
A Four prototypical examples
The following examples are meant to demonstrate situations where we might care about sequentially
quantifying uncertainty for parameters of finite populations (see Figure 6).

A. Opinion surveys (discrete categorical)

Imagine you have access to a registry of phone numbers of a group of 1000 people, such as all
residents of a neighborhood, voters in a township, or occupants of a university building. You wish
to quickly determine the majority opinion on a categorical question, like preference of Biden vs.
Trump. You pick names uniformly at random, call and ask. Obviously, you never call the same
person twice. When can you confidently stop? In a typical run on a hypothetical ground truth of
650/350, our method stopped after 123 calls (Figure 6A).
In the example of opinion surveys, the data are discrete and consist of 650 responses showing pref-
erence for Biden and 350 showing preference for Trump (encoded as ones and zeros, respectively).
The observed data is thus a random permutation of 650 ones and 350 zeros. The CS used was the
PPR CS for the hypergeometric distribution with a uniform ‘working prior’ (i.e. a “ b “ 1 in the
beta-binomial pmf).

B. Permutation p-values (discrete binary)

Statistical inference is often performed using permutation tests. Formally, the permutation p-value
is defined as Pperm :“ 1

m!

ř
πPSm

IpTm ě Tπpmqq, where Tm, Tπpmq are the original and permuted
test statistics on m datapoints, and Sm is the set of all m-permutations (size N “ m!). Pperm
is intractable to calculate for large m, so it is often approximated by randomly sampling π with
replacement (often 1000 times, fixed and arbitrary). Instead, our tools allow a user to construct a
CS for Pperm and sequentially sample WoR until the CS is confident about whether Pperm is below or
above (say) 0.05. In one example (small, so we can calculate Pperm “ 0.04 to verify accuracy), we
stopped after 876 steps (Figure 6B).
The permutation test used in this example is a slight modification of the famous ‘Lady Tasting Tea’
experiment [23]. The experiment proceeds as follows.
There are 12 cups of tea with milk, half of which had the tea poured first, and the other half had milk
poured first. The tea expert is told that half of the cups are milk-first and the other half are tea-first
and is tasked with determining which ones are which. The null hypothesis is that the tea expert has
no ability to distinguish between tea-first and milk-first (i.e. their guesses are independent of the
order of milk/tea). Suppose they guess 10 out of 12 cups correctly. The statistical question becomes,
“what is the probability of guessing 10 or more cups correctly if the expert is guessing randomly?”.
This probability is exactly the permutation p-value that the statistician is interested in.
To calculate this permutation p-value, we consider the set of all possible random guesses that the tea
expert could have made, and compute the fraction of those which identify 10 or more cups correctly.
If we randomly sample a sequence of possible guesses from the set of

`
12
6

˘
possible guesses and

record whether 10 or more cups are correctly identified, then observations are a random stream of
ones and zeros. We then construct a PPR CS with a uniform ‘working prior’ for the number of ones,
N` in this set to arrive at a CS for the permutation p-value, P :“ N`

p12
6 q .

C. Shapley values (bounded real-valued)

First developed in game theory, Shapley values have been recently proposed as a measure of variable
or data-point importance for supervised learning. Given a set of players t1, . . . , Bu and a reward
function ν, the Shapley value φb for player b can be written as an average of B! function evaluations,
one for each permutation of t1, . . . , Bu. As above, φb is intractable to compute and Monte-Carlo
techniques are popular. This real-valued setting requires different CS techniques from the categorical
setting. As Figure 6C unfolds from left to right (with B “ 7), it can be stopped adaptively with valid
confidence bounds on all tφbuBb“1. In this example, we consider a simple cost allocation problem.
Suppose there are n people that wish to share transportation to get from point A to their respective
destinations, which are all in succession on the same street. Suppose that the cost of going from point
A to the ith person’s destination costs ci, and without loss of generality suppose c1 ă c2 ¨ ¨ ¨ ă cn.
In this particular example, we used n “ 7 with costs of 1, 10, 40, 80, 130, 175, and 200. The ‘cost’,
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ν : 2rns Ñ R of a trip is defined in the following natural way,

νpHq “ 0

νptiuq “ ci
νpSq “ cj where cj ě ck for all k, j P S

The Shapley value, φi for person i can be written as,

φi “ 1

n!

