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Abstract

This paper shows that deep learning, i.e., neural networks trained by SGD, can learn
in polytime any function class that can be learned in polytime by some algorithm,
including parities. This universal result is further shown to be robust, i.e., it holds
under possibly poly-noise on the gradients, which gives a separation between deep
learning and statistical query algorithms, as the latter are not comparably universal
due to cases like parities. This also shows that SGD-based deep learning does not
suffer from the limitations of the perceptron discussed by Minsky-Papert ’69. The
paper further complements this result with a lower-bound on the generalization
error of descent algorithms, which implies in particular that the robust universality
breaks down if the gradients are averaged over large enough batches of samples as
in full-GD, rather than fewer samples as in SGD.

1 Introduction

It is known that the class of neural networks (NNs) with polynomial network size can express
any function that can be implemented in a given polynomial time [Par94, Sip06], and that their
sample complexity scales polynomially with the network size [AB09]. Thus NNs have favorable
approximation and estimation errors. However there is no known efficient training algorithm for
NNs with general and provable guarantees, in particular, it is NP-hard to implement the ERM rule
[KS09, DSS16]. The success behind deep learning is to train deep NNs with stochastic gradient
descent or the like, which gives record performances in various applications [KSH12, HDY+12,
LBBH98, LBH15, GBC16].

It is thus natural to ask whether SGD can also control efficiently the third pillar of statistical learning,
i.e., the optimization error, turning deep learning into a universal learning paradigm that can learn
efficiently any efficiently learnable class; see [SSBD14] for further discussions on this question.

This paper answers this question in the affirmative, with the following contributions and implications:

1. It is shown1 that poly-size neural nets trained by SGD with poly-many steps can learn any
function class that is learnable by an algorithm that runs in polytime and with poly-many
samples; see Theorem 1. This part is resolved using a net initialization that is implemented
in polytime (and not dependent on the function to be learned nor the data) and that emulates
with SGD any efficient learning algorithm. This shows in particular that SGD-based deep
learning is P-complete: any algorithm in P can be reduced to training with SGD a neural net
initialized in polytime with a proper non-linearity and evaluating the net (see Remark 2).

1This paper discusses results that are asymptotic in the dimension n of the data, i.e., the number of inputs
to the neural net. The term ‘poly’ is used to emphasize that the considered quantities scale polynomially with
n, i.e., nc for a constant c. This can be polynomially large if c � 0 or polynomially small if c < 0. In some
parts, we make abuse of terminologies and simply say poly/polynomially when it is clear from the context which
direction is considered; e.g., only a noise variance that is polynomially small is interesing in our context, not a
noise variance that is polynomially large (which would be a huge noise).
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2. We further show that this positive result is achieved with robustness: polynomial noise
can be added to the gradients and weights can be of polynomial precision and the result
still holds; see Theorem 2. Therefore, in a learning theoretic sense, deep learning gives a
universal learning paradigm: approximation, estimation and also optimization errors are all
controllable with polynomial parameters, and this is not degenerate as it can be implemented
with polynomial precision. This also creates a separation between deep learning and
statistical query algorithms, as the latter are not comparably universal due to cases like
parities [Kea98].

3. Parities were known to be challenging since the work of Minsky-Papert for the perceptron
[MP87], and our positive result requires indeed more than a single hidden layer to succeed,
i.e., O(log n) layers2 (see Example 1 in Appendix). In particular, our universality result
together with [Raz16] imply that there exists function classes that require large enough
nets to be learned with SGD: we know from [Raz16] that a net with o(n2/ log(n)) edges of
polynomial precisions cannot learn parities with poly-many samples, and thus with SGD, in
polytime (even though one can represent parities with such size and depth 2); our result now
shows that a net of size n2 and O(log n) layers can learn parities with SGD in polytime.

4. A lower-bound is derived for descent algorithms on neural nets that shows that learning
is impossible with polynomial precision if the junk-flow does not overcome the cross-
predictability; see definitions in Section 2 and Theorem 3. The cross-predictability cor-
responds to an inverse average-case notion of statistical dimension that is classical in SQ
algorithms [BFJ+94, Kea98, BKW03, Fel16], and the junk-flow is a quantity that is specific
to descent algorithms. This shows in particular that the robust universality does not hold
when replacing the stochastic gradients with perfect gradients on the entire population
distribution or with large enough polynomial batches of fresh samples, in agreement with
the results from SQ algorithms [Kea98, BFJ+94]. Therefore, some small amount of stochas-
ticity3 is needed to obtain the robust universality in our setting. The junk-flow also gives a
measure for tackling lower-bounds for gradient descent algorithms more specifically.

In a practical setting, there may be no reason to use our SGD replacement to a general learning
algorithm, but this universality result emphasizes the breadth of deep learning in the computational
learning context and the fact that negative results about deep learning cannot be obtained without
further constraints. A natural direction to pursue is typical architectures and initializations.

1.1 Problem formulations and learning objectives

We focus on Boolean functions to simplify the setting. Since it is known that any Boolean function
that can be computed in time O(T (n)) can also be expressed by a neural network of size O(T (n)2)
[Par94, Sip06], it is not meaningful to ask whether any such function f0 can be learned with a
poly-size NN and a descent algorithm that can depend on f0; one can simply pre-set the net to express
f0. Two more meaningful questions are: (1) Can one learn a given function with an agnostic/random
initialization? (2) Can one learn an unknown function from a class or distribution with a proper
initialization?

For the second question, one is not given a specific function f0 but a class of functions, or more
generally, a distribution on functions. Therefore, one can no longer preset the net as desired in an
obvious way. We focus here mainly on question 2, which is classical in statistical learning [SSBD14],
and which gives a more general framework than restricting the initialization to be random. Moreover,
in the case of symmetric function distributions, such as the parities discussed below, failure at 2
implies failure at 1. Namely, if we cannot learn a parity function for a random selection of the support
S (see definitions below), we cannot learn any given parity function on a typical support S0 with a
random initialization of the net, because the latter is symmetrical.

We thus have the following setting:

2One can reduce the number of layers by using threshold gates in the computation component of arbitrary
fan-in; see Section 4

3The stochasticity of SGD has also been advocated in contexts such as stability, implicit regularization or to
avoid bad critical points [HRS16, ZBH+16, PP17, KLY18].
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• Let D = {+1, �1} and X = Dn be the data domain and let Y = {+1, �1} be the label
domain. We work with binary vectors and binary labels for convenience (several of the
results extend beyond this setting with appropriate reformulation of definitions).

• Let PX be a probability distribution on the data domain X and PF be a probability distri-
bution on YX (the set of functions from X to Y). We also assume for convenience that
these distributions lead to balanced classes, i.e., that P (F (X) = 1) = 1/2 + on(1) when
(X, F ) ⇠ PX ⇥ PF (non-balanced cases require adjustments of the definitions).

• Our goal is to learn a function F drawn under PF by observing labelled examples (X,Y )
with X ⇠ PX , Y = F (X).

• In order to learn F we can train our algorithm on labelled examples with a descent algorithm
starting with an initialization f (0) and running for a number of steps T = T (n) (other
parameters of the algorithm such as the learning rate are also specified). In the case of
perfect GD, each step accesses the full distribution of labelled examples, while for SGD, it
only accesses a single labelled example per step (see definitions below). In all cases, after
the training with (f (0), T ), the algorithm produces an estimator F̂f(0),T of F . We say that
an algorithm achieves an accuracy of ↵ in T time steps for the considered (PX , PF ), if a
net with initialization f (0) can be constructed such that:

P (F̂f(0),T (X) = F (X)) � ↵, (1)

where the above probability is over (X,F ) ⇠ (PX ⇥ PF ) and any randomness potentially
used by the algorithm. We refer to typical-weak learning when ↵ = 1/2 + ⌦n(1). In other
words, when we can predict the label of a new fresh sample from PX with accuracy strictly
better than random guessing.

Failing at typical-weak learning implies failing at most other learning requirements, such as PAC
learning a class for the case of a uniform distribution on a certain class of functions [BKW03, MRT12].
For our positive results with SGD, we will not only show that one can efficiently typically weakly
learn any function distribution that is efficiently typically weakly learnable, but that we can in fact
reproduce whatever accuracy an algorithm can achieve for the considered distribution. We also
shorten ‘typical-weak learning’ to simply ‘learning’ and talk about learning a ‘function distribution’
or a ‘distribution’ when referring to learning a pair (PX , PF ).

Example. The problem of learning parities corresponds to PX being uniform on {+1, �1}n and
PF uniform on the set of parity functions defined by P = {ps : s ✓ [n]}, where ps : {+1, �1}n !
{+1, �1} is such that ps(x) =

Q
i2s

xi. So nature picks S uniformly at random, and with knowledge
of P but not S, the problem is to learn which set S was picked from samples (X, pS(X)).

2 Results

2.1 Definitions and models

We use a fairly generic notion of neural nets, simply weighted directed acyclic graphs with a special
vertex for the output, a special set of vertices for the inputs, and a non-linearity at the other vertices.
Definition 1. A neural net is defined by a pair of a non-linearity function f : R ! R and a weighted
directed graph G with some special vertices and the following properties. G does not contain any
cycle and there exists n > 0 such that G has exactly n + 1 vertices that have no edges ending at
them, v0, v1,...,vn. We refer to n as the input size, v0 as the constant vertex and v1, v2,..., vn as the
input vertices. Further, there exists a vertex vout such that for any other vertex v0, there is a path
from v0 to vout in G. We also denote by W = w(G) the weights on the edges of G. We denote by
eval(f,G)(x) the evaluation of neural net (f, G) at an input x (or eval(G)(x) if f is implicit). We
also use the shortcut notation W (x) for evalG(x), when G is implicit, with a slight abuse of notation
between W (G) and W (X) (but the argument in W () clarifies the definition).

For a loss function L, a target function h, and a net (f, G), the net’s loss at a given input x is
L(h(x) � eval(f,G)(x)).

