claim
that we output w such that errS�0(w)  (1+ �) ·OPTS

� . This is because, if this were not the case, we
must have reached the final statement at which point we have Samples = ((x

0

, y
0

), . . . , (xM , yM )),
where each (xi, yi) satisfies sgn(hw⇤,xii � yi�) = yi and sgn(hwi,xii � yi�

0) 6= yi with wi =
A((x

0

, y
0

), . . . , (xi�1

, yi�1

)). But this violates the mistake bound of M .

Thus, we output w such that errS�0(w)  (1+�)·OPTS
� with probability at least 2�O(M log(1/�)).

We will now show how Proposition 5 can be used to derive Theorem 2. As stated earlier, we will
require the following mistake bound for online learning with a margin gap from [Gen01a].
Theorem 7 ([Gen01a]). For any 2  p < 1, there exists a polynomial time Lp online learner with
margin gap (�, (1� ⌫)�) and mistake bound O

⇣
(p�1)

⌫2�2

⌘
. Furthermore, there is a polynomial time

L1 online learner with margin gap (�, (1� ⌫)�) and mistake bound O
⇣

log d
⌫2�2

⌘
.

Proof of Theorem 2. Our ⌫-robust (1 + �)-agnostic learner for Lp-�-margin halfspace works as
follows. First, it draws the appropriate number of samples m (as stated in Theorem 2) from D. Then,
it runs the algorithm from Proposition 5 on these samples for margin gap (�, (1� ⌫/2)�).

Let Mp denote the error bound for Lp online learning with margin gap (�, (1 � ⌫/2)�) given by
Theorem 7. Our entire algorithm runs in time poly(m) · 2O(M

p

·log(1/�)). It is simple to check that
this results in the claimed running time.

As for the error guarantee, let w 2 Bd
q be the output halfspace. With probability 0.8, we have

errD
(1�⌫)�(w)  errS

(1�⌫/2)�(w) + ✏/2  (1 + �) ·OPTS
(1�⌫/2)� +✏/2  (1 + �) ·OPTD

� +✏,

where the first and last inequalities follow from standard margin generalization bounds [BM02, KP02,
KST08] and the second inequality follows from the guarantee of Proposition 5.

3 Tight Running Time Lower Bound: Proof Overview

We will now give a high-level overview of our running time lower bound (Theorem 3). Due to
space constraint, we will sometimes be informal; everything will be formalized in the supplementary
material.
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The main component of our hardness result will be a reduction from the Label Cover problem2, which
is a classical problem in hardness of approximation literature that is widely used as a starting point for
proving strong NP-hardness of approximation results (see, e.g., [ABSS97, Hås96, Hås01, Fei98]).
Definition 8 (Label Cover). A Label Cover instance L = (U, V,E,⌃U ,⌃V , {⇡e}e2⌃

) consists of

• a bi-regular bipartite graph (U, V,E), referred to as the constraint graph,

• label sets ⌃U and ⌃V ,

• for every edge e 2 E, a constraint (aka projection) ⇡e : ⌃U ! ⌃V .

A labeling of L is a function � : U ! ⌃U . We say that � covers v 2 V if there exists �v 2 ⌃V

such that3 ⇡
(u,v)(�(u)) = �v for all4 u 2 N(v). The value �, denoted by valL(�), is defined as the

fraction of v 2 V covered by �. The value of L, denoted by val(L), is defined as max�:U!⌃

U

val(�).

Moreover, we say that � weakly covers v 2 V if there exist distinct neighbors u
1

, u
2

of v such that
⇡
(u

1

,v)(�(u1

)) = ⇡
(u

2

,v)(�(u2

)). The weak value of �, denoted by wval(�), is the fraction of v 2 V
weakly covered by �. The weak value of L, denoted by wval(L), is defined as max�:U!⌃

U

wval(�).

For a Label Cover instance L, we use k to denote |U | and n to denote |U | · |⌃U |+ |V | · |⌃V |.