ÿ

π

rνpSπ,i Y tiuq ´ νpSπ,iqs (A.1)

where the sum is taken over all permutations π of rns, and Sπ,i is the set of numbers to the left of i
in the permutation πprnsq.
Since the Shapley value φi is an average of n! numbers, it may be tedious to compute for large n
especially when ν cannot be computed quickly. In our case, the summands have a crude upper bound
of cn and a lower bound of 0 so we can randomly sample WoR from the set of permutations on rns
to construct the empirical Bernstein CS of Theorem 3.2 with the λ-sequence of (3.13). After 1252
permutations, we are able to conclude with high confidence which player has the highest Shapley
value.

D. Tracking interventions (bounded real-valued)
Suppose a state school board is interested in introducing a new program to help students improve
their standardized testing skills. Before deploying it to each of their 3000 public schools, the board
decides to incrementally introduce the program to randomly selected schools, measuring standard-
ized test scores before and after its introduction. The board can construct a CS for the overall
percentage increase in test scores (which could get worse), and stop the experiment once they are
confident about the program’s effectiveness. In Figure 6D, with effect size 20%, the board can con-
fidently decide to mandate the program statewide after 260 random schools have been trialed, but
they may also continue tracking progress and stop later. In this example, we simply generated 3000
observations from a Beta(3, 2) distribution, appropriately scaled to be between -100 and 100 (repre-
senting percentage changes in test scores). To construct a CS for the average change in test scores,
we used the Hoeffding-type CS optimized for times 10, 100, and 1000. Note that this CS would be
tighter if the empirical Bernstein CS were used as the Beta(3, 2) has a relatively small variance.
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Figure 6: Typical simulation runs for the aforementioned examples, with more details in the Supple-
ment. All experiments can be proactively monitored, optionally continued and adaptively stopped.
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B Proofs of the main results
B.1 Proof of Proposition 2.1
The proof is broken into two steps. First, we prove that with respect to the filtration pFtqNt“0 outlined
in Section 1.1, the prior-posterior ratio (PPR) evaluated at the true θ‹ P Θ,

Rtpθ‹q :“ π0pθ‹q
πtpθ‹q , (B.1)

is a nonnegative martingale with initial value one. Later, we invoke Ville’s inequality [24, 12] for
nonnegative supermartingales to construct the CS.

Step 1. Let π0 be any prior on Θ that assigns nonzero mass everywhere. Define the prior-posterior
ratio, Rtpθq as in (B.1). Writing the conditional expectation of Rt`1pθ‹q given Xt

1 for any t P
t1, . . . , Nu in its integral form,

EpRt`1pθ‹q | Xt
1q “

ż

Xt`1

π0pθ‹q
πt`1pθ‹qpθ‹ pxt`1 | Xt

1qdxt`1

“
ż

Xt`1

π0pθ‹q şΘ pηpXt
1, xt`1qπ0pηqdη

pθ‹ pXt
1, xt`1qπ0pθ‹q pθ‹ pxt`1q | Xt

1qdxt`1 (Bayes’ rule)

“
ż

Xt`1

π0pθ‹q şΘ pηpXt
1, xt`1qπ0pηqdη

pθ‹ pXt
1qπ0pθ‹q dxt`1 (Bayes’ rule again)

“
ż

Xt`1

π0pθ‹q şΘ pηpXt
1, xt`1qπ0pηqdη

πtpθ‹q şΘ pλpXt
1qπ0pλqdλ dxt`1 (Bayes’ rule again)

“ π0pθ‹q
πtpθ‹q

ż

Xt`1

ş
Θ pηpXt

1, xt`1qπ0pηqdηş
Θ pλpXt

1qπ0pλqdλ dxt`1

“ π0pθ‹q
πtpθ‹q

ş
Θ

ş
Xt`1

pηpXt
1, xt`1qdxt`1π0pηqdη

ş
Θ pλpXt

1qπ0pλqdλ (Fubini’s theorem)

“ π0pθ‹q
πtpθ‹q

ş
Θ pηpXt

1qπ0pηqdηş
Θ pλpXt

1qπ0pλqdλ “ Rtpθ‹q.