Note that as we have defined them, neural nets generally give outputs in R rather than {0, 1}. As
such, when talking about whether training a neural net by some method learns Boolean functions,
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we will implicitly be assuming that the output of the net on the final input is thresholded at some
predefined value or the like. None of our results depend on exactly how we deal with this part.
Definition 2. Let n > 0, ↵ 2 [0, 1], PX be a probability distribution on {0, 1}n, and PF be
a probability distribution on the set of functions from {0, 1}n to {0, 1}. Also, let X0, X1, ... be
independently drawn from PX and F ⇠ PF . An algorithm learns (PF , PX ) with accuracy ↵ in T
time steps if the algorithm is given the value of (Xi, F (Xi)) for each i < T and, when given the
value of XT ⇠ PX independent of F , it returns YT such that P(F (XT ) = YT ) � ↵.

Algorithms such as SGD (or Gaussian elimination from samples) fit under this definition. For SGD,
the algorithm starts with an initialization W (0) of the neural net weights, and updates it sequentially
with each sample (Xi, F (Xi)) as W (i) = g(Xi, F (Xi), W (i�1)) where g(Xi, F (Xi), W (i�1)) =
W (i�1) � �rL(evalW (i�1)(Xi), F (Xi)), i < T . It then outputs YT = evalW (T�1)(XT ). For SGD
with batch-size m and fresh samples, one has to update the previous definition with not a single
sample at each time step but m i.i.d. samples at each time step, computing the empirical average
of the query. The extreme case of perfect-GD corresponds to m being infinity. So GD proceeds
successively with the following (F, PX )-dependent updates W (i) = EX⇠PX g(X, F (X), W (i�1))
for i < T for the same function g as in SGD. We also consider a noisy version of the above, to ensure
that the algorithm is not succeeding due to infinite precision but with robustness.

2.2 Positive results

Our first result shows that for any distribution that can be learned by some algorithm in polytime,
with poly-many samples and with accuracy ↵, there exists an initialization (which means a neural
net architecture with an initial assignment of the weights) that is constructed in polytime and that
is agnostic to the function to be learned, such that training this neural net with SGD and possibly
poly-noise learns this distribution in poly-steps with accuracy ↵ � o(1).
Theorem 1. For each n > 0, let PX be a probability measure on {0, 1}n, and PF be a probability
measure on the set of functions from {0, 1}n to {0, 1}. Next, define ↵ = ↵n such that there is some
algorithm that takes a polynomial number of samples (Xi, F (Xi)) where the Xi are i.i.d. under
PX , runs in polynomial time, and learns (PF , PX ) with accuracy ↵. Then there exists � = o(1), a
polynomial-sized neural net (Gn, �) constructed in polytime, and a polynomial Tn such that using
stochastic gradient descent with learning rate � to train (Gn, �) on Tn samples ((Xi, Ri, R0

i
), F (Xi))

where4 (Xi, Ri, R0
i
) ⇠ PX ⇥ Ber(1/2)2 learns (PF , PX ) with accuracy ↵ � o(1).

Remark 1. As a special case, one can construct in poly-time a net (f, g) that has poly-size such
that for a learning rate � and an integer T that are at most polynomial, (f, g) trained by SGD with
learning rate � and T time steps learns parities with accuracy 1 � o(1). In other words, random
bits are not needed for parities, as parities can be learned with a deterministic algorithm using only
samples of the same label without producing bias (see Section 4). Previous theorem also implies that
SGD on neural nets can efficiently PAC-learn parities (or any class that is efficiently PAC-learnable).

We now show that the previous result can be extended when sufficiently low amounts of inverse-
polynomial noise are added to the weight of each edge in each time step. In particular, the previous
theorem is not a degeneracy due to infinite precision.
Theorem 2. For each n > 0, let PX be a probability measure on {0, 1}n, and PF be a probability
measure on the set of functions from {0, 1}n to {0, 1}. Let tn polynomial in n. Next, define ↵ = ↵n

such that there is some algorithm that takes tn samples (Xi, F (Xi)) where the Xi are independently
drawn from PX and F ⇠ PF , runs in polynomial time, and learns (PF , PX ) with accuracy ↵.
Then there exists � = ⇥(1), and a polynomial-sized neural net (Gn, f) such that using perturbed
stochastic gradient descent with precision noise5 � 2 [�1/(n2tn), 1/(n2tn)]tn⇥|E(Gn)|, learning
rate �, and loss function L(x) = x2 to train (Gn, f) on tn samples6 ((Xi, Ri), F (Xi)) where
(Xi, Ri) ⇠ PX ⇥ Ber(1/2) learns (PF , PX ) with accuracy ↵ � o(1).
Corollary 1. For any c > 0, there exists a universal polytime initialization of a poly-size neural
net, such that if samples are produced from a distribution that is learnable with accuracy ↵ by some

4We use Ber(1/2) to denote the Bernoulli distribution on {0, 1}.
5This means that each weight at each time step of SGD is perturbed by an amount bounded by 1/(n2tn).
6Formally the samples should be converted to ((2Xi � 1, 2Ri � 1), 2F (Xi)� 1), i.e., valued in {�1, 1} to

be consistent with the rest of the notations.
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algorithm working with an upper bound nc on the number of samples and the time needed per sample,
then SGD run in polytime with poly-many samples and possibly inverse-poly noise will succeed in
learning the distribution with accuracy ↵ � on(1).
Remark 2. More generally, the process of training a neural net with noisy SGD is P-complete
in the following sense. Let A be a polynomial time algorithm that receives a binary string
as input and then returns a value in {0, 1}. For every T polynomial in n there exists a
neural net (Gn, f), learning rate and inverse polynomial level of noise such that when this
net is trained for T time steps on (X0, Y0), ..., (XT�1, YT�1) using noisy SGD and then
run on XT it returns A(X0, Y0, X1, Y1, ..., YT�1, XT ) with high probability for all possible
(X0, Y0), ..., (XT�1, YT�1), XT . The previous theorem is simply the case of this where A is an
algorithm that learns a function from random samples.
Remark 3. While the learning algorithm used in Theorem 2 does not put a bound on how large
the edge weights can get during the learning process, we can do this in such a way that there is a
constant that the weights will never exceed.

Recall that in SQ algorithms [Kea98], for a query �, the oracle returns EX�(X, F (X)) within an
error of ⌧ , where the range of � is typically normalized to 1. Note that the expectation is on the
population distribution, so SGD is not an SQ algorithm in that sense. In order for SQ to learn
a function class, [BFJ+94] shows that the number of queries times the signal-to-noise ratio 1/�2

has to overcome the statistical dimension of the class. Since the statistical dimension of parities
is exponentially large, under polynomially small noise, SQ algorithms cannot learn parities with
polynomially many queries.
Remark 4. Theorem 2 shows in particular that parities can be learned efficiently by SGD on neural
nets (see Example 1 in Appendix for more details), even with an amount of noise that is polynomial
and that prevents SQ algorithms from learning parities. Thus, Theorem 2 shows a separation between
SGD-based deep learning and SQ algorithms. We further discuss this phenomenon in the next section.

2.3 Negative results

2.3.1 GD and large averages

We saw that training neural nets with SGD and polynomial parameters is universal in that it can
learn any efficiently learnable distribution. We now give a lower-bound for learning with a family of
“descent algorithms” which includes GD and SGD. This implies in particular that the universality
is lost once perfect gradients are used, or once a large number of fresh samples are used to average
each gradient, in agreement with the bounds from SQ algorithms [BFJ+94, FGV17, Kea98, BKW03,
Fel16, Yan05, FGR+17, SVW15]. The theorem also gives a new quantity, the “junk-flow”, which
can be used to lower bound the performance of “descent algorithms” beyond the number of queries.
Definition 3 (Descent algorithms). Consider for each n > 0 a neural net of size |E(n)| initialized
with weights W (0). A descent algorithm running for T time steps is defined by a sequence of query
functions {Gt}t2[T ] that rely at each time steps on m samples7, a query range8 of A, a parameter �2

for the noise variance, and operates by updating at each iterate the weights by

W (t) = W (t�1) � E
X⇠P̂

S
(t)
m

Gt�1(W
(t�1)(X), F (X)) + Z(t), t = 1, . . . , T (2)

where {Z(t)}t2[T ] are i.i.d. N (0, �2I|E(n)|), {S(t)
m }t2[T ] are i.i.d. with S(t)

m = (X(t)
1 , . . . , X(t)

m ) i.i.d.
under PX (P̂

S
(t)
m

denotes the empirical distribution of S(t)
m ), and {Z(t)}t2[T ] and {S(t)

m }t2[T ] are
independent.

We use the notation S(<t)
m = (S(1)

m , . . . , S(t�1)
m ) and S(t)

m = (S(1)
m , . . . , S(t)

m ).
Remark 5. Note if one constraints the net architecture and initialization to be classical ones, then a
descent algorithm is more restrictive than an SQ algorithm because it forces the algorithm to make
edits on the memory (i.e., the neural net) by making sequential linear corrections as in (2), whereas

7These are i.i.d. from the distribution PX with labels from F in the context of this section.
8We call the range of a function to be A if any value of the function potentially exceeding A (or �A) is

rounded at A (or �A). I.e., as for SQ, the signal magnitude cannot grow unbounded compared to the noise.
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SQ algorithms can store and adapt the queries as desired. Note also that for a differentiable loss L,
Gt = �t[rL]A gives gradient descent with fresh batches, and we refer to the case where X is drawn
from the true data distribution, i.e, m = 1 as perfect-GD.

Definition 4 (junk-flow). Using the notation in the previous definition, define the junk flow of an
initialization W (0) with data distribution PX , T steps and queries {Gt}t2[T ] by

JF = JF(W (0), PX , {Gt}t2[T ]) :=
TX

t=1

(EtkGt(W
(t�1)
? (X), Y )k2

2)
1/2. (3)

where (X, Y ) ⇠ PX ⇥ UY are independent of all other random variables, W (0)
? = W (0), W (t)

? =

W (t�1)
? � (1/m)

P
m

i=1 Gt(W
(t�1)
? (X(t)

i
), Y (t)

i
) + Z(t), t 2 [T ], with Y (t)

i
i.i.d. under UY and

independent of all other random variables, and Et is the expectation over S(<t)
m , Z(<t), X, Y . That is,

the junk-flow is the power series over all time steps of the root of the expected gradient squared-norm
when running GD on random samples with completely random labels.