The goal of Label Cover is to find an assignment with maximium value. Several strong inapproxima-
bility results for Label Cover are known [Raz98, MR10, DS14]. To prove a tight running time lower
bound, we require an inapproximability result for Label Cover with a tight running lower bound
as well. Observe that we can solve Label Cover in time nO(k) by enumerating through all possible
assignments and compute their values. The following result shows that, even if we aim for a constant
approximation ratio, no algorithm that can be significantly faster than this “brute-force” algorithm.
Theorem 9 ([Man20]). Assuming Gap-ETH, for any function f and any constant µ 2 (0, 1), no
f(k) · no(k)-time algorithm can, given a Label Cover instance L, distinguish between the following
two cases: (Completeness) val(L) = 1, and, (Soundness) wval(L) < µ.

Given a Label Cover instance L, our reduction produces an oracle O that can sample (in polynomial
time) from a distribution D over Bd

1 ⇥ {±1} (for some d  n) such that:

• (Completeness) If val(L) = 1, then OPTD
�⇤  ✏⇤.

• (Soundness) If wval(L) < µ, then OPTD
(1�⌫)�⇤ > 1.6✏⇤.

• (Margin and Error Bounds) �⇤ = ⌦(1/
p
k) and ✏⇤ = 1/no(k).

Here ⌫ > 0 is some constant. Once we have such a reduction, Theorem 3 follows quite easily. The
reason is that, if we assume (by contrapositive) that there exists a ⌫-robust 1.5-agnostic learner A
for L1-�-margin halfspaces that runs in time f(1/�) · do(1/�2

) poly(1/✏), then we can turn A to an
algorithm for Label Cover by first using the reduction above to give us an oracle O and then running
A on O. With appropriate parameters, A can distinguish between the two cases in Theorem 9 in time
f(1/�⇤) · do(1/(�⇤

)

2

) poly(1/✏⇤) = f(O(
p
k)) · no(k), which by Theorem 9 violates the randomized

Gap-ETH. Therefore, we will henceforth focus on the reduction and its proof of correctness.

Previous Results. To explain the key new ideas behind our reduction, it is important to understand
high-level approaches taken in previous works and why they fail to yield running time lower bounds
as in our Theorem 3.

Most of the known hardness results for agnostic learning of halfspaces employ reductions from Label
Cover [ABSS97, FGKP06, GR09, FGRW12, DKM19]5. These reductions use gadgets which are
“local” in nature. As we will explain next, such “local” reductions cannot work for our purpose.

2Label Cover is sometimes referred to as Projection Game or Two-Prover One-Round Game.
3This is equivalent to ⇡(u

1

,v)(�(u1)) = ⇡(u
2

,v)(�(u2)) for all neighbors u1, u2 of v.
4For every a 2 U [V , we use N(a) to denote the set of neighbors of a (with respect to the graph (U, V,E)).
5Some of these reductions are stated in terms of reductions from Set Cover or from constraint satisfaction

problems (CSP). However, it is well-known that these can be formulated as Label Cover.
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To describe the reductions, it is convenient to think of each sample (x, y) as a linear constraint
hw,xi � 0 when y = +1 and hw,xi < 0 when y = �1, where the variables are the coordinates
w

1

, . . . , wd of w. When we also consider a margin parameter �⇤ > 0, then the constraints become
hw,xi � �⇤ and hw,xi < ��⇤, respectively. Notice here that, for our purpose, we want (i) our
halfspace w to be in Bd

1

, i.e., |w
1

|+ · · ·+ |wd|  1, and (ii) each of our samples x to lie in Bd
1, i.e.,

|x
1

|, . . . , |xd|  1.

Although the reductions in previous works vary in certain steps, they do share an overall common
framework. With some simplification, they typically let e.g. d = |U | · |⌃U |, where each coordinate is
associated with U ⇥ ⌃U . In the completeness case, i.e., when some labeling �c covers all vertices in
V , the intended solution w

c is defined by wc
(u,�

u

)

= 1[�u = �(u)]/k for all u 2 U,�u 2 ⌃U . To
ensure that this is essentially the best choice of halfspace, these reductions often appeal to several
types of linear constraints. For concreteness, we state a simplified version of those from [ABSS97]
below.