Furthermore, for the case when t “ 0,

EpR1pθ‹qq “
ż

X1

π0pθ‹q şΘ pηpX1qπ0pηqdη
pθ‹ pX1qπ0pθ‹q pθ‹ pX1qdx1

“ π0pθ‹q
π0pθ‹q

ż

X1

ż

Θ
pηpX1qπ0pηqdηdx1 (Bayes’ rule)

“ π0pθ‹q
π0pθ‹q

ż

Θ

ż

X1

pηpX1qdx1π0pηqdη (Fubini’s theorem)

“ π0pθ‹q
π0pθ‹q

ż

Θ
π0pηqdη “ π0pθ‹q

π0pθ‹q “ R0 “ 1.

Establishing that Rtpθ‹q is a nonnegative martingale with initial value one completes the first step.

Step 2. Ville’s inequality for nonnegative supermartingales [24, 12] implies that for any β ą 0,

Pr pDt P rN s : Rtpθ‹q ě βq ď EpR0pθ‹qq
β

.

In particular, for a threshold α P p0, 1q,

Pr
´

Dt P rN s : Rtpθ‹q ě 1{α
¯

ď α. (B.2)

Define the sequence of sets for t P rN s,
Ct :“ tθ : Rtpθq ď 1{αu.

As a consequence of (B.2), we have that
Pr p@t P rN s, θ‹ P Ctq ě 1 ´ α,

as desired, which completes the proof.
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B.2 Proof of Theorem 3.1
Proof. Similar to the proof of Proposition 2.1, we proceed in two steps. First, we show that the
exponential Hoeffding-type process (3.4) is a nonnegative supermartingale with respect to the filtra-
tion outlined in Section 1.1. We then apply Ville’s inequality to this supermartingale and ultimately
obtain the bound stated in the theorem.
We prove the bound for r0, 1s-bounded random variables but the general result holds by taking any
r), us-bounded random variable, Xi and applying the transformation, Xi ÞÑ pXi ´ )q{pu ´ )q
Step 1. Let pF tqNt“0 be the filtration defined in Section 1.1. Furthermore, let λt ”
λtpX1, . . . , Xt´1q be a sequence of F t´1-measurable random variables. Consider the exponential
Hoeffding-type process pMH

t qNt“0 with a ‘predictable mixture’,

MH
t :“ exp

#
tÿ

i“1

„
λi

`
Xi ´ µ ` Z‹

i´1

˘
´ λ2i

8

+
”

tź

i“1

exp

"
λi

`
Xi ´ µ ` Z‹

i´1

˘
´ λ2i

8

*

where Z‹
i “ 1

N´i

ři
j“1pXj ´ µq and MH

0 “ 0 by convention. Writing the conditional expectation
of this process for any t ě 1,

EpMH
t`1 | F tq “ E

˜
t`1ź

i“1

exp

"
λipXi ´ µ ` Z‹

i´1q ´ λ2i
8

* ˇ̌
ˇ F t

¸

“ MH
t ¨ E

ˆ
exp

"
λt`1pXt`1 ´ µ ` Z‹

t q ´ λ2t`1

8

* ˇ̌
ˇ F t

˙
.

Using the fact that EpXt`1 ´ µ ` Z‹
t | F tq “ 0, the fact that Xt`1 P r0, 1s, and that λt`1 is

F t-measurable, we have by sub-Gaussianity of bounded random variables,

E
´
exp tλt`1pXt`1 ´ µ ` Z‹

t qu
ˇ̌
ˇ F t

¯
ď exp

"
λ2t`1

8

*

and thus EpMH
t`1 | F tq ď MH

t . Therefore, with respect to the filtration pF tqNt“0, we have that MH
t

is a nonnegative supermartingale.

Step 2. Now that we have shown that MH
t is a nonnegative supermartingale, we may apply Ville’s

inequality to obtain,

Pr

ˆ
Dt P rN s : MH

t ě 1

α

˙
ď α.

In particular, with probability at least p1 ´ αq, we have that for all t P rN s, MH
t ă 1

α .

Step 3. ‘Inverting’ the above statement and solving for pµtpλt1q ´ µ, we get that with probability at
least p1 ´ αq, for all t P rN s,

pµtpλt1q ´ µ ă
řt

i“1 λ
2
i {8 ` logp1{αq

řt
i“1 λi

´
1 ` i´1

N´i`1

¯ .