Definition 5 (Cross-predictability). For a positive integer m, a probability measure PX on the data
domain X , and a probability measure PF on the class of functions F from X to Y = {+1, �1}, we
define the cross-predictability (of order m) by

CPm(PX , PF ) := E(Xm,F,F 0)⇠P
m

X ⇥PF ⇥PF (EX⇠PXm F (X)F 0(X))2, (4)

where Xm = (X1, . . . , Xm) has i.i.d. components under PX , F, F 0 are independent of Xm and
i.i.d. under PF , and X is drawn independently of (F, F 0) under the empirical measure of Xm, i.e.,
PXm = 1

m

P
m

i=1 �Xi
.

Note the following equivalent representations:

CPm(PX , PF ) =
1

m
+

✓
1 � 1

m

◆
CP1(PX , PF ), (5)

CP1(PX , PF ) := EF,F 0⇠PF (EX⇠PX F (X)F 0(X))2 (6)

= EX,X0⇠PX (EF⇠PF F (X)F (X 0))2 = kEF F(F )⌦2k2
2 (7)

where F(F ) denotes the Fourier-Walsh transform of F with respect to the measure PX .

This measures how predictable a sampled function is from another one on a typical data point,
or equivalently, how predictable a sampled data label is from another one on a typical function.
Equivalently, this measures the typical correlation among functions, similarly to the average statistical
dimension [FGR+17, FPV18]. Note that the data point is drawn from the empirical distribution on
m samples, where m will refer to the batch-size of a set of fresh samples in the context of GD (i.e.,
how many samples are used to compute gradients). For m = 1, i.e., perfect statistics, we have for
example that if PX is a delta function, CP1 achieves the largest possible value of 1, and for purely
random input and purely random functions, CP1 is 2�n, the lowest possible value. For random
degree-k monomials and uniform inputs, CP1 ⇣

�
n

k

��1. We now present the lower-bound.
Theorem 3. Let PX with X = Dn for some finite set D and PF such that the output distribution
is balanced,9 i.e., P{F (X) = 0} = P{F (X) = 1} + on(1) when (X,F ) ⇠ PX ⇥ PF . Using
the previous definitions for CPm = CPm(PX , PF ) and JFT = JF(W (0), PX , {Gt}t2[T ]), the
generalization error of a descent algorithm as in Definition 3 is lower-bounded as

P{W (T )(X) 6= F (X)} � 1/2 � 1

�
· JFT · CP1/4

m
(8)

� 1/2 � 1

�
· JFT · (1/m + CP1)1/4. (9)

In Section 5 of the Appendix, we present a stronger version of Theorem 3 for parities (Theorem 6),
with a tighter bound obtained that results in the term CP1/2 rather than CP1/4.

9Non-balanced cases can be handled by modifying definitions appropriately.

6



Corollary 2. We have JFT  T
p

|E|A, and a descent algorithm as in previous theorem with
M := max( 1

�
, A, |E|, T ) polynomial in n cannot learn under (PX , PF ) if CPm decays super-

polynomially in n (or more precisely if 1/CPm is a large enough polynomial). In particular, a
descent algorithm as in previous theorem and max( 1

�
, A, |E|, T ) polynomial in n can learn a

random degree-k monomial with perfect-GD (or m super-polynomial) if and only if10 k = O(1).
Remark 6. The above corollary gives a bound similar to those that can be obtained using SQ
algorithms. Various results from SQ need to be combined to obtain comparable bounds. One needs
to account for the statistical nature of the noise that we consider here, which has less degrees
of freedom compared to the adversarial noise of standard SQ, and one needs to account for the
weak and typical learning requirements (equ. 1). These can be addressed - at least in the case
where the distribution PF is uniform on a set - using concentration and coupling arguments and
combining for example results from [Fel16, Szö09, FPV18]. We refer to [Boi19] for a detailed
discussion on how this is done, which gives the following bound P{W (T )(X) 6= F (X)} � 1

2 �
O( 1

�2/3 A2/3⇧1/12|E|T ) in the context of the descent algorithms considered here. This can be further
improved to P{W (T )(X) 6= F (X)} � 1

2 � O( 1
�1/2 A1/2⇧1/4

1 |E|T ) by using an L1-notion of cross-
predictability ⇧ (replacing the square of the inner-product by the absolute value). Such bounds are
slightly weaker than the one of Corollary 2. Note that these use a coupling argument to handle
the adversarial v.s. statistical noise, whereas if the latter were considered, the bound would turn
to P{W (T )(X) 6= F (X)} � 1

2 � O( 1
�2 A2⇧1/2|E|T + ⇧1/4) and 1

2 � O( 1
�
A⇧1/2

1 |E|T ) with the
L1-cross-predictability (note that we can also obtain an exponent of 1/2 on the cross-predictability
with our Theorem 6 in the Appendix). Further improvements may be obtained using [Yan05] for
the statistical noise, but all together these bounds are of a similar kind. We next discuss how the
junk-flow could lead to different kinds of bounds in the context of neural networks.
Remark 7. The upper bound on the junk flow Corollary 2 uses a simple upper bound on the derivative
of the loss function. In cases where the derivatives of the output with respect to the edge weights
will consistently be much smaller than A, one can prove tighter bounds on the junk flow, leading to
a lower probability of learning the function. One could also obtain comparable improvements in
the SQ bounds by adjusting the SQ algorithm to take these bounds on the derivatives into account.
However, in cases where there are some inputs for which the derivative of the output with respect to
the edge weights are much larger than for typical inputs, one could obtain tighter bounds on the junk
flow that do not necessarily have analogous tighter SQ bounds. We leave this to future work.
Remark 8. Note that our positive results show that we could learn a random parity function using
stochastic gradient descent. The difference is that SGD lets us get the details of single samples (the
stochastic gradients do not necessarily cancel out), which is needed (for example) to come up with
algorithms like Gaussian elimination for parities. If instead one uses GD on the entire population,
the average of all possible samples mostly cancels out in cases like parities, so that an exponentially
small amount of noise is enough to drown out whatever signal is left in the gradient (which becomes
almost independent of the function). This does not take place if GD is used with a sub-polynomial
batch-size, or for functions that correlate well with the neural nets.

2.4 Proof techniques

Positive results. For the positive results, we emulate any learning algorithm using poly-many samples
and running in poly-time with poly-size neural nets trained by poly-step SGD. This requires emulating
any poly-size circuit implementation with free access to reading and writing in memory using a
particular computational model that computes, reads and writes memory solely via SGD steps on
a fixed neural net. In particular, this requires designing subnets that perform arbitrary efficient
computations in such a way that SGD does not alter them and subnet structures that cause SGD to
change specific edge weights in a manner that we can control.

Note that any algorithm that learns a function from samples must repeatedly get a new sample and
then change some of the values in its memory in a way that is determined by the current values in its
memory and the value of the sample. Eventually, it must also attempt to compute the function’s output
based on its input and the values in memory. If the learning algorithm is efficient, then there must be
a polynomial-sized circuit that computes the values in the algorithm’s memory in the next timestep

10The positive statement uses the fact that it is easy to learn random degree-k monomials when k is finite; see
for example [Bam19] for a specific implementation.
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�226391s40
<latexit sha1_base64="Z3np7ggAf6NnjhMwBQoTZ6KeOq0=">AAACCnicbVDLSgMxFM3UV1tfVZduokVwY5mZio9d0Y3LCvaB7bRkMmkbmnmQZMQSZu3GH/AjRHChiFu/wJ1fo+ljoa0HLhzOuTe597gRo0Ka5peRmptfWFxKZ7LLK6tr67mNzaoIY45JBYcs5HUXCcJoQCqSSkbqESfIdxmpuf3zoV+7IVzQMLiSg4g4PuoGtEMxklpq53ZUc/SI4sRL4IHdUvZRUmypUysRLXVoJkk7lzcL5ghwllgTki9loofrp9vvcjv32fRCHPskkJghIRqWGUlHIS4pZiTJNmNBIoT7qEsamgbIJ8JRoy0SuKcVD3ZCriuQcKT+nlDIF2Lgu7rTR7Inpr2h+J/XiGXnxFE0iGJJAjz+qBMzKEM4zAV6lBMs2UAThDnVu0LcQxxhqdPL6hCs6ZNnSdUuWMWCfanTOANjpME22AX7wALHoAQuQBlUAAZ34BG8gFfj3ng23oz3cWvKmMxsgT8wPn4AZxudyg==</latexit>

�226391s40
<latexit sha1_base64="Z3np7ggAf6NnjhMwBQoTZ6KeOq0=">AAACCnicbVDLSgMxFM3UV1tfVZduokVwY5mZio9d0Y3LCvaB7bRkMmkbmnmQZMQSZu3GH/AjRHChiFu/wJ1fo+ljoa0HLhzOuTe597gRo0Ka5peRmptfWFxKZ7LLK6tr67mNzaoIY45JBYcs5HUXCcJoQCqSSkbqESfIdxmpuf3zoV+7IVzQMLiSg4g4PuoGtEMxklpq53ZUc/SI4sRL4IHdUvZRUmypUysRLXVoJkk7lzcL5ghwllgTki9loofrp9vvcjv32fRCHPskkJghIRqWGUlHIS4pZiTJNmNBIoT7qEsamgbIJ8JRoy0SuKcVD3ZCriuQcKT+nlDIF2Lgu7rTR7Inpr2h+J/XiGXnxFE0iGJJAjz+qBMzKEM4zAV6lBMs2UAThDnVu0LcQxxhqdPL6hCs6ZNnSdUuWMWCfanTOANjpME22AX7wALHoAQuQBlUAAZ34BG8gFfj3ng23oz3cWvKmMxsgT8wPn4AZxudyg==</latexit>

