
Many thanks to the reviewers for the insightful and constructive feedback, which has significantly improved the1

manuscript. We were pleased to see quite a few remarks collectively from the reviewers highlighting the novelty and2

strength of our paper, including our state-of-the-art theoretical result and strongly supportive simulation. Due to space3

constraints, instead of responding point-by-point, we address points in common with multiple reviews. All minor4

comments have been addressed and incorporated into a revised version of the paper.5

0.0 0.2 0.4 0.6 0.8 1.0

0.0
0.2

0.4
0.6

0.8
1.0

TPP

FD
P

0.0 0.2 0.4 0.6 0.8 1.0

0.0
0.2

0.4
0.6

0.8
1.0

TPP

FD
P

0.0 0.2 0.4 0.6 0.8 1.0

0.0
0.2

0.4
0.6

0.8
1.0

TPP

FD
P

Figure 1

0.0 0.2 0.4 0.6 0.8 1.0

0.0
0.2

0.4
0.6

0.8
1.0

TPP

FD
P Unachievable

Achievable

0.0 0.2 0.4 0.6 0.8 1.0

0.0
0.2

0.4
0.6

0.8
1.0

TPP

FD
P

Unachievable

Achievable

0.0 0.2 0.4 0.6 0.8 1.0

0.0
0.2

0.4
0.6

0.8
1.0

TPP
FD

P

Unachievable

Achievable

Figure 2

δ = n/p

ε =
 k/

p

0.1

0.3

0.5

0.7

0.2 0.6 1.0 1.4

0.0

0.2

0.4

0.6

0.8

1.0

δ = n/p

ε =
 k/

p

0.1

0.3

0.5

0.2 0.6 1.0

0.2

0.4

0.6

0.8

1.0

δ = n/p

ε =
 k/

p

0.1

0.2

0.3

0.4

0.2 0.6 1.0

0.2

0.4

0.6

0.8

1.0

Figure 3

Assumption on i.i.d. Gaussian Design. In general, AMP theory sheds light mostly on6

i.i.d. Gaussian data, and thus to quantify the same diagram for general covariance matrix,7

one may need to develop stronger AMP tools. As sharply pointed out by reviewer #3,8

though Gaussianity with identity covariance is restrictive, it is already unclear what will9

happen to the Donoho-Tanner phase transition without this assumption, so it is desirable10

yet extremely difficult to achieve this generality for our more refined result. Though it is11

hard to theoretically quantify the exact complete diagram for general design (especially the12

lower boundary), empirically we find our diagram is still correct up to small differences13

on the lower boundary for a wide range of designs. For example, in Figure 1, we illustrate14

the Lasso diagram for various designs: namely, Gaussian design with AR(0.05) covariance15

matrix (Top), Bernoulli design with each entry being i.i.d. Bern(0.5) (Middle), and Cauchy16

design with each entry being Cauchy(0, 1/n) (Bottom). In the Gaussian and Bernoulli17

case, our claimed region (enclosed by the black lines) is still almost exact. When the design18

comes from Cauchy distribution, where its mean or variance is not even well-defined, the19

simulation result has a higher lower boundary. This is easy to understand: the difficulty20

of the Cauchy design complicates the model selection problem, and the Lasso generally21

cannot achieve the best case as in the i.i.d. Gaussian case.22

Statistical Implication from our Complete Diagram. We want to re-emphasize the23

motivation and the statistical implication for studying the complete tradeoff diagram. First24

of all, our finding is a novel result that quantifies the exact complete achievable region of25

Lasso, and it is of great theoretical interest. Also, the usage of homotopy methods is rare26

in the statistics and the machine learning community, and our framework can be used to27

establish similar results for other methods like SLOPE, SCAD, group Lasso, etc. Secondly,28

the complete Lasso diagram allows us insight to the Lasso’s performance. As illustrated29

in Figure 2, we can have a very narrow estimate of the false discoveries when the Lasso30

has large power. According to the lower bounds of FDP in the three cases (21%, 36%,31

and 16%) are the best possible value achievable when the TPP is close to its maximum.32

However, our complete Lasso tradeoff diagram also guarantees that it is impossible to have33

a much worse FDP than the best possible ones when the TPP is large.34

Level Plot of the Lasso Tradeoff Diagram. To better illustrate our result, we present35

Figure 3 suggested by reviewer. In each diagram, we plot δ = n/p (x− axis) versus ε =36

k/p (y − axis), and fix FDP to be 0.2 (Top), 0.4 (Middle), and 0.6 (Bottom). The color of37

each point represents the largest TPP (since trivially, minimum TPP is 0) achievable (red for38

0 and white for 1). We see that for large FDP, the TPP is always decrease with the sparsity39

ratio ε, no matter beyond or below the DT phase transition. However, for small FDP, the40

maximum power first decreases with the increase of sparsity, and then increase with sparsity41

when above the DT phase transition. Our more refined result exactly characterizes this42

complication beyond DT transition. These plots, though being mathematically equivalent,43

complement to our tradeoff diagrams from a different perspective.44

Other Minor Details and Comments. We have addressed all the corrections suggested45

by the reviewers and updated a revised version of the paper to define more clearly all46

notations and terminologies. We remark on some confusion as follows: 1. The q∗ is well47

defined when we fixed ε and δ, however for notation simplicity we omit its dependence on48

ε and δ when it is clear from the context. 2. To be clear, as stated in the first assumption on page 3, we consider nl, pl, kl49

for some l ≥ 0, and the asymptotic regime is when nl/pl → δ and kl/pl → ε. Specifically, the kl here is not a random50

variable for any l. The prior Π (where k is random) is only used in (3.3) (3.4) to define (tpp∞, fdp∞). 3. The finite51

second moment assumption of the prior is an assumption needed by AMP. We believe this is an artifact—in practice, a52

large second moment can be desirable, since it often results in large “effect-size heterogeneity” (a new notion proposed53

recently), where the Lasso’s performance would be very close to the lower boundary q∗, which is also enclosed in our54

Lasso diagram.55