Applying all of the aforementioned logic to ´X1, . . . ,´Xt and ´µ, and taking a union bound, we
arrive at the desired result,

Pr

¨

˝Dt P rN s : |pµtpλt1q ´ µ| ě
řt

i“1 λ
2
i {8 ` logp2{αq

řt
i“1 λi

´
1 ` i´1

N´i`1

¯

˛

‚ď α,

which completes the proof.

Remark: pµt is unconditionally unbiased. Recalling the advantage term At :“ řt
i“1

i´1
N´i`1 , a

short calculation shows that pµt (3.1) has conditional expectation equaling a convex combination of
pµt, µ:

Erpµt`1|Xt
1s “ 1 ` At`1 ´ At

t ` 1 ` At`1
µ ` t ` At

t ` 1 ` At`1
pµt.
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Multiplying both sides by t ` 1 ` At`1, we can write it in a recursive, telescoping form:
Erpt ` 1 ` At`1qpµt`1|Xt

1s “ µ ` pAt`1 ´ Atqµ ` pt ` Atqpµt.

Taking expectation with respect to Xt|Xt´1
1 , and using the above equation to evaluate the last term,

Erpt ` 1 ` At`1qpµt`1|Xt´1
1 s “ 2µ ` pAt`1 ´ At´1qµ ` pt ´ 1 ` At´1qpµt´1.

Unrolling this process out, we see that Erpt ` 1 ` At`1qpµt`1s “ pt ` 1qµ ` pAt`1 ´ A0qµ. Since
A0 ” 0, we conclude that pµt`1 is an unconditionally unbiased estimator of µ.
Interestingly, the without-replacement mean estimator is not necessarily ‘consistent’ (in the sense
of recovering µ after all N samples are drawn). However, the concept of consistency is subtle for
finite populations as there is no longer any uncertainty after all samples are drawn. In any case, the
without-replacement mean estimator was not introduced to replace the usual sample mean estimator
in all without-replacement settings, but was simply the quantity that resulted from attempting to
develop exponential supermartingales within this sample scheme.

B.3 Proof of Theorem 3.2
Proof. Much like the proof of Theorem 3.1, the proof proceeds in three steps: (1) showing that an
exponential empirical Bernstein-type process is a supermartingale, (2) applying Ville’s inequality,
and (3) inverting the process and taking a union bound. Again, we prove the result for r0, 1s-bounded
random variables since for an r), us-bounded random variable Xi, one can make the transformation
Xi ÞÑ pXi ´ )q{pu ´ )q
Step 1. Let pF tqNt“0 be the filtration defined in Section 1.1. Let λt ” λtpX1, . . . , Xt´1q be a
sequence of F t´1-measurable random variables. Consider the exponential empirical Bernstein-type
process, pME

t qNt“0 with a ‘predictable mixture’,

ME
t :“ exp

#
tÿ

i“1

“
λi

`
Xi ´ µ ` Z‹

i´1

˘
´ 4pXi ´ pµi´1q2ψEpλiq

‰
+

”
tź

i“1

exp
&
λi

`
Xi ´ µ ` Z‹

i´1

˘
´ 4pXi ´ pµi´1q2ψEpλiq

(

where ME
0 :“ 0. Writing out the conditional expectation of ME

t`1 given F t for t P rN s,
E

`
ME

t`1 | F t

˘
“ ME

t ¨ E
´
exp

!
λt`1 pXt`1 ´ µ ` Z‹

t q ´ 4ψEpλt`1q pXt`1 ´ pµtq2
) ˇ̌

ˇ F t

¯
.

Therefore, it suffices to show that for any t P rN s,
E

´
exp

!
λt`1 pXt`1 ´ µ ` Z‹

t q ´ 4ψEpλt`1q pXt`1 ´ pµtq2
) ˇ̌

ˇ F t

¯
ď 1.

For succinctness, denote

Yt`1 :“ Xt`1 ` 1

N ´ t

tÿ

j“1

Xj ´ N

N ´ t
µ and δt :“ pµt ` 1

N ´ t

tÿ

j“1

Xj ´ N

N ´ t
µ.