v0
<latexit sha1_base64="TQjVp9f7shsyXFR+3ciJKJ45WU0=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGi/YA2lM120i7dbMLuplBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0N/NbY1Sax/LJTBL0IzqQPOSMGis9jntur1R2K+4cZJV4OSlDjnqv9NXtxyyNUBomqNYdz02Mn1FlOBM4LXZTjQllIzrAjqWSRqj9bH7qlJxbpU/CWNmShszV3xMZjbSeRIHtjKgZ6mVvJv7ndVIT3vgZl0lqULLFojAVxMRk9jfpc4XMiIkllClubyVsSBVlxqZTtCF4yy+vkma14l1Wqg9X5dptHkcBTuEMLsCDa6jBPdShAQwG8Ayv8OYI58V5dz4WrWtOPnMCf+B8/gAIbo2h</latexit>

v1
<latexit sha1_base64="CjmP85F9x9vbcL2ENUsPPB1Vqnk=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGi/YA2lM120i7dbMLuplBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0N/NbY1Sax/LJTBL0IzqQPOSMGis9jnter1R2K+4cZJV4OSlDjnqv9NXtxyyNUBomqNYdz02Mn1FlOBM4LXZTjQllIzrAjqWSRqj9bH7qlJxbpU/CWNmShszV3xMZjbSeRIHtjKgZ6mVvJv7ndVIT3vgZl0lqULLFojAVxMRk9jfpc4XMiIkllClubyVsSBVlxqZTtCF4yy+vkma14l1Wqg9X5dptHkcBTuEMLsCDa6jBPdShAQwG8Ayv8OYI58V5dz4WrWtOPnMCf+B8/gAJ8o2i</latexit>

v2
<latexit sha1_base64="lE8WDoWfUTC8KgvVYi3+vwjrTxc=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGi/YA2lM120y7dbMLupFBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR03TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWju5nfGnNtRKyecJJwP6IDJULBKFrpcdyr9kplt+LOQVaJl5My5Kj3Sl/dfszSiCtkkhrT8dwE/YxqFEzyabGbGp5QNqID3rFU0YgbP5ufOiXnVumTMNa2FJK5+nsio5ExkyiwnRHFoVn2ZuJ/XifF8MbPhEpS5IotFoWpJBiT2d+kLzRnKCeWUKaFvZWwIdWUoU2naEPwll9eJc1qxbusVB+uyrXbPI4CnMIZXIAH11CDe6hDAxgM4Ble4c2Rzovz7nwsWtecfOYE/sD5/AELdo2j</latexit>

v3
<latexit sha1_base64="Q/aveuY5+n/l8vwyIRXs5XSXR+c=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHbBRI9ELx4xyiOBDZkdemHC7OxmZpaEED7BiweN8eoXefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWju7nfGqPSPJZPZpKgH9GB5CFn1Fjpcdyr9oolt+wuQNaJl5ESZKj3il/dfszSCKVhgmrd8dzE+FOqDGcCZ4VuqjGhbEQH2LFU0gi1P12cOiMXVumTMFa2pCEL9ffElEZaT6LAdkbUDPWqNxf/8zqpCW/8KZdJalCy5aIwFcTEZP436XOFzIiJJZQpbm8lbEgVZcamU7AheKsvr5NmpexVy5WHq1LtNosjD2dwDpfgwTXU4B7q0AAGA3iGV3hzhPPivDsfy9ack82cwh84nz8M+o2k</latexit>

v4
<latexit sha1_base64="iVTvddOc7068PJ07WLG+5oEmaUE=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHaRRI9ELx4xyiOBDZkdGpgwO7uZmSUhGz7BiweN8eoXefNvHGAPClbSSaWqO91dQSy4Nq777eQ2Nre2d/K7hb39g8Oj4vFJU0eJYthgkYhUO6AaBZfYMNwIbMcKaRgIbAXju7nfmqDSPJJPZhqjH9Kh5APOqLHS46RX7RVLbtldgKwTLyMlyFDvFb+6/YglIUrDBNW647mx8VOqDGcCZ4VuojGmbEyH2LFU0hC1ny5OnZELq/TJIFK2pCEL9fdESkOtp2FgO0NqRnrVm4v/eZ3EDG78lMs4MSjZctEgEcREZP436XOFzIipJZQpbm8lbEQVZcamU7AheKsvr5NmpexdlSsP1VLtNosjD2dwDpfgwTXU4B7q0AAGQ3iGV3hzhPPivDsfy9ack82cwh84nz8Ofo2l</latexit>

v5
<latexit sha1_base64="AQMl8YQ1vqrQPuNFXFrwGUVUNEI=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHZRo0eiF48Y5ZHAhswOvTBhdnYzM0tCCJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCooeNUMayzWMSqFVCNgkusG24EthKFNAoENoPh3cxvjlBpHssnM07Qj2hf8pAzaqz0OOpedYslt+zOQVaJl5ESZKh1i1+dXszSCKVhgmrd9tzE+BOqDGcCp4VOqjGhbEj72LZU0gi1P5mfOiVnVumRMFa2pCFz9ffEhEZaj6PAdkbUDPSyNxP/89qpCW/8CZdJalCyxaIwFcTEZPY36XGFzIixJZQpbm8lbEAVZcamU7AheMsvr5JGpexdlCsPl6XqbRZHHk7gFM7Bg2uowj3UoA4M+vAMr/DmCOfFeXc+Fq05J5s5hj9wPn8AEAKNpg==</latexit>

v6
<latexit sha1_base64="mgQO5Rp4uoHWhxqBQ4TU0bH9YMU=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHbRqEeiF48Y5ZHAhswOvTBhdnYzM0tCCJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCooeNUMayzWMSqFVCNgkusG24EthKFNAoENoPh3cxvjlBpHssnM07Qj2hf8pAzaqz0OOpedYslt+zOQVaJl5ESZKh1i1+dXszSCKVhgmrd9tzE+BOqDGcCp4VOqjGhbEj72LZU0gi1P5mfOiVnVumRMFa2pCFz9ffEhEZaj6PAdkbUDPSyNxP/89qpCW/8CZdJalCyxaIwFcTEZPY36XGFzIixJZQpbm8lbEAVZcamU7AheMsvr5JGpexdlCsPl6XqbRZHHk7gFM7Bg2uowj3UoA4M+vAMr/DmCOfFeXc+Fq05J5s5hj9wPn8AEYaNpw==</latexit>

v0
5

<latexit sha1_base64="VIooOW5aCOecp+SdqqrPJwZPRXc=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRbRU9mtih6LXjxWsB/QLiWbZtvQJLsk2UJZ+he8eFDEq3/Im//GbLsHbX0w8Hhvhpl5QcyZNq777RTW1jc2t4rbpZ3dvf2D8uFRS0eJIrRJIh6pToA15UzSpmGG006sKBYBp+1gfJ/57QlVmkXyyUxj6gs8lCxkBJtMmvSvz/vlilt150CrxMtJBXI0+uWv3iAiiaDSEI617npubPwUK8MIp7NSL9E0xmSMh7RrqcSCaj+d3zpDZ1YZoDBStqRBc/X3RIqF1lMR2E6BzUgve5n4n9dNTHjrp0zGiaGSLBaFCUcmQtnjaMAUJYZPLcFEMXsrIiOsMDE2npINwVt+eZW0alXvslp7vKrU7/I4inACp3ABHtxAHR6gAU0gMIJneIU3RzgvzrvzsWgtOPnMMfyB8/kDcRCN1w==</latexit>

v0
4

<latexit sha1_base64="oe/hnqjjweyza2hAx0+r09igFg4=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRbRU9mtBT0WvXisYD+gXUo2zbahSXZJsoWy9C948aCIV/+QN/+N2XYP2vpg4PHeDDPzgpgzbVz32ylsbG5t7xR3S3v7B4dH5eOTto4SRWiLRDxS3QBrypmkLcMMp91YUSwCTjvB5D7zO1OqNIvkk5nF1Bd4JFnICDaZNB3ULwflilt1F0DrxMtJBXI0B+Wv/jAiiaDSEI617nlubPwUK8MIp/NSP9E0xmSCR7RnqcSCaj9d3DpHF1YZojBStqRBC/X3RIqF1jMR2E6BzVivepn4n9dLTHjrp0zGiaGSLBeFCUcmQtnjaMgUJYbPLMFEMXsrImOsMDE2npINwVt9eZ20a1Xvulp7rFcad3kcRTiDc7gCD26gAQ/QhBYQGMMzvMKbI5wX5935WLYWnHzmFP7A+fwBb4uN1g==</latexit>

v0
3

<latexit sha1_base64="X7pdG4QNHbfHUSmO5DQNkVspV+4=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRbRU9ltBT0WvXisYD+gXUo2zbahSXZJsoWy9C948aCIV/+QN/+N2XYP2vpg4PHeDDPzgpgzbVz32ylsbG5t7xR3S3v7B4dH5eOTto4SRWiLRDxS3QBrypmkLcMMp91YUSwCTjvB5D7zO1OqNIvkk5nF1Bd4JFnICDaZNB3ULwflilt1F0DrxMtJBXI0B+Wv/jAiiaDSEI617nlubPwUK8MIp/NSP9E0xmSCR7RnqcSCaj9d3DpHF1YZojBStqRBC/X3RIqF1jMR2E6BzVivepn4n9dLTHjrp0zGiaGSLBeFCUcmQtnjaMgUJYbPLMFEMXsrImOsMDE2npINwVt9eZ20a1WvXq09Xlcad3kcRTiDc7gCD26gAQ/QhBYQGMMzvMKbI5wX5935WLYWnHzmFP7A+fwBbgaN1Q==</latexit>