• For every (u,�U ) 2 U ⇥ ⌃U , create the constraint w
(u,�

u

)

 0. (This corresponds to the
labeled sample (�e

(a,�),+1).)

• For each u 2 U , create the constraint
P

�2⌃

U

w
(u,�) � 1/k.

• For every v 2 V , �v 2 ⌃V and u
1

, u
2

2 N(v), add
P

�
u

1

2⇡�1

(u

1

,v)

(�
v

)

w
(u

1

,�
u

1

)

=
P

�
u

2

2⇡�1

(u

2

,v)

(�
v

)

w
(u

2

,�
u

2

)

. This equality “checks” the Label Cover constraints ⇡
(u

1

,v)

and ⇡
(u

2

,v).

Clearly, in the completeness case w

c satisfies all constraints except the non-positivity constraints for
the k non-zero coordinates. (It was argued in [ABSS97] that any halfspace must violate many more
constraints in the soundness case.) Observe that this reduction does not yield any margin: wc does
not classify any sample with a positive margin. Nonetheless, [DKM19] adapts this reduction to work
with a small margin �⇤ > 0 by adding/subtracting appropriate “slack” from each constraint. For
example, the first type of constraint is changed to w

(u,�
u

)

 �⇤. This gives the desired margin �⇤ in
the completeness case. However, for the soundness analysis to work, it is crucial that �⇤  O(1/k),
as otherwise the constraints can be trivially satisfied6 by w = 0. As such, the above reduction does
not work for us, since we would like a margin �⇤ = ⌦(1/

p
k). In fact, this also holds for all known

reductions, which are “local” in nature and possess similar characteristics. Roughly speaking, each
linear constraint of these reductions involves only a constant number of terms that are intended to be
set to O(1/k), which means that we cannot hope to get a margin more than O(1/k).

Our Approach: Beyond Local Reductions. With the preceding discussion in mind, our reduction
has to be “non-local”. To describe our main idea, we need an additional notion of “decomposability”
of a Label Cover instance. Roughly speaking, an instance is decomposable if we can partition V into
different parts such that each u 2 U has exactly one induced edge to the vertices in each part.
Definition 10. A Label Cover instance L = (U, V,E,⌃U ,⌃V , {⇡e}e2E) is said to be decomposable
if there exists a partition of V into V

1

[· · ·[Vt such that, for every u 2 U and j 2 [t], |N(u)\Vj | = 1.
We use the notation vj(u) to the denote the unique element in N(u) \ Vj .

As explained above, “local” reductions use each labeled sample to only check a constant number
of Label Cover constraints. In contrast, our reduction will check many constraints in each sample.
Specifically, for each subset V j , we will check all the Label Cover constraints involving v 2 V j at
once. To formalize this goal, we will require the following definition.
Definition 11. Let L = (U, V = V

1

[ · · · [ Vt, E,⌃U ,⌃V , {⇡e}e2E) be a decomposable Label
Cover instance. For any j 2 [t], let ⇧j 2 R(V⇥⌃

V

)⇥(U⇥⌃

U

) be defined as

⇧j
(v,�

v

),(u,�
u

)

=

⇢
1 if v = vj(u) and ⇡

(u,v)(�u) = �v,

0 otherwise.

We set d = |U | · |⌃U | and our intended solution w

c in the completeness case is the same as described
in the previous reduction. For simplicity, suppose that, in the soundness case, we pick �s that does

6Note that w = 0 satisfies the constraints with margin �

⇤ � 1/k, which is (1� o(1))�⇤ if �⇤ = !(1/k).
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not weakly cover any v 2 V and set ws
(u,�

u

)

= 1[�u = �s(u)]/k. Our simplified task then becomes:
Design D such that errD� (wc) ⌧ errD

(1�⌫)�(w
s), where � = ⌦(1/

p
k), ⌫ > 0 is a constant.