Note that Yt`1 is conditionally mean zero. It then suffices to prove that for any p0, 1q-bounded, F t-
measurable λt`1 ” λt`1pX1, . . . , Xtq,

E
«
exp

#
λt`1Yt`1 ´ 4pYt`1 ´ δtq2ψEpλt`1q

+ ˇ̌
ˇ F t

ff
ď 1.

Indeed, in the proof of Proposition 4.1 in Fan et al. [25], exptξλ ´ 4ξ2ψEpλqu ď 1 ` ξλ for any
λ P r0, 1q and ξ ě ´1. Setting ξ :“ Yt`1 ´ δt “ Xt`1 ´ pµt,

E
«
exp

#
λt`1Yt`1 ´ 4pYt`1 ´ δtq2ψEpλt`1q

+ ˇ̌
ˇ F t

ff

“ E
”
exp

!
λt`1pYt`1 ´ δtq ´ 4pYt`1 ´ δtq2ψEpλt`1q

) ˇ̌
F t

ı
exppλt`1δtq

ď E
”
1 ` pYt`1 ´ δtqλt`1 | F t

ı
exppλt`1δtq piq“ E

“
1 ´ δtλt`1 | F t

‰
exppλt`1δtq

piiq
ď 1,

where equality piq follows from the fact that Yt`1 is conditionally mean zero as mentioned earlier,
and inequality piiq follows from the inequality 1 ´ x ď expp´xq for all x P R.
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Step 2. Now that we have established that ME
t is a nonnegative supermartingale, we apply Ville’s

inequality to obtain,

Pr

ˆ
Dt P rN s : ME

t ě 1

α

˙
ď α.

Step 3. Solving for pµt ´ µ in the inequality in the above probability statement, we get that

Pr

¨

˝Dt P rN s : pµt ´ µ ě
řt

i“1 4ψEpλiqpXi ´ pµi´1q2 ` logp1{αq
řt

i“1 λi
´
1 ` i´1

N´i`1

¯

˛

‚ď α.

Applying the same logic to ´X1, . . . ,´Xt and ´µ, and taking a union bound, we arrive at the
desired result,

Pr

¨

˝Dt P rN s : |pµt ´ µ| ě
řt

i“1 4ψEpλiqpXi ´ pµi´1q2 ` logp2{αq
řt

i“1 λi
´
1 ` i´1

N´i`1

¯

˛

‚ď α.

C Sampling multivariate binary variables WoR
The prior-posterior martingale from Section 2.2 extends naturally to the multivariate case as follows.
Suppose we have N objects, each belonging to one of K ě 2 categories, and there are N‹

1 , . . . , N
‹
K

objects from each category, respectively. Let c denote the category of a randomly sampled object,
and let

X :“ p1pc “ 1q 1pc “ 2q ¨ ¨ ¨ 1pc “ Kqq .
Then X is said to follow a multivariate hypergeometric distribution with parameters N ,
pN‹

1 , . . . , N
‹
Kq, and n “ 1 and has probability mass function,

PrpX “ xq “
śK

k“1

`
N‹

k
xk

˘
`
N
n

˘ .

Note that
řK

k“1 xk “ 1 and xk P t0, 1u for each k P t1, . . . ,Ku. More generally, if n ě 2
objects are sampled WoR, then X would have the same probability mass function with x1, . . . , xK P
t1, . . . , nu such that

řK
k“1 xk “ n. As in Section 2.2, we will consider the case where n “ 1 for

notational simplicity.
Let us now view this random variable and the fixed multivariate parameter N‹ :“ pN‹

1 , . . . , N
‹
Kq

from the Bayesian perspective as in Section 2.2 by treating N‹ as a random variable which we
denote by rN‹ to avoid confusion. Suppose that

Xt | p rN‹,X1, . . . ,Xt´1q „ MultHyperGeo

˜
N ´ pt ´ 1q, rN‹ ´

t´1ÿ

i“1

Xi, 1

¸
, and

rN‹ „ DirMultpN, aq
for some a :“ pa1, . . . , aKq with ak ą 0 for each k P t1, . . . ,Ku. Then for any t P t1, 2, . . . , Nu,

rN‹ ´
tÿ

i“1

Xi | pX1, . . . ,Xtq „ DirMult

˜
N ´ t,a `

tÿ

i“1

Xi

¸
.