1
<latexit sha1_base64="pnSUfAN10ZoA0PnF2ghFPd/nVJo=">AAAB6HicbZC7SgNBFIbPxltcb1FLm8UgWIXdWGgjBm0sEzAXSJYwOzmbjJmdXWZmhbDkCWwsFLHVh7G3Ed/GyaXQ6A8DH/9/DnPOCRLOlHbdLyu3tLyyupZftzc2t7Z3Crt7DRWnkmKdxjyWrYAo5ExgXTPNsZVIJFHAsRkMryZ58w6lYrG40aME/Yj0BQsZJdpYNa9bKLoldyrnL3hzKF682+fJ26dd7RY+Or2YphEKTTlRqu25ifYzIjWjHMd2J1WYEDokfWwbFCRC5WfTQcfOkXF6ThhL84R2pu7PjoxESo2iwFRGRA/UYjYx/8vaqQ7P/IyJJNUo6OyjMOWOjp3J1k6PSaSajwwQKpmZ1aEDIgnV5ja2OYK3uPJfaJRL3kmpXHOLlUuYKQ8HcAjH4MEpVOAaqlAHCgj38AhP1q31YD1bL7PSnDXv2Ydfsl6/Adtyj/Y=</latexit>

x1
<latexit sha1_base64="lbp0mxvqmlOK1Iup6dopUe9Ixrg=">AAAB6nicbVC7SgNBFL0bXzG+ooKNzWAQrMJuLLQMsbFM0DwgWcLsZDYZMjO7zMyKYckn2FgoYmvrX/gFdjZ+i5NHoYkHLhzOuZd77wlizrRx3S8ns7K6tr6R3cxtbe/s7uX3Dxo6ShShdRLxSLUCrClnktYNM5y2YkWxCDhtBsOrid+8o0qzSN6aUUx9gfuShYxgY6Wb+67XzRfcojsFWibenBTKR7Vv9l75qHbzn51eRBJBpSEca9323Nj4KVaGEU7HuU6iaYzJEPdp21KJBdV+Oj11jE6t0kNhpGxJg6bq74kUC61HIrCdApuBXvQm4n9eOzHhpZ8yGSeGSjJbFCYcmQhN/kY9pigxfGQJJorZWxEZYIWJsenkbAje4svLpFEqeufFUs2mUYEZsnAMJ3AGHlxAGa6hCnUg0IcHeIJnhzuPzovzOmvNOPOZQ/gD5+0H65eRQQ==</latexit>

x2
<latexit sha1_base64="9SCxJjiKWQ1GuegWCE+3Mqrx3Uk=">AAAB6nicbVC7SgNBFL0bXzG+ooKNzWAQrMJuLLQMsbFM0DwgWcLsZDYZMjO7zMyKYckn2FgoYmvrX/gFdjZ+i5NHoYkHLhzOuZd77wlizrRx3S8ns7K6tr6R3cxtbe/s7uX3Dxo6ShShdRLxSLUCrClnktYNM5y2YkWxCDhtBsOrid+8o0qzSN6aUUx9gfuShYxgY6Wb+26pmy+4RXcKtEy8OSmUj2rf7L3yUe3mPzu9iCSCSkM41rrtubHxU6wMI5yOc51E0xiTIe7TtqUSC6r9dHrqGJ1apYfCSNmSBk3V3xMpFlqPRGA7BTYDvehNxP+8dmLCSz9lMk4MlWS2KEw4MhGa/I16TFFi+MgSTBSztyIywAoTY9PJ2RC8xZeXSaNU9M6LpZpNowIzZOEYTuAMPLiAMlxDFepAoA8P8ATPDncenRfnddaaceYzh/AHztsP7RuRQg==</latexit>

v0
c

<latexit sha1_base64="sILXlNkHEdWsrIG3Qa83my1ItuE=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRbRU9ltBT0WvXisYD+gXUo2zbahSXZJsoWy9C948aCIV/+QN/+N2XYP2vpg4PHeDDPzgpgzbVz32ylsbG5t7xR3S3v7B4dH5eOTto4SRWiLRDxS3QBrypmkLcMMp91YUSwCTjvB5D7zO1OqNIvkk5nF1Bd4JFnICDaZNB2Qy0G54lbdBdA68XJSgRzNQfmrP4xIIqg0hGOte54bGz/FyjDC6bzUTzSNMZngEe1ZKrGg2k8Xt87RhVWGKIyULWnQQv09kWKh9UwEtlNgM9arXib+5/USE976KZNxYqgky0VhwpGJUPY4GjJFieEzSzBRzN6KyBgrTIyNp2RD8FZfXiftWtWrV2uP15XGXR5HEc7gHK7AgxtowAM0oQUExvAMr/DmCOfFeXc+lq0FJ585hT9wPn8AtvaOBQ==</latexit>

vc
<latexit sha1_base64="mXQYoynO2JPTtHrNco52vicf7Xc=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGi/YA2lM120i7dbMLuplBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0N/NbY1Sax/LJTBL0IzqQPOSMGis9jnusVyq7FXcOskq8nJQhR71X+ur2Y5ZGKA0TVOuO5ybGz6gynAmcFrupxoSyER1gx1JJI9R+Nj91Ss6t0idhrGxJQ+bq74mMRlpPosB2RtQM9bI3E//zOqkJb/yMyyQ1KNliUZgKYmIy+5v0uUJmxMQSyhS3txI2pIoyY9Mp2hC85ZdXSbNa8S4r1Yercu02j6MAp3AGF+DBNdTgHurQAAYDeIZXeHOE8+K8Ox+L1jUnnzmBP3A+fwBVuo3U</latexit>

memory component
<latexit sha1_base64="auaCP08tcZpJswTaIulG3PkSIGk=">AAAB+XicbVC7SgNBFL3rM8bXqqXNYBCswm4stAzaWEYwD0iWMDuZJEPmsczMBpYlf2JjoYitf2Ln3zhJttDEAwOHc+7h3jlxwpmxQfDtbWxube/slvbK+weHR8f+yWnLqFQT2iSKK92JsaGcSdq0zHLaSTTFIua0HU/u5357SrVhSj7ZLKGRwCPJhoxg66S+7wsqlM4QUSJRkkrb9ytBNVgArZOwIBUo0Oj7X72BIqlwWcKxMd0wSGyUY20Z4XRW7qWGJphM8Ih2HZVYUBPli8tn6NIpAzRU2j1p0UL9ncixMCYTsZsU2I7NqjcX//O6qR3eRjmTSWqpJMtFw5Qjq9C8BjRgmhLLM0cw0czdisgYa0ysK6vsSghXv7xOWrVqeF2tPdYq9buijhKcwwVcQQg3UIcHaEATCEzhGV7hzcu9F+/d+1iObnhF5gz+wPv8AfBwk9k=</latexit>

output
<latexit sha1_base64="K8kN+6lhhPvd1R1i+9tOLPNxjWM=">AAAB7XicbVDLSgMxFL3js9ZX1aWbYBFclZm60GXRjcsK9gHtUDJp2sZmkiG5I5Sh/+DGhSJu/R93/o1pOwttPRA4nHMvuedEiRQWff/bW1vf2NzaLuwUd/f2Dw5LR8dNq1PDeINpqU07opZLoXgDBUreTgyncSR5KxrfzvzWEzdWaPWAk4SHMR0qMRCMopOaOsUkxV6p7Ff8OcgqCXJShhz1Xumr29csjblCJqm1ncBPMMyoQcEknxa7qeUJZWM65B1HFY25DbP5tVNy7pQ+GWjjnkIyV39vZDS2dhJHbjKmOLLL3kz8z+ukOLgOM6FcIq7Y4qNBKglqMotO+sJwhnLiCGVGuFsJG1FDGbqCiq6EYDnyKmlWK8FlpXpfLddu8joKcApncAEBXEEN7qAODWDwCM/wCm+e9l68d+9jMbrm5Tsn8Afe5w8Ezo9p</latexit>

2
<latexit sha1_base64="2E7c16pDE7cfLGXFZ+jYuNo5Q3g=">AAAB6HicbZC7SgNBFIbPxltcb1FLm8EgWIXdWGgjBm0sEzAXSJYwOzmbjJm9MDMrhCVPYGOhiK0+jL2N+DZOLoVGfxj4+P9zmHOOnwiutON8Wbml5ZXVtfy6vbG5tb1T2N1rqDiVDOssFrFs+VSh4BHWNdcCW4lEGvoCm/7wapI371AqHkc3epSgF9J+xAPOqDZWrdwtFJ2SMxX5C+4cihfv9nny9mlXu4WPTi9maYiRZoIq1XadRHsZlZozgWO7kypMKBvSPrYNRjRE5WXTQcfkyDg9EsTSvEiTqfuzI6OhUqPQN5Uh1QO1mE3M/7J2qoMzL+NRkmqM2OyjIBVEx2SyNelxiUyLkQHKJDezEjagkjJtbmObI7iLK/+FRrnknpTKNadYuYSZ8nAAh3AMLpxCBa6hCnVggHAPj/Bk3VoP1rP1MivNWfOeffgl6/Ub3PaP9w==</latexit>

�2
<latexit sha1_base64="PZrFhh2AD+1kf7UC9Bn/B+r7gn4=">AAAB6XicbVC7TgMxENwLryS8ApQ0FhESDdFdKKCMoKEMiDxEcop8ji+xYvtOtg8RnfIHNBQgoOUD+Bc6vgacRwEJI600mtnV7k4Qc6aN6345maXlldW1bC6/vrG5tV3Y2a3rKFGE1kjEI9UMsKacSVozzHDajBXFIuC0EQwuxn7jjirNInljhjH1Be5JFjKCjZWuj8udQtEtuROgReLNSLGSi19vP+6/q53CZ7sbkURQaQjHWrc8NzZ+ipVhhNNRvp1oGmMywD3aslRiQbWfTi4doUOrdFEYKVvSoIn6eyLFQuuhCGynwKav572x+J/XSkx45qdMxomhkkwXhQlHJkLjt1GXKUoMH1qCiWL2VkT6WGFibDh5G4I3//IiqZdL3kmpfGXTOIcpsrAPB3AEHpxCBS6hCjUgEMIDPMGzM3AenRfnbdqacWYze/AHzvsPBfaQvw==</latexit>