Our choice of D is based on two observations. The first is a structural difference between w

c(⇧j)T

and w

s(⇧j)T . Suppose that the constraint graph has right degree �. Since �c covers all v 2 V , ⇧j

“projects” the non-zeros coordinates wc
(u,�c

(u)) for all u 2 N(v) to the same coordinate (v,�v), for
some �v 2 ⌃V , resulting in the value of �/k in this coordinate. On the other hand, since �s does
not even weakly cover any right vertex, all the non-zero coordinates get maps by ⇧j to different
coordinates, resulting in the vector ws(⇧j)T having k non-zero coordinates, each having value 1/k.

To summarize, we have: wc(⇧j)T has k/� non-zero coordinates, each of value �/k. On the other
hand, ws(⇧j)T has k non-zero coordinates, each of value 1/k.

Our second observation is the following: suppose that u is a vector with T non-zero coordinates,
each of value 1/T . If we take a random ±1 vector s, then hu, si is simply 1/T times a sum of
T i.i.d. Rademacher random variables. Recall a well-known version of the central limit theorem
(e.g., [Ber41, Ess42]): as T ! 1, 1/

p
T times a sum of T i.i.d. Rademacher r.v.s converges in

distribution to the normal distribution. This implies that limT!1 Pr[hu, si � 1/
p
T ] = �(1).

For simplicity, let us ignore the limit for the moment and assume that Pr[hu, si � 1/
p
T ] = �(1).

We can now specify the desired distribution D: Pick s uniformly at random from {±1}V⇥⌃

V and then
let the sample be s⇧j with label +1. By the above two observations, wc will be correctly classified
with margin �⇤ =

p
�/k = ⌦(1/

p
k) with probability �(1). Furthermore, in the soundness case,

w

s can only get the same error with margin (roughly)
p

1/k = �⇤/
p
�. Intuitively, for � > 1,

this means that we get a gap of ⌦(1/
p
k) in the margins between the two cases, as desired. This

concludes our informal proof overview.

Further Details and The Full Reduction. Having stated the rough main ideas above, we next
state the full reduction. To facilitate this, we define the following additional notations:
Definition 12. Let L = (U, V = V

1

[ · · · [ Vt, E,⌃U ,⌃V , {⇡e}e2E) be a decomposable Label
Cover instance. For any j 2 [t], let ⇧̂j 2 R(U⇥⌃

V

)⇥(U⇥⌃

U

) be such that

⇧̂j
(u0,�

v

),(u,�
u

)

=

⇢
1 if u0 = u and ⇡

(u,vj

(u))(�u) = �v,

0 otherwise.

Moreover, let ⇧̃j 2 R(V⇥⌃

V

)⇥(U⇥⌃

V

) be such that

⇧̃j
(v,�0

v

),(u,�
v

)

=

⇢
1 if v = vj(u) and �0

v = �v

0 otherwise.

Observe that ⇧j = ⇧̃j · ⇧̂j (where ⇧j is as in Definition 11).

Our full reduction is present in Figure 1 below. The exact choice of parameters are deferred to the
supplementary material. We note that the distribution described in the previous section corresponds
to Step 4c in the reduction. The other steps of the reductions are included to handle certain technical
details we had glossed over previously. In particular, the following are the two main additional
technical issues we have to deal with here.

• (Non-Uniformity of Weights) In the intuitive argument above, we assume that, in the
soundness case, we only consider ws such that

P
�
u

2⌃

U

ws
(u,�

u

)

= 1/k. However, this
needs not be true in general, and we have to create new samples to (approximately) en-
force such a condition. Specifically, for every subset T ✓ U , we add a constraint thatP

u2T

P
�
u

2⌃

U

w
(u,�

u

)

� |T |/k � �⇤. This corresponds to Step 3 in Figure 1.
Note that the term ��⇤ on the right hand side above is necessary to ensure that, in the
completeness case, we still have a margin of �⇤. Unfortunately, this also leaves the possibility
of, e.g., some vertex u 2 U has as much as �⇤ extra “mass”. For technical reasons, it turns
out that we have to make sure that these extra “masses” do not contribute to too much of
kw(⇧j)T k2