With these prior and posterior distributions, we’re ready to invoke Proposition 2.1 to obtain a se-
quence of confidence sets for N‹.
Theorem C.1 (Confidence sequences for multivariate hypergeometric parameters). Suppose that

Xt | pX1, . . . ,Xt´1q „ MultHyperGeo

˜
N ´ pt ´ 1q,N‹ ´

t´1ÿ

i“1

Xi, 1

¸
.
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Let π0 and πt be the Dirichlet-multinomial prior with positive parameters a “ pa1, . . . , aKq and
corresponding posterior, πt, respectively. Then the sequence of sets pCtqNt“0 defined by

Ct :“
#
n P t0, . . . , NuK :

Kÿ

k“1

nk “ N and
π0pnq
πtpnq ă 1

α

+

is a p1 ´ αq-CS for N‹. Furthermore, the running intersection,
Ş

sďt Ct is a p1 ´ αq-CS for N‹.

Proof. This is a direct consequence of Theorem 2.1 applied to the multivariate hypergeometric dis-
tribution with a Dirichlet-multinomial prior.

D Coupling the ‘prior’ with the stopping rule to improve power
Somewhat at odds with their intended use-case, working ‘priors’ need not always be chosen to reflect
the user’s prior information. When approximating p-values for permutation tests, for example, it is
of primary interest to conclude whether Pperm is above or below some prespecified αperm P p0, 1q
with high confidence as quickly as possible. As discussed in Theorem 2.1, the CS for Pperm will
shrink to a single point regardless of the prior, so if Pperm is much larger or much smaller than αperm,
we expect to discover the decision rule, “reject” versus “do not reject” rather quickly. It is when
Pperm is very close to αperm that the user desires sharper confidence intervals, so that they can make
decisions sooner (see Figure 7). In this case, they simply need to place more mass near the decision
boundary, with a necessary tradeoff between the sharpness of confidence sets near αperm and the size
of the neighborhood around αperm for which this sharpness is realized.
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Figure 7: Comparing priors for Example B: using a uniform prior versus a prior peaked near 0.05.
When the decision rule is to stop whenever the CS is entirely on one side of 0.05, coupling the prior
to the decision rule leads to earlier stopping.

E Choosing a λ-sequence for Hoeffding and empirical Bernstein CSs
Recall the Hoeffding-type CS of Theorem 3.1,

CH
t :“ pµtpλt1q ˘

řt
i“1 ψHpλiq ` logp2{αq
ř

i λi
´
1 ` i´1

N´i`1

¯

looooooooooooooomooooooooooooooon
width Wt

In Section 3, we presented the λ-sequence,

λt :“
d

8 logp2{αq
t logpt ` 1qpu ´ )q2 ^ 1

u ´ )
. (E.1)

This is visually similar to the single value of λ P R,

λ :“
d

8 logp2{αq
t0pu ´ )q2
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which optimizes the bound for time t0. Two natural questions arise: (1) where did the extra logptq
in (E.1) come from, and (2) why this particular λ-sequence and not others? The answers to these
questions are based on some heuristics derived by Waudby-Smith and Ramdas [26] in the with-
replacement setting. To make matters simpler, ignore the

´
1 ` i´1

N´i`1

¯
term in the CS and consider

the scaling of the width Wt,

Wt —
řt

i“1 ψHpλiqřt
i“1 λi

—
řt

i“1 λ
2
iřt

i“1 λi
.

When the method of mixtures is used to obtain CSs in the with-replacement setting, their widths
often follow a

a
log t{t rate [1]. Following the approximations in Table 1, we may opt to pick a

sequence pλiq8
i“1 which scales like 1{?

i log i to obtain a width Wt —
a
log t{t. In particular, scal-

ing λi as 1{?
i log i is simply an effort to obtain CSs with reasonable widths. The same arguments

combined with (3.9) can be applied to the empirical Bernstein CS to obtain (3.13).
Furthermore, we truncate the λ-sequence in E.1 to prevent the CS width from being dominated by
large λt at small t. It is important to keep in mind that any sequence would have yielded a valid
CS. The choice presented here was derived based on a heuristic argument and kept because of its
reasonable empirical performance.