2
<latexit sha1_base64="2E7c16pDE7cfLGXFZ+jYuNo5Q3g=">AAAB6HicbZC7SgNBFIbPxltcb1FLm8EgWIXdWGgjBm0sEzAXSJYwOzmbjJm9MDMrhCVPYGOhiK0+jL2N+DZOLoVGfxj4+P9zmHOOnwiutON8Wbml5ZXVtfy6vbG5tb1T2N1rqDiVDOssFrFs+VSh4BHWNdcCW4lEGvoCm/7wapI371AqHkc3epSgF9J+xAPOqDZWrdwtFJ2SMxX5C+4cihfv9nny9mlXu4WPTi9maYiRZoIq1XadRHsZlZozgWO7kypMKBvSPrYNRjRE5WXTQcfkyDg9EsTSvEiTqfuzI6OhUqPQN5Uh1QO1mE3M/7J2qoMzL+NRkmqM2OyjIBVEx2SyNelxiUyLkQHKJDezEjagkjJtbmObI7iLK/+FRrnknpTKNadYuYSZ8nAAh3AMLpxCBa6hCnVggHAPj/Bk3VoP1rP1MivNWfOeffgl6/Ub3PaP9w==</latexit>

2
<latexit sha1_base64="2E7c16pDE7cfLGXFZ+jYuNo5Q3g=">AAAB6HicbZC7SgNBFIbPxltcb1FLm8EgWIXdWGgjBm0sEzAXSJYwOzmbjJm9MDMrhCVPYGOhiK0+jL2N+DZOLoVGfxj4+P9zmHOOnwiutON8Wbml5ZXVtfy6vbG5tb1T2N1rqDiVDOssFrFs+VSh4BHWNdcCW4lEGvoCm/7wapI371AqHkc3epSgF9J+xAPOqDZWrdwtFJ2SMxX5C+4cihfv9nny9mlXu4WPTi9maYiRZoIq1XadRHsZlZozgWO7kypMKBvSPrYNRjRE5WXTQcfkyDg9EsTSvEiTqfuzI6OhUqPQN5Uh1QO1mE3M/7J2qoMzL+NRkmqM2OyjIBVEx2SyNelxiUyLkQHKJDezEjagkjJtbmObI7iLK/+FRrnknpTKNadYuYSZ8nAAh3AMLpxCBa6hCnVggHAPj/Bk3VoP1rP1MivNWfOeffgl6/Ub3PaP9w==</latexit>

xn
<latexit sha1_base64="jq0Y1uAFps75259e6BAX8U9P6Ac=">AAAB6nicbVC7SgNBFL0bXzG+ooKNzWAQrMJuLLQMsbFM0DwgWcLsZDYZMjO7zMyKYckn2FgoYmvrX/gFdjZ+i5NHoYkHLhzOuZd77wlizrRx3S8ns7K6tr6R3cxtbe/s7uX3Dxo6ShShdRLxSLUCrClnktYNM5y2YkWxCDhtBsOrid+8o0qzSN6aUUx9gfuShYxgY6Wb+67s5gtu0Z0CLRNvTgrlo9o3e698VLv5z04vIomg0hCOtW57bmz8FCvDCKfjXCfRNMZkiPu0banEgmo/nZ46RqdW6aEwUrakQVP190SKhdYjEdhOgc1AL3oT8T+vnZjw0k+ZjBNDJZktChOOTIQmf6MeU5QYPrIEE8XsrYgMsMLE2HRyNgRv8eVl0igVvfNiqWbTqMAMWTiGEzgDDy6gDNdQhToQ6MMDPMGzw51H58V5nbVmnPnMIfyB8/YDSBqRfg==</latexit>

...<latexit sha1_base64="7t24ksjV8fObpViH8enJRBZbKaQ=">AAAB7XicbZC7SgNBFIbPeo3rLWppMxgEq7AbC23EoI1lBHOBZAmzs5NkzOzMMjMbCEvewcZCERsLH8XeRnwbJ5dCE38Y+Pj/c5hzTphwpo3nfTtLyyura+u5DXdza3tnN7+3X9MyVYRWieRSNUKsKWeCVg0znDYSRXEccloP+9fjvD6gSjMp7swwoUGMu4J1GMHGWrXWIJJGt/MFr+hNhBbBn0Hh8sO9SN6+3Eo7/9mKJEljKgzhWOum7yUmyLAyjHA6cluppgkmfdylTYsCx1QH2WTaETq2ToQ6UtknDJq4vzsyHGs9jENbGWPT0/PZ2Pwva6amcx5kTCSpoYJMP+qkHBmJxqujiClKDB9awEQxOysiPawwMfZArj2CP7/yItRKRf+0WLr1CuUrmCoHh3AEJ+DDGZThBipQBQL38ABP8OxI59F5cV6npUvOrOcA/sh5/wEsU5KD</latexit>

...<latexit sha1_base64="7t24ksjV8fObpViH8enJRBZbKaQ=">AAAB7XicbZC7SgNBFIbPeo3rLWppMxgEq7AbC23EoI1lBHOBZAmzs5NkzOzMMjMbCEvewcZCERsLH8XeRnwbJ5dCE38Y+Pj/c5hzTphwpo3nfTtLyyura+u5DXdza3tnN7+3X9MyVYRWieRSNUKsKWeCVg0znDYSRXEccloP+9fjvD6gSjMp7swwoUGMu4J1GMHGWrXWIJJGt/MFr+hNhBbBn0Hh8sO9SN6+3Eo7/9mKJEljKgzhWOum7yUmyLAyjHA6cluppgkmfdylTYsCx1QH2WTaETq2ToQ6UtknDJq4vzsyHGs9jENbGWPT0/PZ2Pwva6amcx5kTCSpoYJMP+qkHBmJxqujiClKDB9awEQxOysiPawwMfZArj2CP7/yItRKRf+0WLr1CuUrmCoHh3AEJ+DDGZThBipQBQL38ABP8OxI59F5cV6npUvOrOcA/sh5/wEsU5KD</latexit>

v00
1<latexit sha1_base64="jTGucd0R+BtIxGBU0ZbkRJ9KDpk=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBapp5JUQY8FLx4rmFpoQ9lsJ+3SzSbsbgol9Dd48aCIV3+QN/+N24+Dtj4YeLw3w8y8MBVcG9f9dgobm1vbO8Xd0t7+weFR+fikpZNMMfRZIhLVDqlGwSX6hhuB7VQhjUOBT+HobuY/jVFpnshHM0kxiOlA8ogzaqzkj3tetdorV9yaOwdZJ96SVGCJZq/81e0nLItRGiao1h3PTU2QU2U4EzgtdTONKWUjOsCOpZLGqIN8fuyUXFilT6JE2ZKGzNXfEzmNtZ7Eoe2MqRnqVW8m/ud1MhPdBjmXaWZQssWiKBPEJGT2OelzhcyIiSWUKW5vJWxIFWXG5lOyIXirL6+TVr3mXdXqD9eVRmMZRxHO4BwuwYMbaMA9NMEHBhye4RXeHOm8OO/Ox6K14CxnTuEPnM8fy5WOAg==</latexit>

1
<latexit sha1_base64="lmmzmfZ/LUbAFZRsVWP1EJi8i0g=">AAAB6HicbZC7SgNBFIbPxluMt3jpbBaDYBV2Y6GdAQstEzAXSJYwOzmbjJmdXWZmhbjkCWwsFLH1AXwKn8DO0jdxcik08YeBj/8/hznn+DFnSjvOl5VZWl5ZXcuu5zY2t7Z38rt7dRUlkmKNRjySTZ8o5ExgTTPNsRlLJKHPseEPLsd54w6lYpG40cMYvZD0BAsYJdpYVbeTLzhFZyJ7EdwZFC4+7r+v3g/SSif/2e5GNAlRaMqJUi3XibWXEqkZ5TjKtROFMaED0sOWQUFCVF46GXRkHxunaweRNE9oe+L+7khJqNQw9E1lSHRfzWdj87+slejg3EuZiBONgk4/ChJu68geb213mUSq+dAAoZKZWW3aJ5JQbW6TM0dw51dehHqp6J4WS1WnUC7DVFk4hCM4ARfOoAzXUIEaUEB4gCd4tm6tR+vFep2WZqxZzz78kfX2A7TikJU=</latexit>

memory
<latexit sha1_base64="Ji85Mp88q3Tnt1DQN1jTdOiV7wU=">AAAB+nicbVC7TsMwFHXKq4RXCiOLRYXEVCVlgLESC2OR6ENqo8pxnNaqH5HtgKLQT2FhACFWvoSNv8FtM0DLka50dM699r0nShnVxve/ncrG5tb2TnXX3ds/ODzyasddLTOFSQdLJlU/QpowKkjHUMNIP1UE8YiRXjS9mfu9B6I0leLe5CkJORoLmlCMjJVGXm0oJBUxEcblhEuVw5FX9xv+AnCdBCWpgxLtkfc1jCXOuH0DM6T1IPBTExZIGYoZmbnDTJMU4Skak4GlAnGiw2Kx+gyeWyWGiVS2hIEL9fdEgbjWOY9sJ0dmole9ufifN8hMch0WVKSZIQIvP0oyBo2E8xxgTBXBhuWWIKyo3RXiCVIIG5uWa0MIVk9eJ91mI7hsNO+a9VarjKMKTsEZuAABuAItcAvaoAMweATP4BW8OU/Oi/PufCxbK045cwL+wPn8AQTzk9M=</latexit>

read
<latexit sha1_base64="gXx0AA9+5GphPc32Ao/Vci7NBFQ=">AAAB63icbVDLSgMxFL3xWeur6tJNsAiuykxd6LLgxmUF+4B2KJlMpg1NMkOSEcrQX3DjQhG3/pA7/8ZMOwttPRA4nHMuufeEqeDGet432tjc2t7ZrexV9w8Oj45rJ6ddk2Sasg5NRKL7ITFMcMU6llvB+qlmRIaC9cLpXeH3npg2PFGPdpayQJKx4jGnxBaSi0ajWt1reAvgdeKXpA4l2qPa1zBKaCaZslQQYwa+l9ogJ9pyKti8OswMSwmdkjEbOKqIZCbIF7vO8aVTIhwn2j1l8UL9PZETacxMhi4piZ2YVa8Q//MGmY1vg5yrNLNM0eVHcSawTXBxOI64ZtSKmSOEau52xXRCNKHW1VN1JfirJ6+TbrPhXzeaD816q1XWUYFzuIAr8OEGWnAPbegAhQk8wyu8IYle0Dv6WEY3UDlzBn+APn8AEj2OPg==</latexit> write