2

. To do so, we add additional constraints on w(⇧̂j)T to bound its norm. Such a
constraint is of the form: If we pick a subset S of at most ` coordinates, then their sum must
be at most |S|/k + �⇤ (and at least ��⇤). These corresponds to Steps 4a and 4b in Figure 1.
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• (Constant Coordinate) Finally, similar to previous works, we cannot have “constants” in our
linear constraints. Rather, we need to add a coordinate ? with the intention that w? = 1/2,
and replace the constants in the previous step by w?. Note here that we need two additional
constraints (Steps 1 and 2 in Figure 1) to ensure that w? has to be roughly 1/2.

Input: Decomposable Label Cover instance L = (U, V = V
1

[ · · ·[Vt, E,⌃U ,⌃V , {⇡e}e2E).
Parameters: q, �⇤ 2 (0, 1), ` 2 N.
Output: Oracle O that draws a sample from a distribution D on B|U |·|⌃

U

|+1

1 ⇥ {±1}.

For notational convenience, we associate each coordinate of (|U |·|⌃U |+1)-dimensional samples
with an element from (U ⇥ ⌃U ) [ {?}. The oracle O draws a sample as follows:

1. With probability 0.25, output the sample 2�⇤ · e? with label +1.
2. With probability 0.25, output the sample 2�⇤ · eU⇥⌃

U

with label +1.
3. With probability 0.25, pick a random subset T ✓ U and output the sample eT⇥⌃

U

�⇣
|T |
k � 2�⇤

⌘
e? with label +1.

4. With probability 0.25, draw j uniformly at random from [t]. Then, do the following:
(a) With probability 0.5(1� q), randomly pick a subset S ✓ U ⇥ ⌃V of size at most

`. Output the labeled sample (( |S|
k + 2�⇤)e? � eS⇧̂

j ,+1).
(b) With probability 0.5(1� q), randomly pick a subset S ✓ U ⇥ ⌃V of size at most

`. Then, output (2�⇤
e? + eS⇧̂

j ,+1).
(c) With probability q, sample s uniformly at random from {±1}V⇥⌃

V and, output
(s⇧j ,+1).

Figure 1: Hardness Reduction from Label Cover to L1-margin Halfspace Learning. Here we use e

i

to denote
the i-th vector in the standard basis (i.e. the vector with value one in the i-th coordinate and zero in the remaining
coordinates). Furthermore, we extend this notation and use e

S

, for a set S of coordinates, to denote the indicator
vector for S, i.e. e

S

=
P

i2S

e

i

.

4 Conclusions and Open Problems

In this work, we studied the computational complexity of adversarially robust learning of halfspaces
in the distribution-independent agnostic PAC model. We provided a simple proper learning algorithm
for this problem and a nearly matching computational lower bound. While proper learners are
typically preferable due to their interpretability, the obvious open question is whether significantly
faster non-proper learners are possible. We leave this as an interesting open problem. Another
direction for future work is to understand the effect of distributional assumptions on the complexity
of the problem and to explore the learnability of simple neural networks in this context.
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Broader Impact

Our work aims to advance the algorithmic foundations of adversarially robust machine learning. This
subfield focuses on protecting machine learning models (especially their predictions) against small
perturbations of the input data. This broad goal is a pressing challenge in many real-world scenarios,
where successful adversarial example attacks can have far-reaching implications given the adoption
of machine learning in a wide variety of applications, from self-driving cars to banking.

Since the primary focus of our work is theoretical and addresses a simple concept class, we do not
expect our results to have immediate societal impact. Nonetheless, we believe that our findings
provide interesting insights on the algorithmic possibilities and fundamental computational limitations
of adversarially robust learning. We hope that, in the future, these insights could be useful in the
design of practically relevant adversarially robust classifiers in the presence of noisy data.
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