Sequence pλiq8
i“1

řt
i“1 λi

řt
i“1 λ

2
i Width Wt

— 1{i — log t — 1 1{ log t
—

a
log i{i — ?

t log t — log2 t — log3{2 t{
?
t

— 1{
?
i —

?
t — log t — log t{

?
t

— 1{?
i log i —

a
t{ log t — log log t —

a
log t{t

— 1{?
i log i log log i —

a
t{ log t — log log log t —

a
log t{t

Table 1: Above, we think of log x as 1_ logp1_xq to avoid trivialities. The claimed rates are easily
checked by approximating the sums as integrals, and taking derivatives. For example, d

dx log log x “
1{x log x, so the sum of

ř
iďt 1{i log i — log log t. It is worth remarking that for t “ 1080, the

number of atoms in the universe, log log t « 5.2, which is why we treat log log t as a constant when
expressing the rate for Wt. The iterated logarithm pattern in the the last two lines of the table can be
continued indefinitely.

F Comparing our CSs to those implied by Bardenet & Maillard
Bardenet & Maillard [14, Theorem 2.4] provide the following two time-uniform Hoeffding-Serfling
inequalities when sampling bounded real numbers WoR from a finite population. For any n P rN s,

Pr

˜
Dt P t1, . . . , nu :

1

N ´ t

tÿ

i“1

pXi ´ µq ě nε

N ´ n

¸
ď exp

"
´ 2nε2

p1 ´ pn ´ 1q{Nqpu ´ )q2
*

and

Pr

˜
Dt P tn, . . . , N ´ 1u :

1

t

tÿ

i“1

pXi ´ µq ě ε

¸
ď exp

"
´ 2nε2

p1 ´ n{Nqp1 ` 1{nqpu ´ )q2
*
.

Inverting these inequalities and taking a union bound to get two-sided inequalities, we have

1

t

tÿ

i“1

Xi ˘ npN ´ tq
tpN ´ nq

c
logp4{αqp1 ´ pn ´ 1q{Nqpu ´ )q2

2n
when t ď n (F.1)

1

t

tÿ

i“1

Xi ˘
c

logp4{αqp1 ´ n{Nqp1 ` 1{nqpu ´ )q2
2n

when t ě n (F.2)

is a p1 ´ αq CS for µ. We term the CS defined by (F.1) and (F.2) as the Bardenet-Maillard CS for
simplicity.
A comparison of the aforementioned CS to our Hoeffding-type CS is displayed in Figure 9, where
we see that our bound is roughly as tight as the Bardenet-Maillard CS at the time of optimization,
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Figure 8: Hoeffding CSs based on fixed λ values optimized for times 30 and 800, respectively
alongside the CS based on the λ-sequence in (E.1). Notice that no CS uniformly dominates the
others, but that the sequence in (E.1) acts as a middle ground between the other two.

while our bounds are (much) tighter everywhere else. This phenomenon was observed and studied in
the with-replacement setting, attributing the benefits of confidence bounds like our Hoeffding CS to
an underlying ‘line-crossing’ inequality being uniformly tighter than an underlying Freedman-type
inequality. For more information on the with-replacement analogy, we direct the reader to the pair
of papers by Howard et al. [1, 12]. Returning back to the WoR setting, we remark that (F.1) uses the
standard sample mean, but we use a more sophisticated sample mean (3.1).
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Figure 9: A comparison of our Hoeffding-type CS against the Hoeffding-Serfling CS of Bardenet &
Maillard [14]. Our Hoeffding CS appears to be as tight as the Hoeffding-Serfling bound at the time
of optimization, but tighter at all other times.
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G Time-uniform versus fixed-time bounds
A natural question to ask is, ‘how much does one sacrifice by using a time-uniform CS instead of
a fixed-time confidence interval’? The answer to this question will depend largely on the type of
bound used, the underlying finite population, and other factors. However, in the case of sampling
binary numbers from a finite population, it seems that the answer is ‘not much’. In Figure 10, we
display the fixed-time Hoeffding confidence interval of Corollary 3.1 alongside its time-uniform
counterpart from Theorem 3.1 and the prior-posterior ratio CS from Theorem 2.1. In terms of the
width of confidence bounds, we find that not much is lost by using the two aforementioned CSs over
the fixed-time Hoeffding confidence interval. For this small price, the user is awarded the flexibility
that comes with using CSs such as properties (a), (b), and (c) described in the Introduction.
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Figure 10: Comparing fixed-time and time-uniform confidence bounds for sampling binary numbers
from a population of size 1000, consisting of 500 ones and 500 zeros. The dotted red line shows the
fixed-time Hoeffding bound of Corollary 3.1, while the dashed green and solid blue lines refer to
the time-uniform Hoeffding-type CS and the prior-posterior ratio CS, respectively. Notice that the
increase in confidence bound width that results from using a time-uniform bound is relatively minor.