<latexit sha1_base64="oNJ9ndJpByYunMN/Ou94XJuZx6g=">AAAB7HicbVBNT8JAFNziF+IX6tHLRmLiibR40COJF4+YWCCBhmyXV9iw3Ta7rxrS8Bu8eNAYr/4gb/4bF+hBwUk2mcy8l7czYSqFQdf9dkobm1vbO+Xdyt7+weFR9fikbZJMc/B5IhPdDZkBKRT4KFBCN9XA4lBCJ5zczv3OI2gjEvWA0xSCmI2UiARnaCX/SQuEQbXm1t0F6DrxClIjBVqD6ld/mPAsBoVcMmN6nptikDONgkuYVfqZgZTxCRtBz1LFYjBBvvjsjF5YZUijRNunkC7U3xs5i42ZxqGdjBmOzao3F//zehlGN0EuVJohKL48FGWSYkLnyelQaOAop5YwbnMLTvmYacbR9lOxJXirkddJu1H3ruqN+0at2SzqKJMzck4uiUeuSZPckRbxCSeCPJNX8uYo58V5dz6WoyWn2Dklf+B8/gAR6Y7X</latexit>

memory
<latexit sha1_base64="Ji85Mp88q3Tnt1DQN1jTdOiV7wU=">AAAB+nicbVC7TsMwFHXKq4RXCiOLRYXEVCVlgLESC2OR6ENqo8pxnNaqH5HtgKLQT2FhACFWvoSNv8FtM0DLka50dM699r0nShnVxve/ncrG5tb2TnXX3ds/ODzyasddLTOFSQdLJlU/QpowKkjHUMNIP1UE8YiRXjS9mfu9B6I0leLe5CkJORoLmlCMjJVGXm0oJBUxEcblhEuVw5FX9xv+AnCdBCWpgxLtkfc1jCXOuH0DM6T1IPBTExZIGYoZmbnDTJMU4Skak4GlAnGiw2Kx+gyeWyWGiVS2hIEL9fdEgbjWOY9sJ0dmole9ufifN8hMch0WVKSZIQIvP0oyBo2E8xxgTBXBhuWWIKyo3RXiCVIIG5uWa0MIVk9eJ91mI7hsNO+a9VarjKMKTsEZuAABuAItcAvaoAMweATP4BW8OU/Oi/PufCxbK045cwL+wPn8AQTzk9M=</latexit>

2/s0
<latexit sha1_base64="huO1tcKjvM50kRScb1DkXMUSaAQ=">AAAB/nicbVDLSsNAFL3x1VpfUXHlZrCIrmpSEV0W3LhswT6gDWUyndihk0mYmQglBPwVNy4Ucet3uPMHxM9wmnahrQcGDufc1xw/5kxpx/m0lpZXVtcKxfXSxubW9o69u9dSUSIJbZKIR7LjY0U5E7Spmea0E0uKQ5/Ttj+6nvjteyoVi8StHsfUC/GdYAEjWBupbx+kvXxIanQqNM6qZ+ok69tlp+LkQIvEnZFyDTW+v4qFi3rf/ugNIpKEZgThWKmu68TaS7HUjHCalXqJojEmI7Oka6jAIVVemm/O0LFRBiiIpHlCo1z93ZHiUKlx6JvKEOuhmvcm4n9eN9HBlZcyESeaCjJdFCQc6QhNskADJinRfGwIJpKZWxEZYomJNomVTAju/JcXSatacc8r1YZJowZTFOEQjuAUXLiEGtxAHZpAIIVHeIYX68F6sl6tt2npkjXr2Yc/sN5/ACGNmIE=</latexit>

computation component
<latexit sha1_base64="5tCxzzpjEK5snm0jg3Azlx55Gt4=">AAAB/nicbVDLSgMxFL1TX7W+RsWVm2ARXJWZutBl0Y3LCvYB7VAyadqGZpIhyQhlKPgrblwo4tbvcOffmJnOQlsPBE7OvYd77wljzrTxvG+ntLa+sblV3q7s7O7tH7iHR20tE0Voi0guVTfEmnImaMsww2k3VhRHIaedcHqb1TuPVGkmxYOZxTSI8FiwESPYWGngnhAZxYnJfyjjUlBhBm7Vq3k50CrxC1KFAs2B+9UfSpJE1ks41rrne7EJUqwMI5zOK/1E0xiTKR7TnqUCR1QHab7+HJ1bZYhGUtknDMrV344UR1rPotB2RthM9HItE/+r9RIzug5SJuyBVJDFoFHCkZEoywINmaLE8JklmChmd0VkghUmxiZWsSH4yyevkna95l/W6vf1auOmiKMMp3AGF+DDFTTgDprQAgIpPMMrvDlPzovz7nwsWktO4TmGP3A+fwD/5ZYl</latexit>

s
<latexit sha1_base64="iYXiE/5cZc3fOJ02ATjpHe6H7SU=">AAAB9XicbVC7TsMwFL0pr1Je5bGxWFRITFVSBtioxABjkehDakPlOE5r1XEi2wGVKP/BwgBCjPATfAEbI3+C+xig5UhXOjrnXl/f48WcKW3bX1ZuYXFpeSW/Wlhb39jcKm7vNFSUSELrJOKRbHlYUc4ErWumOW3FkuLQ47TpDc5HfvOWSsUica2HMXVD3BMsYARrI92knfETqaR+prJusWSX7THQPHGmpHT2cf998baX1rrFz44fkSSkQhOOlWo7dqzdFEvNCKdZoZMoGmMywD3aNlTgkCo3Ha/M0KFRfBRE0pTQaKz+nkhxqNQw9ExniHVfzXoj8T+vnejg1E2ZiBNNBZksChKOdIRGESCfSUo0HxqCiWTmr4j0scREm6AKJgRn9uR50qiUneNy5couVaswQR724QCOwIETqMIl1KAOBCQ8wBM8W3fWo/VivU5ac9Z0Zhf+wHr/AbAolv8=</latexit>

�s
<latexit sha1_base64="1mcpBiIh3ctEi7e4d9SIEkH/RjM=">AAAB+HicbVBNS8NAEJ1UW2v9aNSjl2ARvFiSetBjwYvHCvYD2lA2m027dLMJuxuhhlz9E3rwoIjgyZ/izR/i3W3ag7Y+GHi8N7Oz87yYUals+8sorK0XSxvlzcrW9s5u1dzb78goEZi0ccQi0fOQJIxy0lZUMdKLBUGhx0jXm1zO/O4tEZJG/EZNY+KGaMRpQDFSWhqa1XSQP5IK4menMhuaNbtu57BWibMgtWbp8Zu/3xdbQ/Nz4Ec4CQlXmCEp+44dKzdFQlHMSFYZJJLECE/QiPQ15Sgk0k3znZl1rBXfCiKhiysrV39PpCiUchp6ujNEaiyXvZn4n9dPVHDhppTHiSIczxcFCbNUZM1SsHwqCFZsqgnCguq/WniMBMJKZ1XRITjLJ6+STqPunNUb1zqNJsxRhkM4ghNw4ByacAUtaAOGBB7gGV6MO+PJeDXe5q0FYzFzAH9gfPwADDOXAQ==</latexit>

p
3s

<latexit sha1_base64="/ItCbVfKzUb5eh5pgr++UZeMGbk=">AAAB/3icbVC7TsMwFHV4tuUVQGJhsaiQmKqkHUBiqWBhLBJ9SE1UOY7TWnWcYDtIVcjAxlcwsDCAECs/wdCNv8FNO0DLka50dM69vr7HixmVyrK+jaXlldW19UKxtLG5tb1j7u61ZJQITJo4YpHoeEgSRjlpKqoY6cSCoNBjpO0NLyd++44ISSN+o0YxcUPU5zSgGCkt9cyD1MkfSQXxM0feCpXWMpn1zLJVsXLARWLPSLlefBo/fsXnjZ45dvwIJyHhCjMkZde2YuWmSCiKGclKTiJJjPAQ9UlXU45CIt00X53BY634MIiELq5grv6eSFEo5Sj0dGeI1EDOexPxP6+bqODMTSmPE0U4ni4KEgZVBCdhQJ8KghUbaYKwoPqvEA+QQFjpyEo6BHv+5EXSqlbsWqV6rdO4AFMUwCE4AifABqegDq5AAzQBBvfgGbyCN+PBeDHejY9p65Ixm9kHf2B8/gBce5qr</latexit>

3
p

3s
<latexit sha1_base64="NcdvUyyIIGuk59iFbI0WQA9EDAQ=">AAACAHicbVC7TsMwFHXKqy2vAAMDi0WFxFQl7QASSwULY5HoQ2qiynGc1qrjBNtBqqIsTHwFCwsDCLHyEQzd+BvctAO0HOlKR+fc6+t7vJhRqSzr2yisrK6tbxRL5c2t7Z1dc2+/LaNEYNLCEYtE10OSMMpJS1HFSDcWBIUeIx1vdDX1O/dESBrxWzWOiRuiAacBxUhpqW8epk7+SCqIn9UdeSdUWs9k1jcrVtXKAZeJPSeVRulp8vgVXzT75sTxI5yEhCvMkJQ924qVmyKhKGYkKzuJJDHCIzQgPU05Col003x3Bk+04sMgErq4grn6eyJFoZTj0NOdIVJDuehNxf+8XqKCczelPE4U4Xi2KEgYVBGcpgF9KghWbKwJwoLqv0I8RAJhpTMr6xDsxZOXSbtWtevV2o1O4xLMUARH4BicAhucgQa4Bk3QAhhk4Bm8gjfjwXgx3o2PWWvBmM8cgD8wPn8A1hua6A==</latexit>