H Computational considerations
When using the CSs of Theorems 2.1, 3.1, and 3.2 in practice, it is important to keep in mind the
computational costs associated with each method. For fixed values of λ, updating the Hoeffding and
empirical Bernstein CSs at a each time t takes constant time and constant memory, since all calcu-
lations involve cumulative sums (or averages). Furthermore, optimal values of λ can be computed
as in (3.6) for Hoeffding-type bounds and approximated as in (3.11) for empirical Bernstein-type
bounds, all in constant time. On the other hand, the prior-posterior ratio (PPR) CS of Theorem 2.1
is the more computationally expensive method among those presented, but can still be computed
quickly for many problems. In order to find the CS,

Ct :“
"
n` P rN s : π0pn`q

πtpn`q ă 1

α

*
,

one must find all values in t0, . . . , Nu which, when provided as an input to π0p¨q
πtp¨q are less than 1{α.
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Therefore, computing the entire CS takes OpPN2q time where P is the time required to compute
π0pnq{πtpnq. In all of the PPR CSs presented in this paper, we used computationally tractable
conjugate priors, so P “ 1. We believe more sophisticated root-finding methods can be employed
to arrive at a time of OpN logpPNqq, but these methods are reasonably fast in our experience.
Moreover, the PPR CS can be computed on a subset of rN s if needed, and is parallelizable.
For reference, we provide average computation times in Table 2. All calculations were measured us-
ing Python’s default time package and were performed in Python 3.8.3 using the numpy and scipy
packages on a quad-core CPU with 8 threads at 1.8GHz each. However, no parallel processing was
performed aside from the default multithreading provided by Python.

Time in seconds (std. dev.)
Hoeffding 2.13 ˆ 10´4 (2.88 ˆ 10´5)
Empirical Bernstein 2.35 ˆ 10´4 (3.24 ˆ 10´5)
Prior-posterior ratio 0.306 (0.0115)

Table 2: Average time taken to compute the various CSs for N “ 1000 discrete observations with
equal numbers of ones and zeros, with standard deviations for 100 repeated experiments.

I Simple experiments for computing miscoverage rates
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Figure 11: Empirical miscoverage probabilities for our empirical Bernstein, Hoeffding, and prior-
posterior CSs. The left plot compares empirical Bernstein and Hoeffding for a population of N “
10, 000 consisting of bounded, real-valued observations uniformly distributed on the unit interval.
The plot on the right-hand side compares all three for a population of the same size containing
discrete elements with zeros and ones in equal proportions. Notice that while the empirical Bernstein
CS does reasonably well in both settings, none of the three methods uniformly dominates the others.

Typically, in nonparametric testing, there is no ‘uniformly most powerful’ test: any test achieving
high power against some class of alternatives must necessarily be less powerful against some other
class of alternatives, while a different test may display the opposite behavior. An analogous story
holds for nonparametric estimation as well: the class of bounded random variables (or sequences of
bounded random numbers) is nonparametric, and in such a setting, no single estimation technique
can uniformly dominate all others (that is, always have lower width for any bounded sequence).
This phenomenon is easy to exemplify for our confidence sequences: we can construct settings
where the Hoeffding-type CS is less conservative (tighter estimation, more powerful as a test) than
the empirical-Bernstein CS, and other settings in which the opposite is true. Figure 11 considers
two such ‘opposite’ scenarios: the binary setting which maximizes the variance of the sequence,
and another setting in which the observations are uniformly distributed on r0, 1s. In the first setting,
there is no point in ‘estimating’ the variance (empirical-Bernstein) as opposed to just assuming that
it is the maximum possible variance (Hoeffding-type), and so the former is more conservative than
the latter. In the second setting, the Hoeffding CS is far more conservative, as expected. With no
prior knowledge on the type of sequence to be encountered, the empirical Bernstein CS seems like
a safer choice.
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