9
p

3s
<latexit sha1_base64="xVwUhki2nWA3Ke0uVuMZKURZQ5g=">AAACAHicbVC7TsMwFHV4tuUVYGBgsaiQmKqkHQCxVLAwFok+pCaqHMdprTpOsB2kKsrCxFewsDCAECsfwdCNv8FNO0DLka50dM69vr7HixmVyrK+jaXlldW19UKxtLG5tb1j7u61ZJQITJo4YpHoeEgSRjlpKqoY6cSCoNBjpO0NryZ++54ISSN+q0YxcUPU5zSgGCkt9cyD1MkfSQXxs3NH3gmV1jKZ9cyyVbFywEViz0i5XnwaP37FF42eOXb8CCch4QozJGXXtmLlpkgoihnJSk4iSYzwEPVJV1OOQiLdNN+dwWOt+DCIhC6uYK7+nkhRKOUo9HRniNRAznsT8T+vm6jgzE0pjxNFOJ4uChIGVQQnaUCfCoIVG2mCsKD6rxAPkEBY6cxKOgR7/uRF0qpW7FqleqPTuARTFMAhOAInwAanoA6uQQM0AQYZeAav4M14MF6Md+Nj2rpkzGb2wR8Ynz/fb5ru</latexit>

9s
<latexit sha1_base64="ZYW+9bpArxuyt7CZwmaYrGApMH8=">AAAB+HicbVDLSsNAFL2prxofjbp0EyyCq5LUhboQi25cVrAPaEOZTCbt0MkkzEyEGvolbgQVcetPuHcj/o3TtAttPXDhcM69c+ceP2FUKsf5NgpLyyura8V1c2Nza7tk7ew2ZZwKTBo4ZrFo+0gSRjlpKKoYaSeCoMhnpOUPryZ+644ISWN+q0YJ8SLU5zSkGCkt9axS1s0fyQQJxmdy3LPKTsXJYS8Sd0bKFx/mefL0ZdZ71mc3iHEaEa4wQ1J2XCdRXoaEopiRsdlNJUkQHqI+6WjKUUSkl+U7x/ahVgI7jIUuruxc/T2RoUjKUeTrzgipgZz3JuJ/XidV4amXUZ6kinA8XRSmzFaxPUnBDqggWLGRJggLqv9q4wESCCudlalDcOdPXiTNasU9rlRvnHLtEqYowj4cwBG4cAI1uIY6NABDCg/wDC/GvfFovBpv09aCMZvZgz8w3n8Az3mW1A==</latexit>

3s
<latexit sha1_base64="XUz4MzU+H5vVzK57LRBum1HmFlY=">AAAB+HicbVDLSsNAFL2prxofjbp0EyyCq5K0C92IRTcuK9gHtKFMJpN26GQSZiZCDf0SN4KKuPUn3LsR/8Zp2oW2HrhwOOfeuXOPnzAqleN8G4WV1bX1jeKmubW9s1uy9vZbMk4FJk0cs1h0fCQJo5w0FVWMdBJBUOQz0vZHV1O/fUeEpDG/VeOEeBEacBpSjJSW+lYp6+WPZIIEk5qc9K2yU3Fy2MvEnZPyxYd5njx9mY2+9dkLYpxGhCvMkJRd10mUlyGhKGZkYvZSSRKER2hAuppyFBHpZfnOiX2slcAOY6GLKztXf09kKJJyHPm6M0JqKBe9qfif101VeOZllCepIhzPFoUps1VsT1OwAyoIVmysCcKC6r/aeIgEwkpnZeoQ3MWTl0mrWnFrleqNU65fwgxFOIQjOAEXTqEO19CAJmBI4QGe4cW4Nx6NV+Nt1low5jMH8AfG+w/GVZbO</latexit>

p
3s
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Figure 1: The emulation net; s = 364
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p
3)364e, m is the number of bits required to perform the computation from the

computation component and s0 = (18
p

3s)3. We highlight in red (top two paths) one copy of Ms.

from the sample it was given and its memory values in the current timestep. Likewise, there must be
a polynomial-sized circuit that computes its guesses of the function’s output from the function’s input
and the values in its memory. Since any polynomial-sized circuit can be translated into a neural net
of polynomial size, we can encode the desired circuit in a preset format. However, once we run SGD
on it, we would a priori completely alter the weights of the edges in the net, which would cause the
net to stop performing the intended calculations. To prevent this, we use an activation function that is
constant in some areas (we will use a sigmoid like non-linearity with flats), and ensure that the nodes
in the translated circuit are flat nodes, i.e., that they always get inputs in that flat range. That way, the
derivatives of their activation levels with respect to the weights of any of the edges leading to them
are 0, so backpropagation will never change the edge weights in the net. That allows us to construct a
portion of the net called the computation component that performs the desired computations in a
backpropagation-proofed way. This computation component can in particular output values, the
computation outputs, that are responsible for editing the memory of the algorithm. However, we
still need a mechanism to decide how to store and edit the memory using only a neural net trained
with SGD. This is the most challenging part.

The neural net’s memory takes the form of its edge weights. We will encode the algorithm’s memory
in the edges leaving the constant vertex. Normally, we would not be able to precisely control how
SGD would alter these weights. However, it is possible to design components of the net (the Ms

components in Figure 2 defined in Definition 6 of Appendix) in such a way that if certain vertices
called the control vertices output certain values, then every path to the output through a designated
edge will pass through a flat vertex. So, if those vertices are set that way, the derivative of the loss
function with respect to the edge weight in question will be 0, and the weight will not change. That
allows us to control whether or not the edge weight changes, and by appropriately setting up the
values of the initial net and the learning rate, we can ensure that the changes will always translate into
the desired bit flips. This gives us a way to construct a net portion that can set the values in memory;
we call this the memory component. See Figure 2 for a representation of the overall net.

One difficulty encountered with such an SGD implementation is that no update of the weights will
take place when given a sample that is correctly predicted by the net. If one does not mitigate this,
the net may end up being trained on a sample distribution that is mismatched to the original one,
which can have unexpected consequences. A randomization mechanism is thus used to circumvent
this issue, but this mechanism is not necessary for symmetric functions like parities, as one can learn
parities only from samples having the same label.

In summary, we can create a neural net with a poly-size architecture and a poly-time initialization,
that carries out when trained by SGD both the computation and memory updates of an algorithm. See
the Appendix for additional implementation considerations.
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Negative results. Our main approach to showing the failure of an algorithm (e.g., noisy GD) using
data from a model (e.g, parities) for a desired task (e.g., typical weak learning), will be to show that
under limited resources (e.g., limited number of time steps), the output of the algorithm trained on
the true model is statistically indistinguishable from the output of the algorithm trained on a null
model, where the null model fails to provide the desired performance for trivial reasons. This gives a
computational lower-bound out of a statistical estimate. The indistinguishability to null condition
(INC) is obtained by manipulating information measures, bounding the total variation distance of the
two posterior measures between the test and null models.

More specifically, we show a subadditivity property of the TV using the data processing inequality,
use the fact that we work with a descent algorithms that updates the weights by ‘subtractions’ of
queries and not general statistical queries, bound the one step total variation distance with the
KL distance (Pinsker’s inequality), which in the Gaussian case gives the `2 distance of the means.
Then we use a change of measure argument, manipulating the Radon-Nikodym derivative with a
tensorization argument to linearize the expression, and concluding with generic inequalities to bring
up the junk-flow and the cross-predictability (using replicate random variables).

3 Further related literature

In [CRW18] a different emulation argument is shown for gradient descent, also encoding a calculation
using a form of GD, but in very different settings and with very different conclusions. [CRW18]
shows that one can implement an arbitrary algorithm using GD by repeating the correct series of loss
functions, with the purpose of showing that it is difficult to predict the long-term results of running
online GD on an arbitrary known series of loss functions. Our emulation shows that one can encode
an arbitrary computation on samples drawn from an unknown distribution by training a net with SGD.
Our purpose is to prove that a properly initialized net trained by SGD can learn any function learnable
from samples. Finally, a key component of our result is that SGD can handle an amount of noise that
goes beyond what SQ algorithms can handle, which is unrelated to [CRW18].

The difficulty of learning functions like parities with NNs is not new. Together with the connectivity
case, the difficulty was one of the central foci in the perceptron book of Minksy and Papert [MP87]
The sensitivity of parities is also well-studied in the theoretical computer science literature, with
the relation to circuit complexity, in particular the computational limitations of small-depth circuits
[Hås87, All96]. The seminal paper of Kearns on statistical query learning algorithms [Kea98] brings
up the difficulties in learning parities with such algorithms. As mentioned earlier there have been
numerous works extending the work of Kearns for parities to more general cases of high statistical
dimension, such as [BFJ+94, FGV17, Kea98, BKW03, Fel16, Yan05, FGR+17, SVW15, Szö09,
FPV18] and [SVWX17, VW18] for specific neural networks. While the statistical dimension was
initially derived with a worst-case requirement on the class of functions, it was generalized to
average-case notions in [FGR+17, FPV18, Fel16] and statistical noise [Yan05]. Information measure
manipulations as used in our lower-bound were also used in [SVW15] to obtain SQ bounds under
memory constraints. We refer to [Boi19] for further comparisons on SQ algorithms. Finally, [SSS17],
with an earlier version in [Sha18] from the first author, also investigates the impossibility of learning
parities. In particular, [SSS17] proves that the gradient of the loss function of a neural network will
be essentially independent of the parity function used, which gives strong indications for the failure
of GD. This is achieved in [SSS17] under the requirement that the loss function is 1-Lipschitz, an
assumption that is not needed in our Lemma 1 in the Appendix.

Conclusions and directions

For free poly-time initializations, we proved that SGD on neural nets with polynomial parameters is
as general as poly-time PAC learning, but that GD is limited as SQ. It would be interesting to further
investigate our lower-bound in the context of random initializations, in particular the behavior of the
junk-flow, and whether parities can still be learnt by SGD with ‘more random’ initializations. We
also conjecture that for several architectures (e.g., fully connected layers) and random initializations
(e.g., i.i.d. centered Gaussian weights of variance inverse proportional to the width), SGD/GD will
not learn on a polynomial horizon a target function f that has a net-to-target cross predictability that
is negligible, i.e., maxv EW (0)hf, f (v)

W (0)i2 = n�!(1), where f (v)
W (0) is the output of neuron v in the net

at initialization. In particular, this should hold for functions having no constant-degree monomials.
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